天蓝色链霉菌离子通道蛋白MscL及胁迫调节因子SigN的生物学功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天蓝色链霉菌(Streptomyces coelicolor)属于革兰氏阳性细菌,由于具有复杂的形态发育和生理分化过程,同时能产生丰富的次生代谢产物,已成为研究链霉菌的模式菌株,其基因组已于2002年测序完成。天蓝色链霉菌作为一种典型的土壤细菌,在生长和生理代谢中常受到环境胁迫作用,长期进化形成了一套完整的胁迫调控机制。对这些胁迫调控机制的深入研究,有助于我们更加清晰地理解微生物与人类和谐共存的意义,以及更好地将这些微生物为我所用。本课题选择了典型的胁迫调控离子通道蛋白(Larger conductance Mechanosensitive channel,MscL)和Sigma factor(σ~N)为研究对象进行阐述,为深入剖析复杂的环境胁迫调控网络体系提供基础。
     首先选取实验室条件下的渗透压改变作为一种模式胁迫条件,对天蓝色链霉菌生长相关数据进行分析,包括高渗胁迫对菌体次级代谢的影响、低渗胁迫对菌体生长的影响、不同溶质造成的渗透压改变对菌体产生的不同影响以及细胞相容性物质(游离氨基酸、离子、甜菜碱)的变化。试验结果表明,NaCl是实验室最佳模拟渗透压改变的溶质、高渗胁迫会造成菌体次级代谢的提前;低渗胁迫对菌体造成的影响经24h基本可以恢复到正常水平,低渗胁迫梯度越大,对菌体的生长抑制也越大,细胞相容性物质中参与低渗胁迫的物质主要有Na~+、K~+,谷氨酰胺和甜菜碱。基于上述研究,对渗透压胁迫的调控因子MscL和σ~N分别进行研究。
     通过与大肠杆菌大电导率机械敏感性离子通道(Ec-MscL)编码基因进行序列比对,发现天蓝色链霉菌中存在同源性较高的基因SCO3190,推测其编码大电导率机械敏感性离子通道,并将其编码蛋白命名为Sc-MscL。通过scmscl敲除、体内与体外分别表达Sc-MscL对Sc-MscL的功能进行了研究,结果表明Sc-MscL能专一性应对NaCl产生的低渗胁迫反应,Sc-MscL缺失造成菌体孢子产生提前,且放线菌紫素(blue pigmented polyketide actinorhodin,Act)的产量降低;体内过量表达Sc-MscL致使菌落形态变小、皱褶减少,且Act产量增加。利用大肠杆菌成功表达了GST和His融合的膜蛋白Sc-MscL,通过凝血酶酶切获得单一的Sc-MscL蛋白;体外Cross-linking试验证明,Sc-MscL和其他的菌株同源蛋白一样呈现出保守的五聚体结构。这是首次对天蓝色链霉菌离子通道MscL的生化特性和生理功能进行研究,取得了初步研究成果。
     另一方面,基因组信息分析显示天蓝色链霉菌内存在大量的σ因子,这些σ因子大多是可选择性的,即在特定的条件下开启,诱导相关基因的表达。其中,σ~B家族是比较重要的σ因子。本论文研究结果表明,σ~B家族中的σ~N与天蓝色链霉菌的气生菌丝、孢子产生和抗生素合成密切相关,σ~N敲除后菌体在胁迫条件下的生长(盐、酸、氧化、乙醇、冷激、热激)受到不同程度的抑制,且在氧化胁迫、酸胁迫和冷激条件下,菌体的生长周期相对于野生型的生长周期发生了改变。通过体外亲和纯化、pull-down和荧光共定位分析,证明σ~N与ATP合成酶的β亚基(ATPaseβ)存在特异性相互作用,分析σ~N缺失突变株发现胞内ATP水平明显升高,这是首次发现σ因子和能量系统调节相关;通过体外蛋白-DNA结合试验和双向电泳分析了σ~N潜在的调控对象,结果表明编码这些蛋白的基因与形态发育、抗生素合成和胁迫调节相关,从而揭示了σ~N缺失造成表型变化的分子机制。
Streptomyces coelicolor is a representative of soil-dwelling bacteria with a complex lifecycle, which is challenged with diverse nutritional and environmental stresses in its soil habitat and during its developmental process. The genome of S. coelicolor was sequenced in 2002. Abundant documents relate to genome annotation of S. coelicolor. Considering the specificity of various stresses from soil habitat, we selected S. coelicolor as a model of gram-positive bacteria and tried to reveal some properties of some genes about stress response. The thesis is composed of two parts. One part is the biochemical and functional characters of larger conductance mechanosensitive channel in S. coelicolor (Sc-MscL), the other part is the study on a new sigma facor,σ~N, in S. coelicolor.
