nsdA基因中断及orfX基因整合表达对阿维链霉菌次级代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
nsdA基因(negative regulator of streptomyces differentiation)是一个在链霉菌基因组中广泛存在的全局性负调控因子,天蓝色链霉菌的nsdA基因中断菌株能够提前且超量产生放线紫红素、钙依赖抗生素和次甲基霉素,同时产孢量也相应增多;阿维链霉菌NRRL8165的nsdA基因中断菌株的阿维菌素产量较出发菌株提高3-5倍。orfX基因是2003年在阿维链霉菌中发现的一个调控基因,研究发现含orfX基因的DNA片段转化变铅青链霉菌TK21后能显著提高放线紫红素和十一烷基灵菌红素的产量;用多拷贝质粒构建包含orfX基因的DNA片段的重组质粒,转化阿维链霉菌后显著提高了阿维菌素的产量。过去对这两个基因的研究工作均以原始菌株为材料,只是从理论上研究这两个基因的作用机制,未在工业菌株中应用。本研究的目的是研究nsdA基因中断和orfX基因整合表达对阿维链霉菌次级代谢的影响,探究它们在链霉菌工业育种中的作用。
     本研究采用了PCR介导的基因置换技术构建nsdA基因中断菌株。合成一对长度分别为58,59nt的引物,其5’端的39nt序列分别与nsdA基因两侧同源,3’端则分别与安普霉素抗性标记盒(aac(3)Ⅳ+oriT)两侧序列一致。以该引物扩增的PCR产物电转化能表达λRed重组酶且含有目标质粒的Escherichia.coli菌株BW25113/pIR790/pBIB0501,获得了阳性重组质粒pBIB0502,将该质粒中的约4.5kbBglⅡ酶切片段插入基因置换载体pHL212,再接合转移至阿维链霉菌BIB9903,筛选得到表型为Apra~RThio~S的接合子BIB3009,PCR验证nsdA基因已被正确中断。YMS平板培养显示,BIB3009的产孢量较出发菌株明显减少,色素产量也明显降低。发酵分析以及HPLC分析显示,BIB3009的发酵液中菌丝量较出发菌株有所减少,阿维菌素产量大幅降低,为出发菌株的1/4-1/5,产量只有296μg/mL。
     本研究根据GeneBank公布的阿维链霉菌基因组中预测的orfX基因序列(NP_828520.1)设计PCR引物P1、P2,以BIB9903总DNA为模板扩增orfX基因,以pIJ8600为出发质粒,构建了含红霉素抗性基因启动子(ermEp~*)和orfX结构基因的重组质粒pBIB827。通过接合转移将pBIB827导入阿维菌素的工业菌株BIB9903中,经PCR验证得到重组菌株BIB0827。YMS平板培养显示,BIB0827的产孢量较出发菌株明显增多,色素产量有所减少。发酵分析以及HPLC分析显示,BIB0827的发酵液中菌丝量较出发菌株有所增加,阿维菌素产量大幅提高,为出发菌株的2.5倍,产量达到3357μg/mL。传代稳定性实验证明,BIB0827传代10代后依然稳定,在工业生产上有较大的应用价值。
nsdA (negative regulator of Streptomyces differentiation) gene is a globally negativeregulator gene, which widely exists in Streptomyces. S. coelicolor nsdA null mutantsproduced more actinorhodin, CDA, methylenomycin and spores than wild type strain.Compared with the start strain of Streptomyces avermitilis NRRL8165, the level ofavermectin produced by S. avermitilis nsdA disruption strain increased 3-5 folds, orfXgene is a regulator gene discovered in the genome of S. avermitilis in 2003. The level ofactinorhodin and methylenomycin produced by S. lividans TK21 increased dramaticallywhen the DNA fragment containing orfX gene was transformed into it. When therecombinant plasmid containing the orfX gene, which was derived from multicopy vector,was transformed into S. avermitilis, the level of avermectin was elevated prominently. Inthe past, the study on the nsdA and orfX gene started with the wild type strains. Thefunction of the two genes was only investigated in theory and the possible industrialapplication was not carried out. The goal of this study is to test the effect of nsdA genedisruption and integrative expression of orfX gene on the secondary metabolism of S.avermitilis, and investigate the application of the two genes in the industrial breeding ofStreptomyces.
     In this study, PCR-mediated gene replacement technique was applied in theconstruction nsdA gene disruption strain. Firstly, a pair of long (58,59nt) primers wereprepared, which have at 5'end 39nt matching the flanking sequence of nsdA, and the3'sequence matching the right or left end of the apramycin resistant cassettes(aac(3)Ⅳ+oriT). The linear DNA PCR-amplified by these primers waselectro-transformed to the strain BW25113/pIJ790/pBIB0501 which expressesλ-Redenzyme and contains target plasmid, then a positive recombined plasmid (pBIB0502) wasobtained. The 4.5kb fragment from pBIB0502 digested by BglⅡwas inserted intopHL212, and then introduced into S. avermitilis BIB9903 by conjugal transfer. AnApra~RThio~S isolate BIB3009 was obtained and nsdA disruption was confirmed by PCR.Compared with the start strain, BIB3009 produced fewer spores and less pigment onYMS plate. HPLC assays of the fermentation broth of BIB3009 indicated that the level ofavermectin decreased dramatically, and only 296μg/ml avermectin was produced, whichreached 1/4-1/5 of the yield of the start strain.
