慢性髓系白血病耐药机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨慢性髓系白血病(CML)患者细胞代谢状态以及伊马替尼治疗后敏感和耐药患者代谢的变化差异,综合患者点突变和高密度全基因组单核苷酸多态(SNP)芯片进一步评估细胞代谢与基因的相关性,同时对经典多药耐药基因(MDR1)SNPs分析以探讨CML耐药的机制。
     方法:
     收集患者的骨髓或外周血标本,分别采用气相飞行时间质谱、逆转录-聚合酶链反应(RT-PCR)联合测序、高密度全基因组SNPs芯片和限制性片段长度多态性-聚合酶链反应(RFLP-PCR)联合测序技术检测代谢组学、ABL1基因点突变、基因型和拷贝数以及MDR1基因的SNPs表达。分析细胞代谢与基因的相关性,伊马替尼耐药的机制。
     结果:
     1.代谢组学检测
     未进行伊马替尼治疗的CML患者代谢组学表型存在尿素循环,三羧酸循环和脂质代谢紊乱,与正常对照组有显著差异;伊马替尼治疗后,达完全细胞遗传学缓解的患者其代谢组学表型明显纠正且趋于正常,但与正常组不重叠,而耐药的CML患者代谢紊乱现象仍存在,与治疗前的代谢表型无显著差异。同时慢性期与急变期的代谢表型差异明显。
     2.全基因SNPs芯片
     在9例CML标本中(1例伊马替尼敏感CML、4例原发耐药、4例继发耐药)发现44个缺失、2个扩增、7个等位基因杂合性缺失。在CML慢性期无论是伊马替尼敏感或耐药均发现X和Y染色体隐匿缺失。
     3. MDR1SNPs与伊马替尼耐药耐药组与非耐药组在C1236T、G2677T/A和C3435T的SNPs表达有显著性差异(p<0.05),且伊马替尼耐药与等位基因T呈剂量相关效应。男性/女性、原发/继发耐药在三个位点的SNPs表达差异无统计学意义(p>0.05)。
     4、ABL1激酶区点突变与伊马替尼耐药
     1例原发耐药慢性期患者ABL1上第3215号位点发生A>A/C的核苷酸转变;1例继发耐药急变期患者ABL1上第695号位点发生T>C的核苷酸替代,第1006号位点发生T>C的核苷酸替代,第1045号位点发生T>C的核苷酸替代。继发耐药患者ABL1激酶区点突变率为1/6(16.7%),原发耐药患者ABL1激酶区点突变率为1/15(6.7%);慢性期耐药患者ABL1激酶区点突变率为1/17(5.9%),加速期/急变期患者ABL1激酶区点突变率为1/4(25%)。
     结论:
     1. CML患者存在代谢紊乱,急变期与慢性期的代谢组学差异与基因的变化密切相关。CML细胞需要更高的能量代谢,需通过碳主链传递上调氨基酸运转,细胞分子合成和信号传导。CML细胞糖酵解增加与其他肿瘤细胞一致。
     2.伊马替尼能通过使BCR-ABL阳性细胞代谢从糖酵解转为正常的线粒体代谢而逆转有氧糖酵解现象,造成糖摄入减少,能量增加。
     3.伊马替尼敏感CML患者即使已达到细胞遗传学缓解,仍然处于疾病状态。
     4.染色体17、9、22缺失和扩增与疾病进展和耐药相关,1号染色体与发病有关,染色体1、11或22的缺失和扩增涉及到CML细胞脂质代谢异常。染色体22缺失涉及糖代谢异常。
     5. MDR1C1236T、G2677T/A和C3435T中,等位基因T与伊马替尼耐药相关,体现基因剂量效应。
     6.继发耐药患者的突变率高于原发耐药,急变期患者的突变率高于慢性期患者。19例未检测出ABL1激酶区域点突变说明突变仅是导致伊马替尼治疗耐药的因素之一。
Objective
     In present study, we integrated metabonomic data with Abl kinase domainmutations and high-density whole genome-wide single nucleotide polymorphism(SNP) array to analyse the metabolic proliles of chronic myeloid leukemia (CML)patients and differentiate their metabolic responses to imatinib. Moreover, weinvestigated the association of SNPs in MDR1(classic multidrug resistance) gene in CMLpatients.
     Methods
     1. Metabolic compounds in plasma of the59CML patients with imatinib treatmentand18healthy volunteers were detected by gas chromatography-time of flightmass spectrometry (GC-TOFMS), and the correlation between metabolicphenotypes and general characteristics of patients was analyzed.
     2. Genomic DNA isolated from cells was subjected to GeneChip Human mappingmicroarray. High-quality genomic DNA was processed in accordance with thegenomic mapping250K NspI protocol and hybridized to250K NspI SNP arraysaccording to the manufacturer’s instructions. Data analysis of deletions,amplifications and loss of heterozygosity (LOH) was carried out using the CNAG(copy number analysis for Affymetrix GeneChips) software with nonmatchedreferences.
     3. C1236T、 G2677T/A and C3435T SNPs of MDR1gene were detected byPCR-RFLP (restriction fragment length polymorphism polymerase chain reaction)in52patients with Ph-positive leukemia, who are treated with imatinib.