     Firstly, we revealed some properties in S. coelicolor under the artifical osmotic stress by chemical microanalysis tools, including automatic amino acid analyst, atomic absortion spectrophotometer and chemical reaction. The results demonstrated NaCl is the best solute for simulation of orginal soil osmotic stress. Secondary metabolism of S. coelicolor is ahead under NaCl and sucrose hyperosmotic stress, and S. coelicolor possess more resisitance to osmotic downshock than that of other soil-dwelling G~+ bacteria. Furthermore, glutamine and glutamic acid were the main amino acids effusing from the cell under the osmotic downshock. K~+ and Na~+ also participated in the response of osmotic downshock regulation. Glycine betaine played a role in low grads osmotic downshock. Based on these results, two stress-related genes were chose as the object of this thesis. One is SCO3190 encoding Sc-MscL, the other is SCO4034 encoding alternative sigma factor,σ~N.
     In the first part, SCO3190 was aligned with the MscL in Escherichia coli and Mycobacteium tuberculosis suggesting that the SCO3190 encodes the larger conductance mechanosensitive channel, named scmscl corresponding of the protein Sc-MscL. Using the technique of gene knock out, expression of Sc-MscL in E. coli and overexpression of Sc-MscL in S. coelicolor, the physiological functions of Sc-MscL were revealed firstly. The specific regulation to NaCl osmotic stress of Sc-MscL was found by comparing the growth curves of wild-type M145 and scmscl disruptive mutant W2006 under osmotic downshock. Furthermore, abundant spores of W2006 appeared on R_5 plate, which was ahead than that of wild type M145, and there is a little decline about Act synthesis. Subsequently, overexpression the Sc-MscL in S. coelicolor affected the phenotype of colony and Act synthesis. The smaller colony with little goffer produced a mass of blue-pigments related to Act. From the other aspect, Sc-MscL as a membrane protein was overexpressed in E. coli by fusing with GST or His tag. Using in vitro cross-linking, the possible functional pentamer of Sc-MscL was detected suggesting the conserve property of MscL.
     In the second part, there are 65 kinds of sigma factor in S. coelicolor, among which, mostly sigma fctors are alternative and controlled by their anti-sigma factors. Under stress condition, these alternative sigma factors can activate by developmental or environmental signal and promote the expression of stress-related genes. SigB family includes nine kinds of sigma factors, which are the focus of study of sigma factor in S. coelicolor currently. We selected the one sigN corresponding to SCO4034 as object, which got highest score in alignment of S. coelicolor genome to sigB of Bacillus subtilis. Through sigN knock out, the physiological functions of sigN was illuminated. SigN is involved in differentiation and stress response in S. coelicolor. The sigN knock out mutant strain M145Z default in sporulation with a little aerial mycelium on R_5 plate, and scanning electronic micrographs also revealed no visible sign of sporulation. More importantly, significant declines of Act and Red production were observed in M145Z, which was 41.66% and 32.87% of that of M145, respectively. Production of Act was delayed about four days and Red was ahead about one day. All of the results indicated that SigN was required for proper differentiation and antibiotic synthesis of S. coelicolor. In addition, under six stress conditions including osmotic stress, ethanol stress, oxidative stress, acidic stress, heat shock, cold shock, mutant strain M145Z displayed retarded growth compared to wild type strain M145. Among the stresses, M145Z was more sensitive to oxidative, cold and ethanol stresses than the others, and the growth cycle of M145Z has changed comparing to that of M145, which suggested that the proteins involved in growth cycle were also related to cold, heat and oxidative stress response of SigN in S. coelicolor. However, there was no time change in growth cycle in the condition of osmotic, ethanol and acidic stress between the M145 and M145Z according to the growth curves. These results suggested that there were different pathway of stress response to six stress conditions of SigN.
     To study the interactive protein of SigN, using in vitro affinity purification followed by ESI-MS/MS, we presented evidences that SigN could interact with ATP synthaseβsubunit (ATPaseβ、SCO5373), which was further confirmed by in vitro pull-down assay in E. coli and fluorescent co-localization assay in mammalian 293 and 3T3 cell lines. Interestingly, luciferase assay showed that sigN deletion increased the intracellular ATP level in S. coelicolor, and given that ATP synthaseβsubunit (ATPaseβ) controls the transformation between ADP and ATP, suggesting that sigma factor SigN is possibly required for regulation of ATP dynamics via interaction with ATPaseβ.