     In this study, the PCR primers P1 and P2 were designed according to the predictedgene sequences of orfX gene in the S. avermitilis genome published in the GeneBank. orfX structural gene was amplified with genomic DNA of BIB9903 as template and P1and P2 as primers. Recombinant plasmid pBIB827, which contained the structural gene oforfX and ermEp~*, was derived from pIJ8600. The recombinant strain BIB0827 wasobtained by introducing pBIB827 into the industrial strain BIB9903 through intergenericgene transfer. Compared with the start strain, BIB0827 produced more spores and lesspigment on YMS plate. Fermentation assays indicated the biomass of the fermentationbroth of BIB0827 increased slightly when compared with the start strain. HPLC assaysshowed the level of avermectin produced by BIB0827 reached 3357μg/ml, 1.5-foldincreasing when compared with the start strain. The characteristic of high-level producingstrain BIB0827 was stable after ten rounds of non-selective growth, which could beapplied in the industrial production of avermectin.
引文
1.胡瑞茂.一族新的广谱趋虫抗生素-除虫菌素(Avermectin)及其衍生物双氢除虫菌素.应用微生物,1986,5:1-8
    2.李友顺,梁晓梅,王道全.阿维菌素结构改造的新进展.化学通报,1999,1(1):45-50
    3.宋渊,曹贵明,陈芝,李季伦.阿维菌素高产菌株的选育及阿维菌素B1的鉴定.生物工程学报,2000,16.31-35
    4.熊伟.bkdF基因和nsdA基因中断对阿维链霉菌次级代谢的影响(硕士毕业论文)。 华中农业大学图书馆,2005
    5.应新.天蓝色链霉菌A3(2)中nsdA的发现和生物学功能探讨.[硕士学位论文].武汉:华中农业大学图书馆,2002
    6.张敏恒.新型高效广谱杀虫杀螨剂阿维菌素(J).农药.1998,37(3):36-37.
    7.朱浩君,郑应华.C5-O-甲基转移酶基因的克隆、序列分析及其基因置换.中国抗生素杂志,2003,28(1):1-5
    8. Banks B J, Bishop B F, Evans N A. Avermectins and flea control: structure-activity relationships and the selection of selamectin for development as an endectocide for companion animals. Bioorg Med Chem. 2000, 8: 2017-2025
    9. Bishop B F, Bruce C I, Evans N A. Selamectin: a novel broad-spectrum endectocide for dogs and cats. Vet Parasitol. 2000, 91: 163-176
    10. Burg R W, Miller B M, Baker E E, Birnbaum J, Currie S A, Hartman R, Kong Y L, Monaghan R L, Olson G, Putter I, Tunac J B, Wallick H, Stapley E O, Oiwa R and Omura S. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother. 1979, 15: 361-367
    11. Campbell W C, Fisher M H, Stapley E O. Ivermectin: a potent new antiparasitic agent. Science, 1983, 221 (4613): 823-828
    12. Campbell W C. Ivermectin and Abamectin. New York: Springer-Verlag. 1989, 60-323.
    13. Cane D E, Liang T C, Kaplan L, Nallin M K, Schulman M D, Hensens O D, Douglas A W and Albers-Schownberg G. Biosynthetic origin of the carbon skeleton and oxygen atoms of the avermectins. J Am Chem Soc. 1983, 105:4110-4112
    14. Carter G T, Nietsche J A, Hertz M R. LL-F28249 antibiotic complex: Anew family of antiparasitic macrocyclic lactones. Isolation, characterization and structures of LL-F28249 α,β,γ,λ. J Antibiotics. 1988, 41: 519-529
    15. Chen T S, Inamine E S. Studies on the biosynthesis of avermectins. Arch Biochem Biophys. 1989,270: 521-525
    
