孤立子方程的可积系统及非线性方程精确求解的若干研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要介绍孤立子方程的可积系统(即非线性演化方程族的生成及可积性质和非线性演化方程族的扩展可积模型)和非线性方程的精确求解。第一章概述了孤立子理论的产生和发展、研究概况及其研究意义。在第二章中,首先利用外积的性质构造了一个3M维的loop代数(?)_M,由此可设计出许多新的等谱问题,作为应用,本文得到了一个多分量可积的Boite-Pempinelli-Tu(BPT)族。其次,运用2+1维的零曲率方程和屠格式得到了一类2+1维的多分量的可积系。作为一个实例,得到了一类广义2+1维Kaup-Newell(KN)族。最后利用3维的Lie代数构造出相应的loop代数,由此建立一个广义的等谱问题,运用屠格式直接获得了多分量的KN方程族,作为约化情形分别得到了广义Burgers方程和广义耦合kdv方程。作为可积系统的进一步研究是可积耦合问题,即非线性演化方程族的一类扩展可积模型。在第三章中,首先将第二章中的loop代数扩展为新的高维的loop代数,由此设计恰当的等谱问题,利用屠格式求出了第二章方程族(2.3.7)中所得的可积系的相应的扩展可积模型。然后以已有的一个Lie代数的子代数为基础,通过线性组合得到了一个5维的Lie代数,然后构造出相应的loop代数,由此建立一个广义的等谱问题,运用屠格式和零曲率方程获得了第二章第四节中KN方程族的扩展可积系统,给出了求可积耦合的一种简便方法,这种方法可以普遍使用。在第四章中,首先介绍了非线性方程求解的各种方法,然后重点介绍了齐次平衡原则,最后,作为应用,给出了Fisher方程的精确行波解。
This paper introduce with emphisis the integrable system of the solitonequations include: the formulation and integrability of the nonlinear evolutionhierarchy as well as their expanding integrable systems and the exact solutionsof the nonlinear equations. In the first chapter, historical origin and someresearches of soliton theory together with its research meaning are presented.In the second chapter, firstly, a loop algebra (?)_M with 3M dimensions isconstructed by using of some properties of exterior algebra, which is devotedto establishing many isospectral problems. As its application, a multi-componentsystem BPT hierarchy is obtained. Secondly, a type of (2+1)-dimensionalmulti-component integrable hierarchy is obtained with the help of a(2+1)-dimensional zero-curvature equation and Tu scheme. As an applicationexample, we obtain a generalized (2+1)-dimensional KN hierarchy; at last In termsof the Lie algebra with 3-dimensional, we establishanew loop algebra (?)_M, thenthe extended integrable model of the muti-component KN hierarchy is presentedby use of the generalized isospectral problem and Tu sheme which reduces to ageneralized Burgers equation and generalized coupled kdv equation. In the thirdchapter, firstly, new expanding loop algebras of the loop algebras presented inthe equation systems (2.3.16) of second chapter are constructed, then acorresponding expanding integrable models are engendered by employing properisospectral problems and Tu sheme. Secondly, a 5-dimensional Lie algebra isestablished with the help of the linear combination of a subalgebra, in termsof the Lie algebra, we establish a new loop algebra, then the extended integrablemodel of the muti-component hierarchy (2.4.7) is presented by use of thegeneralized isospectral problem and Tu sheme. The simple approach to generateexpanding integrable models can be used generally. In the fourth chapter, firstintroduced simply the methods of the exact solutions of nonlinear equations, thenintroduced with empnasis the nomogeneous balance principle, finally, thkes the application, has given the exact traveling solutions of the Fisher equation.