     Sigma factor regulates the expression of a set of genes. SigN was expressed and purified using the Ni~(2+)-chelate affinity beads and combined with the fragments of genome of S. coelicolor. The potential promoter sequences were fished. RT-PCR showed that the maxam transcription of sigN appeared at 72h in R_5 medium. The difference display of proteins were analysed by two-dimensional electrophoresis (2-DE). 22 proteins were identified and involved in differentiation, primary metabolism, antibiotic synthesis and stress response. The result further proved the difference between mutant M145Z and wild type M145 on the phenotype, secondary metabolism, and stress response.
引文
Ajouz, B., Berrier, C, Garrigues, A., Besnard, M., and Ghazi, A. (1998) Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J Biol Chem 273: 26670-26674.
    Arkin, I.T., Sukharev, S.I., Blount, P., Kung, C, and Brunger, A.T. (1998) Helicity, membrane incorporation, orientation and thermal stability of the large conductance mechanosensitive ion channel from E. coli. Biochim Biophys Acta 1369: 131-140.
    Bae, J.B., Park, J.H., Hahn, M.Y., Kim, M.S., and Roe, J.H. (2004) Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor: zinc release and disulfide bond formation. J Mol Biol 335: 425-435.
    Bentley, S.D., Chater, K.F., Cerdeno-Tarraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C.W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., Rajandream, M.A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B.G., Parkhill, J., and Hopwood, D.A. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147.
    Berrier, C, Coulombe, A., Szabo, I., Zoratti, M., and Ghazi, A. (1992) Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur J Biochem 206: 559-565.
    Berrier, C, Besnard, M., Ajouz, B., Coulombe, A., and Ghazi, A. (1996) Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J Membr Biol 151: 175-187.
    Berrier, C, Garrigues, A., Richarme, G, and Ghazi, A. (2000) Elongation factor Tu and DnaK are transferred from the cytoplasm to the periplasm of Escherichia coli during osmotic downshock presumably via the mechanosensitive channel mscL. J Bacteriol 182: 248-251.
    Betanzos, M., Chiang, C.S., Guy, H.R., and Sukharev, S. (2002) A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat Struct Biol 9: 704-710.
    Bibb, M.J., Molle, V., and Buttner, M.J. (2000) sigma(BIdN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol 182: 4606-4616.
    Bishop, A., Fielding, S., Dyson, P., and Herron, P. (2004) Systematic insertional mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production. Genome Res 14: 893-900.
    Blount, P., Sukharev, S.I., Moe, P.C., Nagle, S.K., and Kung, C. (1996a) Towards an understanding of the structural and functional properties of MscL, a mechanosensitive channel in bacteria. Biol Cell 87:1-8.
    Blount, P., Sukharev, S.I., Moe, P.C., Schroeder, M.J., Guy, H.R., and Kung, C. (1996b) Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. Embo J 15: 4798-4805.
    Blount, P., Sukharev, S.I., Schroeder, M.J., Nagle, S.K., and Kung, C. (1996c) Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc Natl Acad Sci USA 93: 11652-11657.
    Booth, I.R., and Louis, P. (1999) Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Curr Opin Microbiol 2: 166-169.
    Bult, C.J., White, O., Olsen, G.J., Zhou, L., Fleischmann, R.D., Sutton, G.G, Blake, J.A., FitzGerald, L.M., Clayton, R.A., Gocayne, J.D., Kerlavage, A.R., Dougherty, B.A., Tomb, J.F., Adams, M.D., Reich, C.I., Overbeek, R., Kirkness, E.F., Weinstock, K.G., Merrick, J.M., Glodek, A., Scott, J.L., Geoghagen, N.S., and Venter, J.C. (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273: 1058-1073.
    Chang, G., Spencer, R.H., Lee, A.T., Barclay, M.T., and Rees, D.C. (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282: 2220-2226.
    Chater, K.F., and Chandra, G. (2006) The evolution of development in Streptomyces analysed by genome comparisons. FEMS Microbiol Rev. 30: 651-672.
    Cho, Y.H., Lee, E.J., Ahn, B.E., and Roe, J.H. (2001) SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol Microbiol 42: 205-214.