    16. Chen Z(陈芝), Wen Y(文莹), Song Y(宋渊) and Li J L(李季伦). Effect of gene deletion of aveD on avermectins production in Streptomyces avermitilis. Acta microbiologica Sinica(微生物学报), 2002,42(5): 534-538(in Chinese with English abstrct)
    
    17. Cimburkova E, Zima J, Novak J, Vanek Z J. Nitrogen regulation of avermectins biosynthesis in Streptomyces avermitilis in a chemically defined medium. J Basic-Microbiol, 1988, 28(8): 491-99
    
    18. Curdova E, Jechova V, Zima J, Vanek Z. The effect of inorganic phosphate on the production of avermectin in Streptomyces avermitilis. J Basic-Microbiol. 1989, 29 (6): 341-46
    
    19. Datsenko A and Wanner L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences, 2000,97: 6640-6645.
    
    20. Egerton J R, Ostling D A, Blair L S, Eary C H, Suhayda D, Cifelli S, Riek R F and Campbell W C. Avermectins, new family of potent anthelmintic agents: efficacy of the Bla component. Antimicrob Agents Chemother. 1979,15: 372-378
    
    21. Fisher M H. Recent progress in avermectin research. ACS Symp Ser. 1993, 524: 169-182
    
    22. Goldberg R B, Kaplan L. The time course of production of several enzymes involved innitrogen metabolism by Streptomyces avermitilis the avermectin producer. Abstr Annu Meet Am Soc Microbiol. 1985, 85: 233-240
    
    23. Gust B, Challis G L, Fowler K, Kieser T, Chater K F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soilodor geosmin. Proceedings of the National Academy of Sciences, 2003,100(4): 1541-1546
    
    24. Hwang Y S, Kim E S, Biro S and Choi C Y. Cloning and analysis of a DNA fragment stimulating avermectin production in various Streptomyces avermitilis strains. Applied and Environmental Microbiology, 2003, 69:1263-1269
    
    25. Ikeda H and Omura S. Avermectin biosynthesis. Chem Rev. 1997, 97: 2591-2610
    
    26. Ikeda H and Omura S. Gentic aspects of the selective production of useful components in the avermectin producer Streptomyces avermitilis. Actinomyctol. 1993, 7: 133-144
    