引文
[1] 谷超豪等.孤立子理论与应用[M],浙江:浙江科技出版社,1990
    [2] 李翊神著.孤子与可积系统[M],上海:上海科技教育出版社,1999
    [3] 王明亮著.非线性发展方程与孤立子[M],兰州:兰州大学出版社,1990
    [4] 范恩贵.可积系统与计算机代数[M.],北京:科学出版社,2004
    [5] Wahlquist H D and Estabrook F B. Prolongation structures and nonlinear evolution equations[J]. J Math Phys, 1975, 16: 1-7
    [6] Parkes E J, Duffy B R. An artomated tanh-function method for finding solitary wave solutions to nonlinear evolution equations[J]. Comp Phys Commun, 1996, 98:288-300
    [7] Wang M L, LiX Z. Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations[J].
    [8] Zhou Z. Finite dimensional Hamiltonians and almost-periodic solutions for 2+1-dimensional three-wave equations. J Phys Jpn 2002; 71980: 1857-63
    [9] Tu Gui-zhang. The trace identity, a powerful tool for constructing the Hamilton structure Of integrable system[J]. J. Math. Phys. 1989, 30(2): 330-338
    [10] Tu Gui-zhang. On Liouville integrability of zero-curvature equations and the Yang hierarchy[J], J. Phys. A:Math. Gen. , 1989, 22: 2375-2392
    [11] 屠规彰.一个新的可积系及其Hamilton结构[J],中国科学,1998,12:1243-1252
    [12] 马文秀.一个新的Liouville可积系的广义Hamilton方程族及其约化[J],数学年刊(A),1992,13:115-123
    [13] 马文秀.一类Hamilton算子,遗传对称及可积系[J],高校应用数学学报,1993.8:128-135
    [14] Hu Xingbiao. A powerful approach to generate new integrable systems[J], J. Phys. A. Math. Gen. , 1994, 27:2497-2514
    [15] Hu Xingbiao. An approach to generate superextensions of integrable systems[J], J. Phys. A. Math Gen. , 1994, 27:2497-2514
    [16] 郭福奎.可积的NLS-MKdv方程族及其Hamilton结构[J],数学学报,1997,40(6):801-804
    [17] 徐西祥.一族新的Lax可积系及其Liouville可积性[J],数学物理学报,1997,17:57-61
    [18] Fan Engui. Soliton and integrable system[J], Dissertation of Dalian University of Technology, 1998
    [19] 郭福奎.Loop代数(?)_1的子代数与可积Hamilton方程[J],数学物理学报,1999,19(5):507-512
    [20] 郭福奎.一族可积Hamilton方程[J],应用数学学报.2000,23(2):181-187
    [21] 郭福奎.一族LiOUVille可积系及其双Hamilton结构[J],山东科技大学学报,2000,19(2):7-13
    [22] Fan Engui. Integrable systems of derivative nonlinear Schrodinger type and their multi-Hamiltonian structure[J], J. Phys. A:Math Gen. , 2001, 34:513-519
    [23] Fan Engui. A Liouville Integrable Hamiltonian system associated with a generalized Kaup-Newell spectral problem[J], Phys. A, 2002, 301:105-113
    [24] 郭福奎.推广的AKNS方程族[J],系统科学与数学.2002,22(1):36-42
    [25] 张玉峰.一个新的loop代数及其应用[J],高校应用数学学报,2002,17A(3):313-317
    [26] Zhang Yufeng. A generalized Boite-Pempinelli-Tu(BPT)hierarchy and its bi-Hamiltonian structure[J]. Physics Letters A. 2003, 318
    [27] 张玉峰等.两类新的loop代数及其应用[J].数学的实践与认识.2003,33(8):109-115
    [28] 郭福奎,张玉峰.一族Liouville可积系及其3-Hamilton结构[J].高校应用数学学报,2004,19(1):41-50
    [29] Zhang Yufeng, Xu Xixiang. A trick loop algebra and a corresponding Liouville integra-ble hierarchy of evolution equation[J], Chaos, Solitons and Fractals, 2004, 21:445-456
    [30] 郭福奎,张玉峰.一类孤子方程族及其多个Hamilton结构[J],数学学报,2004,47(2):349-364
    [31] 张玉峰.一族新的可积Hamilton方程[J].数学物理学报,2005,25A(1):1-4.