    Colland, F., Barth, M., Hengge-Aronis, R., and Kolb, A. (2000) sigma factor selectivity of Escherichia coli RNA polymerase: role for CRP, IHF and lrp transcription factors. Embo J 19: 3028-3037.
    Cropp, T.A., Smogowicz, A.A., Hafner, E.W., Denoya, C.D., McArthur, H.A., and Reynolds, K.A. (2000) Fatty-acid biosynthesis in a branched-chain alpha-keto acid dehydrogenase mutant of Streptomyces avermitilis. Can J Microbiol 46: 506-514.
    Csonka, L.N. (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53: 121-147.
    Denoya, CD., Fedechko, R.W., Hafner, E.W., McArthur, H.A., Morgenstern, M.R., Skinner, D.D., Stutzman-Engwall, K., Wax, R.G., and Wernau, W.C (1995) A second branched-chain alpha-keto acid dehydrogenase gene cluster (bkdFGH) from Streptomyces avermitilis: its relationship to avermectin biosynthesis and the construction of a bkdF mutant suitable for the production of novel antiparasitic avermectins. J Bacteriol 177: 3504-3511.
    Drew, D., Froderberg, L., Baars, L., and de Gier, J.W. (2003) Assembly and overexpression of membrane proteins in Escherichia coli. Biochim Biophys Acta 1610: 3-10.
    Elliot, M.A., Bibb, M.J., Buttner, M.J., and Leskiw, B.K. (2001) BldD is a direct regulator of key developmental genes in Streptomyces coelicolor A3(2). Mol Microbiol 40: 257-269.
    Erbeznik, M., Hudson, S.E., Herrman, A.B., and Strobel, H.J. (2004) Molecular analysis of the xylFGH operon, coding for xylose ABC transport, in Thermoanaerobacter ethanolicus. Curr Microbiol 48: 295-299.
    Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., and Weiss, W. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21: 1037-1053.
    Guffanti, A.A., Clejan, S., Falk, L.H., Hicks, D.B., and Krulwich, T.A. (1987) Isolation and characterization of uncoupler-resistant mutants of Bacillus subtilis. J Bacteriol 169: 4469-4478.
    Gullingsrud, J., Kosztin, D., and Schulten, K. (2001) Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J 80: 2074-2081.
    Gustin, M.C., Zhou, X.L., Martinac, B., and Kung, C. (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242: 762-765.
    Haldenwang, W.G (1995) The sigma factors of Bacillus subtilis. Microbiol Rev 59: 1-30.
    Hamill, O.P., and McBride, D.W., Jr. (1996) The pharmacology of mechanogated membrane ion channels. Pharmacol Rev 48: 231-252.
    Hamill, O.P., and Martinac, B. (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81: 685-740.
    Hase, C.C., Minchin, R.F., Kloda, A., and Martinac, B. (1997) Cross-linking studies and membrane localization and assembly of radiolabelled large mechanosensitive ion channel (MscL) of Escherichia coli. Biochem Biophys Res Commun 232: 777-782.
    He, H., Hovey, R., Kane, J., Singh, V., and Zahrt, T.C. (2006) MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. J Bacteriol 188: 2134-2143.
    Hecker, M., Schumann, W., and Volker, U. (1996) Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19: 417-428.
    Hecker, M., and Volker, U. (1998) Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon. Mol Microbiol 29: 1129-1136.
    Hekstra, D., and Tommassen, J. (1993) Functional exchangeability of the ABC proteins of the periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli. J Bacteriol 175: 6546-6552.
    Helmann, J.D. (1991) Alternative sigma factors and the regulation of flagellar gene expression. Mol Microbiol 5: 2875-2882.
    Hengge-Aronis, R. (1999) Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr Opin Microbiol 2: 148-152.
    Homerova, D., Sevcikova, B., Sprusansky, O., and Kormanec, J. (2000) Identification of DNA-binding proteins involved in regulation of expression of the Streptomyces aureofaciens sigF gene, which encodes sporulation sigma factor sigma(F). Microbiology 146 ( Pt 11): 2919-2928.
    Hong, H.J., Hutchings, ML, Neu, J.M., Wright, G.D., Paget, M.S., and Buttner, M.J. (2004) Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 52: 1107-1121.
    Huang, J., Lih, C.J., Pan, K.H., and Cohen, S.N. (2001) Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev 15: 3183-3192.
    Hutchings, M.I., Hoskisson, P.A., Chandra, G., and Buttner, M.J. (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150: 2795-2806.