    27. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M and Omura S. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol. 2003, 21: 526-531
    28. Ikeda H, Kotaki H, Tanaka H, Omura S. Involvement of glucose catabolism in avermectin production by Streptomyces avermitilis. Antimicrob Agents Chemother, 1988, 32 (2): 282-284
    29. Ikeda H, Nonomiya T, Usami M. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci USA, 1999, 96 (17): 9509-9514.
    30. Ikeda H, Pang C H, Endo H. Construction of a single component producer from the wild type avermectin producer Streptomyces avermitilis. J Antibiot. 1995a, 48 (6): 532-534
    31. Ikeda H, Takada Y, Pang C H, et al. Direct production of 5-oxo derivatives of avermectins by a recombinant strain of Streptomyces avermitilis. J Antibiot. 1995b, 48 (1): 95-97.
    32. Ikeda H, Takada Y, Pang CH, Tanaka H, Omura S. Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitilis. J Bacteriol. 1993,175: 2077-2082
    33. Ikeda H, Wang L R, Ohta T. Cloning of the gene encoding avermectin B 5-O-methyl- transferase in avermectin-producing Streptomyces avermitilis . Gene. 1998, 206 (2): 175-180
    34. Kawachi R, Akashi T, Kamitani Y. Identification of an AfsA homologue from Streptomyces virginiae as a pleiotropic regulator controlling autoregulator biosynthesis, virginiamycin biosynthesis and virginiamycin Ml resistance. Mot Microbiol, 2000,36(2): 302-313
    35. Kawachi R, Wangchaisoonthom U, Nihira T. Identification by gene deletion analysis of a regulator, VmsR, that controls virginiamycin biosynthesis in Streptomyces virginiae. J Bacteriol, 2000,182(21): 6259-6263
    36. Kitani S, Yamada Y, Nihira T. Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5. J Bacteriol, 2001, 183 (14): 4357-4363
    37. Lee P C, Umeyama T, Horinouchi S. afsS is a target of ASR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol Microbiol, 2002, 43 (6): 1413-1430
    38. MacNeil T, Gewain K M and MacNeil D J. Deletion analysis of the avermectin biosynthetic genes of Streptomyces avermitilis by gene cluster displacement. J Bacteriol, 1993,175 (9): 2552-2563
    39. Mckellar Q A. Developments in pharmackinetics and pharmacodynamics of anthelmintic drugs. J Vet Pharmacol Therap, 1997,20:10-11
    40. Novak J, Hajek P, Rezanka T, Vanek Z J. Nitrogen regulation of fatty acids and avermectins biosynthesis in Streptomyces avermitilis. FEMS-Microbiol Lett, 1992, 93(1): 57-62
    41. Novak J, Jechova V, Curdova E, Cimburkova E, Vanek Z J. Enzymes responsible for NH_4~+ assimilation in Streptomyces avermitilis. Folia-Microbiol, 1990, 35(6): 482-491
    42. Novak J, Kopecky J, Vanek Z J. Nitorgen source regulates expession of alanine dehydrogenase isoenzymes in Streptomyces avermitilis in a chemically defined medium. J Microbiol, 1997,43:189-193
    43. Ohnishi Y, Kameyama S, Onaka H. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mot Microbiol, 1999,34(1): 102-110
    44. Ohnishi Y, Nishiyama Y, Sato R. An oligoribonuclease gene in Streptomyces griseus. J Bacteriol, 2000,182(16): 4647-465
    45. Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y and Hattori M. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA, 2001, 98:12215-12220
    46. Omura S, Ikeda H, Tanaka H. Selective production of specific components of avermectins in Streptomyces avermitilis. J Antibiot (Tokyo), 1991, 44: 560-563
    47. Pacey M S, Dutton C J, Monday R A. Preparation of 13-epi-selamectin by biotransformation using a blocked mutant of Streptomyces avermitilis . J Antibiot, 2000, 53 (3): 301-305
    48. Pang C H, Matsuzaki K, Ikeda H. Production of a new methylated 6, 8a-seco-6, 8a-deoxy derivative of the avermectins by a transformant strain of Streptomyces avermitilis. J Antibiot, 1995, 48(1): 92-94
    49. Payne L. HPLC-Fluorescence method for the determination of eprinomectin marker residue in edible bovine tissue. Journal of Agriculture and Food Chemistry, 1997, 45: 3501-3505
    50. Remme J R, Baker H A, DeSole G A community trial of ivermectin in the onchocerciasis focus of Asubende, Ghana I. Effect on the microfilarial reservoir and the transmission of Onchocerca volvulus. Trop Med Parasit, 1989,40: 367-374
    51. Rezanka T, Mikova H, Jurkova M. Influence of inhibitors of lipid biosynthesis on the production of avermectins in Streptomyces avermitilis. FEMS Microbiol Lett, 1992, 96(1): 31-35
    52. Rudd B A M, Fletton R A, Ward J B. Noble: Macrolide compounds . European Patent, 242052,1987-10-10
    53. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989.
    54. Schulman M D, Valentino D, Hensens O. Biosynthesis of the avermectins by Streptomyces avermitilis incorporation of labeled precursors. J Antibiot, 1986, 39 (4): 541-549
    55. Schulman M D and Valention D. Streptomyces avermitilis mutants defective in methylation of avermectins. Antimicrob Agents Chemother, 1987, 31: 744-747
    56. Sevcikova B and Kormanec J. Diferential production of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Arch Microbiol, 2004,181(5): 384-389
    57. Shikiya K, Kinjo N, Uehara T. Efficacy of ivermectin against Strongyloides stercoralis in humans. Internal Medicine, 1992,31: 310-312
    58. Soderlund D M, Adams P M and Bloomquist J R. Differences in the action of avermectin B1a on the GABAA receptor complex of mouse and rat. Biochem Biophys Res Commun, 1987.146: 692-698.
    59. Soderlund D M, Bloomquist J R ,Wong F, Payne L L and Knipple D C. Molecular neurology: implications for insecticide action and resistance. Pestic Sci, 1989, 26 (4): 359-374
    60. Takiguchi Y, Mishima H, Okuda M A. New family of macrolide antibiotics: fermentation, isolation and physico-chemical properties. J Antibiot, 1980, 33: 1120-1127
    61. Tang L, Grimm A, Zhang Y X. Purification and characterization of the DNA-binding protein Dnrl, a transcriptional factor of daunorubicin biosynthesis in Streptomyces peucedus. Mol Microbiol, 1996, 22(5): 801-813
    62. Vogtli M, Chang P C, Cohen S N. afsR2: a previously undetected gene encoding a 63-amino-acid protein that stimulates antibiotic production in Streptomyces lividans. Mol Microbiol, 1994, 14: 643-653