    [32] Fuchssteiner. B. Coupling of completely integrable systems: the perturbation bundle[J], Appl. of Analy. And Geom. Math. to NDE, 1993, 125-138
    [33] 郭福奎,张玉峰.AKNS方程族的一类扩展可积模型[J],物理学报,2002, 51 (5): 951-954
    [34] Zhang Yufeng, Zhang Hongqing. A direct method for integrable couplings of TD hierarchy[J], J. Math. Phys. 2002, 43(1): 1-7
    [35] Zhang Yufeng. Integrable couplings of BPT hierarchy[J]. Phy. Lett. A. 2002, 299:543-548
    [36] Zhang Yufeng, Zhao Xixiang, Yan Qingyou. Integrable couplings of generalized AKNS hierarchy[J], J. Cent. South. Univ. Technol. , 2002, 9(3):220-223
    [37] 郭福奎,于凤香,一类Lie代数[J].山东科技大学学报,2003,22(3):87-88
    [38] GuiZhang Tu, J, Math. Phus. 33 (2) (1989) 330
    [39] Guo Fukui and Zhang Yufeng. A new loop algebra and a corresponding integrable hierarchy, as well as its integrable coupling[J], J. Math. Phys. , 2003, 44(12)
    [40] Zhang Yufeng, Yah Qingyou. Integrable couplings of the hierarchy of evolution equations[J], Chaos, Solitons and Fractals, 2003, 16:263-269
    [41] 张玉峰.一类S-mKdV方程族及其扩展可积模型[J].物理学报,2003,52(1):5-11
    [42] 张玉峰,闫庆友.一类NLS-mKdV方程族的扩展可积模型[J].物理学报,2003,52(9):2109-2113
    [43] Zhang Yufeng. A generalized multi-component AKNS hierarchy[J], Phy. Lett. A. 2004, 327:438-441
    [44] Zhang Yufeng. A generalized SHGI integrable hierarchy and its expanding integrable model[J], Chinese Physics, 2004, 13(3): 1-5
    [45] Zhang Yufeng. A generalized multi-component Glachette-Johnson(GJ) hierarchy and its integrable coupling system[J]. Chaos, Solitons and Fractals, 2004, 21(2):305-310
    [46] Zhang Yufeng, Yan Qingyou, Wei Xiaopeng. A typle of new integrable Hamiltonian hierarchy and expanding integrable model of its reduced integrable system associated with a new loop algebra[J], Chaos, Solitons and Fractals, 2004, 19:563-568
    [47] Zhang Yufeng, Tam Honwah, Guo Fukui. A subalgebra loop algebra (?)_2 and its applica-tions[J], Chinese Physics, 2004, 13(2):0132-07
    [48] Zhang Yufeng, Yan Qingyou. Applications of an anti-symmetry loop algebra and its expanding forms [J], Chaos, Solitons and Fractals, 2004, 21: 413-423
    [49] Zhang Yufeng. An integrable hierarchy and its expanding Lax integrable model[J], Ann. of Diff. Eqs. , 2004, 20(4): 423-428
    [50] Guo Fukui, Zhang Yufeng. A new loop algebra and its subalgebras[J], Chaos, Solitons and Fractals, 2004, 22(5): 1063-1069
    [51] Guo Fukui, Zhang Yufeng. A unified expressing model of the AKNS hierarchy and the KN hierarchy, as well as its integrable system[J], Chaos, Solitons and Fractals, 2004, 19(5): 1207-1216
    [52] 张玉峰.一个Lie代数的子代数及其相关的两类loop代数[J],数学学报,2005,48(1):141-152
    [53] Sirendaoreji J Sun. Auxiliary equation method four solving monlinear partial differential equations[J]. Phys Lett A, 2003, 309: 387-396
    [54] Wang M L, Li X Z. Extended F-expansion methof and periodic wave solutions for the generalized Zaknarov equations[J]. Phys Lett A, 2005, 343: 48-54