    Hutchings, M.I., Hong, H.J., Leibovitz, E., Sutcliffe, I.C., and Buttner, M.J. (2006) The sigma(E) cell envelope stress response of Streptomyces coelicolor is influenced by a novel lipoprotein, CseA. J Bacteriol 188: 7222-7229.
    Kelemen, GH., Brown, GL., Kormanec, J., Potuckova, L., Chater, K.F., and Buttner, M.J. (1996) The positions of the sigma-factor genes, whiG and sigF, in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2). Mol Microbiol 21: 593-603.
    Kempf, B., and Bremer, E. (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170: 319-330.
    Khan, R.N., Martinac, B., Madsen, B.W., Milne, R.K., Yeo, G.F., and Edeson, R.O. (2005) Hidden Markov analysis of mechanosensitive ion channel gating. Math Biosci 193: 139-158.
    Kieser, T, Bibb M. J., Buttner M. J., ChaterK. F., and Hopwood D. A.. (2000) Practical Streptomyces genetics. Norwich: The John Innes Foundation.
    Kieser T., Chater K.F., Hopwood D.A., e.a. (2000) Practical Streptomyces Genetics. Norwich: John Innes Foundation.
    Kihara, A., Akiyama, Y., and Ito, K. (1995) FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc Natl Acad Sci U S A 92: 4532-4536.
    Kloda, A., and Martinac, B. (2001a) Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. Embo J 20: 1888-1896.
    Kloda, A., and Martinac, B. (2001b) Molecular identification of a mechanosensitive channel in archaea. Biophys 780:229-240.
    Kloda, A., and Martinac, B. (2002) Common evolutionary origins of mechanosensitive ion channels in Archaea, Bacteria and cell-walled Eukarya. Archaea 1: 35-44.
    Koch, A.L. (1983) The surface stress theory of microbial morphogenesis. Adv Microb Physiol 24: 301-366.
    Koo, S.P., Higgins, C.F., and Booth, I.R. (1991) Regulation of compatible solute accumulation in Salmonella typhimurium: evidence for a glycine betaine efflux system. J Gen Microbiol 137: 2617-2625.
    Kormanec, J., Homerova, D., Barak, I., and Sevcikova, B. (1999) A new gene, sigG encoding a putative alternative sigma factor of Streptomyces coelicolor A3(2). FEMS Microbiol Lett 172: 153-158.
    Kormanec, J., and Sevcikova, B. (2002) Stress-response sigma factor sigma(H) directs expression of the gltB gene encoding glutamate synthase in Streptomyces coelicolor A3(2). Biochim Biophys Acta 1577: 149-154.
    Kuhlmann, A.U., and Bremer, E. (2002) Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl Environ Microbiol 68: 772-783.
    Lamark, T., Styrvold, O.B., and Strom, A.R. (1992) Efflux of choline and glycine betaine from osmoregulating cells of Escherichia coli. FEMS Microbiol Lett 75: 149-154.
    Le Dain, A.C., Saint, N., Kloda, A., Ghazi, A., and Martinac, B. (1998) Mechanosensitive ion channels of the archaeon Haloferax volcanii. J Biol Chem 273: 12116-12119.
    Lee, E.J., Cho, Y.H., Kim, H.S., Ahn, B.E., and Roe, J.H. (2004a) Regulation of sigmaB by an antiand an anti-anti-sigma factor in Streptomyces coelicolor in response to osmotic stress. J Bacteriol 186: 8490-8498.
    Lee, E.J., Cho, Y.H., Kim, H.S., and Roe, J.H. (2004b) Identification of sigmaB-dependent promoters using consensus-directed search of Streptomyces coelicolor genome. J Microbiol 42: 147-151.
    Lee, E.J., Karoonuthaisiri, N., Kim, H.S., Park, J.H., Cha, C.J., Kao, C.M., and Roe, J.H. (2005) A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol 57: 1252-1264.
    Levina, N., Totemeyer, S., Stokes, N.R., Louis, P., Jones, M.A., and Booth, I.R. (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. Embo J 18: 1730-1737.
    Li, W., Stevenson, C.E., Burton, N., Jakimowicz, P., Paget, M.S., Buttner, M.J., Lawson, D.M., and Kleanthous, C. (2002) Identification and structure of the anti-sigma factor-binding domain of the disulphide-stress regulated sigma factor sigma(R) from Streptomyces coelicolor. J Mol Biol 323: 225-236.
    Lonetto, M.A., Brown, K.L., Rudd, K.E., and Buttner, M.J. (1994) Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci U S A 91:7573-7577.
    Lu, B., and Bishop, C.E. (2003) Mouse GGN1 and GGN3, two germ cell-specific proteins from the single gene Ggn, interact with mouse POG and play a role in spermatogenesis. J Biol Chem 278: 16289-16296.
    Martinac, B., Buechner, M., Delcour, A.H., Adler, J., and Kung, C. (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA84: 2297-2301.
    Martinac, B., and Hamill, O.P. (2002) Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness. Proc Natl Acad Sci U S A 99: 4308-4312.
    Martinac, B., and Kloda, A. (2003) Evolutionary origins of mechanosensitive ion channels. Prog Biophys Mol Biol 82: 11-24.
    Mazurakova, V., Sevcikova, B., Rezuchova, B., and Kormanec, J. (2006) Cascade of sigma factors in streptomycetes: identification of a new extracytoplasmic function sigma factor sigma(J) that is under the control of the stress-response sigma factor sigma (H) in Streptomyces coelicolor A3(2). Arch Microbiol 186: 435-446.
    McLean, J.E., Hamaguchi, N., Belenky, P., Mortimer, S.E., Stanton, M., and Hedstrom, L. (2004) Inosine 5'-monophosphate dehydrogenase binds nucleic acids in vitro and in vivo. Biochem J 379:243-251.
    Mendez, C, and Chater, K.F. (1987) Cloning of whiG, a gene critical for sporulation of Streptomyces coelicolor A3(2).J Bacteriol. 169: 5715-5720.
    Merrick, M., Gibbins, J., and Toukdarian, A. (1987) The nucleotide sequence of the sigma factor gene ntrA (rpoN) of Azotobacter vinelandii: analysis of conserved sequences in NtrA proteins. Mol Gen Genet 210: 323-330.
    Meyer, GR., Gullingsrud, J., Schulten, K., and Martinac, B. (2006) Molecular dynamics study of MscL interactions with a curved lipid bilayer. Biophys J 91: 1630-1637.
    Miller, K.J., and Wood, J.M. (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50: 101-136.
    Miroux, B., and Walker, J.E. (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260: 289-298.
    Missiakas, D., and Raina, S. (1998) The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28: 1059-1066.
    Moe, P.C., Blount, P., and Kung, C. (1998) Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Mol Microbiol 28: 583-592.
    Monaco, C, Tala, A., Spinosa, M.R., Progida, C, De Nitto, E., Gaballo, A., Bruni, C.B., Bucci, C, and Alifano, P. (2006) Identification of a meningococcal L-glutamate ABC transporter operon essential for growth in low-sodium environments. Infect Immun 74: 1725-1740.
    Muhlberger, R., Robelek, R., Eisenreich, W., Ettenhuber, C, Sinner, E.K., Kessler, H., Bacher, A., and Richter, G. (2003) RNA DNA discrimination by the antitermination protein NusB. J Mol Biol 327: 973-983.
    Newell, K.V., Thomas, D.P., Brekasis, D., and Paget, M.S. (2006) The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on Streptomyces coelicolor. Mol Microbiol 60: 687-696.
    Nottebrock, D., Meyer, U., Kramer, R., and Morbach, S. (2003) Molecular and biochemical characterization of mechanosensitive channels in Corynebacterium glutamicum. FEMS Microbiol Lett 218: 305-309.
    Oakley, A.J., Martinac, B., and Wilce, M.C. (1999) Structure and function of the bacterial mechanosensitive channel of large conductance. Protein Sci 8: 1915-1921.
    Ou, X., Blount, P., Hoffman, R.J., and Kung, C. (1998) One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc Natl Acad Sci U S A95: 11471-11475.
    Perozo, E., Cortes, D.M., Sompornpisut, P., Kloda, A., and Martinac, B. (2002a) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418: 942-948.
    Perozo, E., Kloda, A., Cortes, D.M., and Martinac, B. (2002b) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9: 696-703.
    Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J.D., Volker, U., and Hecker, M. (2001) Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183: 5617-5631.
    Petricek, M., Petrickova, K., Havlicek, L., and Felsberg, J. (2006) Occurrence of two 5-aminolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked with the production of asukamycin. J Bacteriol 188: 5113-5123.
    Petrov, E., and Martinac, B. (2006) Modulation of channel activity and gadolinium block of MscL by static magnetic fields. Eur Biophys J.
    Pivetti, CD., Yen, M.R., Miller, S., Busch, W., Tseng, Y.H., Booth, I.R., and Saier, M.H., Jr. (2003) Two families of mechanosensitive channel proteins. Microbiol Mol Biol Rev 67: 66-85, table of contents.
    Poolman, B., and Glaasker, E. (1998) Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29: 7,91-401.
    Qi, Z., Kishigami, A., Nakagawa, Y, Iida, H., and Sokabe, M. (2004) A mechanosensitive anion channel in Arabidopsis thaliana mesophyll cells. Plant Cell Physiol 45: 1704-1708.
    Ratcliffe, A.J. (2006) Inosine 5'-monophosphate dehydrogenase inhibitors for the treatment of autoimmune diseases. Curr Opin Drug Discov Devel 9: 595-605.
    Ruffert, S., Lambert, C, Peter, H., Wendisch, V.F., and Kramer, R. (1997) Efflux of compatible solutes in Corynebacterium glutamicum mediated by osmoregulated channel activity. Eur J Biochem 247: 572-580.
    Ruffert, S., Berrier, C, Kramer, R., and Ghazi, A. (1999) Identification of mechanosensitive ion channels in the cytoplasmic membrane of Corynebacterium glutamicum. J Bacteriol 181: 1673-1676.
    Runying, Y, Zhihao, H., Zixin, D., and Jilun, L. (1998) Construction of Escherichia coli-Streptomyces Shuttle Vectors for gene expression in Streptomyces. Chinese Journal of Biochemistry 14: 6-12.
    Saier, M.H., Jr., Eng, B.H., Fard, S., Garg, J., Haggerty, D.A., Hutchinson, W.J., Jack, D.L., Lai, E.C., Liu, H.J., Nusinew, D.P., Omar, A.M., Pao, S.S., Paulsen, I.T., Quan, J.A., Sliwinski, M., Tseng, T.T., Wachi, S., and Young, G.B. (1999) Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta 1422: 1-56.
    Saier, M.H., Jr. (2000) Families of proteins forming transmembrane channels. J Membr Biol 175: 165-180.
    Saimi, Y., Martinac, B., Preston, R.R., Zhou, X.L., Sukharev, S., Blount, P., and Kung, C. (1994) Ion channels of microbes. Soc Gen Physiol Ser 49: 179-195.
    Saimi, Y., Loukin, S.H., Zhou, X.L., Martinac, B., and Kung, C. (1999) Ion channels in microbes. Methods Enzymol 294: 507-524.
    Saint, N., Lacapere, J.J., Gu, L.Q., Ghazi, A., Martinac, B., and Rigaud, J.L. (1998) A hexameric transmembrane pore revealed by two-dimensional crystallization of the large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem 273: 14667-14670.
    Sasse-Dwight, S., and Gralla, J.D. (1990) Role of eukaryotic-type functional domains found in the prokaryotic enhancer receptor factor sigma 54. Cell 62: 945-954.
    Schleyer, M., Schmid, R., and Bakker, E.P. (1993) Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock. Arch Microbiol 160: 424-431.
    Schlosser, A. (2000) MsiK-dependent trehalose uptake in Streptomyces reticuli. FEMS Microbiol Lett 184: 187-192.
    Sevcikova, B., Benada, O., Kofronova, O., and Kormanec, J. (2001) Stress-response sigma factor sigma(H) is essential for morphological differentiation of Streptomyces coeiicolor A3(2). Arch Microbiol 177: 98-106.
    Sevcikova, B., and Kormanec, J. (2002) Activity of the Streptomyces coelicolor stress-response sigma factor sigmaH is regulated by an anti-sigma factor. FEMS Microbiol Lett 209: 229-235.
    Sevcikova, B., and Kormanec, J. (2003) The ssgB gene, encoding a member of the regulon of stress-response sigma factor sigmaH, is essential for aerial mycelium septation in Streptomyces coelicolor A3(2). Arch Microbiol 180: 380-384.
    Sevcikova, B., Mazurakova, V., and Kormanec, J. (2005) Characterization of the alternative sigma factor sigmaG in Streptomyces coeiicolor A3(2). Folia Microbiol (Praha) 50: 47-58.
    Sintchak, M.D., and Nimmesgern, E. (2000) The structure of inosine 5'-monophosphate dehydrogenase and the design of novel inhibitors. Immunopharmacology 47: 163-184.
    Skinner, D.D., Morgenstern, M.R., Fedechko, R.W., and Denoya, C.D. (1995) Cloning and sequencing of a cluster of genes encoding branched-chain alpha-keto acid dehydrogenase from Streptomyces avermitilis and the production of a functional El [alpha beta] component in Escherichia coli. J Bacteriol 177: 183-190.
    Stein, L. (2001) Genome annotation: from sequence to biology. Nat Rev Genet 2: 493-503.
    Sukharev, S., Betanzos, M., Chiang, C.S., and Guy, H.R. (2001) The gating mechanism of the large mechanosensitive channel MscL. Nature 409: 720-724.
    Sukharev, S.I., Martinac, B., Arshavsky, V.Y., and Kung, C. (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65: 177-183.
    Sukharev, S.I., Blount, P., Martinac, B., Blattner, F.R., and Kung, C. (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368: 265-268.
    Takano, H., Obitsu, S., Beppu, T., and Ueda, K. (2005) Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J Bacteriol 187: 1825-1832.
    Tang, L., and Hutchinson, C.R. (1993) Sequence, transcriptional, and functional analyses of the valine (branched-chain amino acid) dehydrogenase gene of Streptomyces coelicolor. J Bacteriol 175: 4176-4185.
    Tang, L., and Hutchinson, C.R. (1995) Regulation of expression of the valine (branched-chain amino acid) dehydrogenase-encoding gene from Streptomyces coelicolor. Gene 162: 69-74.
    TANG, M.H., and WANG, X.Q. (2002) Quantitative determination of betaine in ethanol extract of cortex lycii by filtrate and precipitation methods. Chinese Journal of Biochemical Pharmaceutics 23: 75-77.
    Torres, M., Balada, J.M., Zellars, M., Squires, C., and Squires, C.L. (2004) In vivo effect of NusB and NusG on rRNA transcription antitermination. J Bacteriol 186:1304-1310.
    Viollier, P.H., Kelemen, G.H., Dale, G.E., Nguyen, K.T., Buttner, M.J., and Thompson, C.J. (2003a) Specialized osmotic stress response systems involve multiple SigB-like sigma factors in Streptomyces coelicolor. Mol Microbiol 47: 699-714.
    Viollier, P.H., Weihofen, A., Folcher, M., and Thompson, C.J. (2003b) Post-transcriptional regulation of the Streptomyces coelicolor stress responsive sigma factor, SigH, involves translational control, proteolytic processing, and an anti-sigma factor homolog. J Mol Biol 325: 637-649.
    Wosten, M.M. (1998) Eubacterial sigma-factors. FEMS Microbiol Rev 22:127-150.
    Wu, C. (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11: 441-469.
    Xu, J., Tozawa, Y., Lai, C., Hayashi, H., and Ochi, K. (2002) A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicoior A3(2). Mol Genet Genomics 268: 179-189.
    Yan, J.X., Wait, R., Berkelman, T., Harry, R.A., Westbrook, J.A., Wheeler, C.H., and Dunn, M.J. (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21: 3666-3672.
    Yeo, M., and Chater, K. (2005) The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor. Microbiology 151: 855-861.
    Yoshida, M., Muneyuki, E., and Hisabori, T. (2001) ATP synthase--a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2: 669-677.
    Yoshimura, K., Batiza, A., Schroeder, M., Blount, P., and Kung, C. (1999) Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity. Biophys J 77: 1960-1972.
    Yoshimura, K., Batiza, A., and Kung, C. (2001) Chemically charging the pore constriction opens the mechanosensitive channel MscL. Biophys J 80:2198-2206.
    Yura, T., Nagai, H., and Mori, H. (1993) Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47: 321-350.
    Zdanowski, K., Doughty, P., Jakimowicz, P., O'Hara, L., Buttner, M.J., Paget, M.S., and Kleanthous, C. (2006) Assignment of the zinc ligands in RsrA, a redox-sensing ZAS protein from Streptomyces coelicolor. Biochemistry 45: 8294-8300.
    Zhou, X.L., and Kung, C. (1992) A mechanosensitive ion channel in Schizosaccharomyces pombe. Embo J 11: 2869-2875.
    章静波 (2002)医学细胞分子生物学.中国协和医科大学出版社 282——293.
    来彩霞,and 姚新生 (2000)严格应答在微生物中的存在以及在细胞形态分化和生理分化巾的作用.沈阳药科大学学报 17:65-69.
    黄培堂 (2002)分子克隆试验指南(第三版).军事医学科学出版社.