     4. Nested reverse transcription-polymerase chain reaction (RT-PCR) was performedon bone marrow or peripheral blood samples from21resistant CML patients toamplify the ABL1kinase domain,followed by direct sequencing and sequencehomologous analysis.
     Results
     1. Metabonomics in CML
     The significant metabonomic differences, including intermediates of thetricarboxylic acid (TCA) cycle (citrate) and lipid metabolism (cholesterol, HDL,linoleate), between imatinib-untreated CML (UCML) and healthy control (HC)indicate metabolic perturbation in CML patients. After imatinib treatment, themetabolic phenotype of imatinib-sensitive (SCML) was similar to that of HC, butthe two groups did not completely overlap, whereas resistant CML (RCML)patients were not significantly affected. RCML-BC (blastic crisis) patients showeda totally different metabonomic phenotype from that of RCML-CP (chronic phase)patients.
     2. High-density SNP array
     After exclusion of genomic copy number polymorphisms by comparison ofthe data with recorded copy number polymorphisms in the UCSC Genome Browser(http://genome.ucsc.edu/) databases, a total of44deletions,2duplications, and7regions of loss of heterozygosity (LOH) were identified by SNP array analysis in9CML samples, i.e.,1SCML,4primary RCML and4secondary RCML. Moreover,cryptic deletions on chromosome X and Y were found in patients with CML-CPboth in SCML and RCML.
     3. MDR1SNPs
     There was no significant difference in MDR1SNPs expression between maleand female patients, no more than the patients who is primary and secondaryresistance to imatinib. But the SNPs expression is statistically linked to theidentification of patients who may or may not respond optimally to imatinib.
     4. ABL1kinase domain mutations
     We found a single A>A/C nucleotide substitution at position3215of theABL1gene in a primary resistant patient in chronic phase and a single T>Cnucleotide substitution at position695of the ABL1gene, a single T>C nucleotidesubstitution at position1026of the ABL1gene, a single T>C nucleotidesubstitution at position1045of the ABL1gene in a secondary resistant patient inblastic crisis.
     The frequency of ABL1mutation in patients with CML secondary resistanceto imatinib is1/6(16.7%), while the primary resistant ones' is1/15(6.7%). Thefrequency of ABL1mutation in chronic phase patients is1/17(5.9%), while theaccelerated phase and blastic crisis ones' is1/4(25%).
     Conclusion
     1. CML patients have metabolic perturbation. Metabolic variation between BC andCP patients was closely related to genomic alterations. CML cells require higherenergy metabolism. This is achieved through the upregulation of amino acidtransporters, cellular molecule synthesis, and signal transduction by the deliveryof carbon backbones. Increased glycolysis has been consistently observed incancer cells.
     2. Imatinib reverses the Warburg effect in BCR–ABL-positive cells by switchingfrom glycolysis to mitochondrial glucose metabolism, resulting in a reduction inglucose uptake and a higher energy state.
     3. Patients with imatinib-sensitive CML, even those with a normal karyotype, stillmaintain a diseased status.
     4. The deletions and amplifications on chromosomes17,9and22were associatedwith imatinib resistance or disease progression. Chromosome1may be involved inthe initial development of CML,and chromosome1,11or22may lead toabnormal expression of genes which are all involved in cell lipid metabolism.Chromosome22involved in cell sugar transporter SLC2A11.
     5. The drug resistance of imatinib correlated with the number of T alleles at locus 1236、3435and2677.
     6. Mutation is higher detected in the patients secondary resistance to imatinib thanprimary resistant ones. The frequency of mutation is higher in accelerated phaseand blastic crisis patients than in chronic phase patients.19resistant patientswithout mutation demonstrated that leukemia cells are independent of ABL1kinase activity and rely on other pathways for survivial and proliferation.
引文
1. O'Brien S, Berman E, Borghaei H, Deangelo DJ, Devetten MP, Devine S, ErbaHP, Gotlib J, Jagasia M, Moore JO, Mughal T, Pinilla-Ibarz J, Radich JP, ShahMd NP, Shami PJ, Smith BD, Snyder DS, Tallman MS, Talpaz M, Wetzler M;National Comprehensive Cancer Network. NCCN clinical practice guidelines inoncology: chronic myelogenous leukemia. J Natl Compr Canc Netw.2009,7(9):984-1023.
    2. de Lavallade H, Apperley JF, Khorashad JS, Milojkovic D, Reid AG, Bua M,Szydlo R, Olavarria E, Kaeda J, Goldman JM, Marin D. Imatinib for newlydiagnosed patients with chronic myeloid leukemia: incidence of sustainedresponses in an intention-to-treat analysis. J Clin Oncol.2008,26(20):3358-3363.
    3. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG,Schiffer CA, Talpaz M, Guilhot F, Deininger MW, Fischer T, O'Brien SG, StoneRM, Gambacorti-Passerini CB, Russell NH, Reiffers JJ, Shea TC, Chapuis B,Coutre S, Tura S, Morra E, Larson RA, Saven A, Peschel C, Gratwohl A,Mandelli F, Ben-Am M, Gathmann I, Capdeville R, Paquette RL, Druker BJ.Imatinib induces hematologic and cytogenetic responses in patients with chronicmyelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood.2002,99(10):3530-3539.
    4. Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloidleukaemia. Lancet Oncol.2007,8(11):1018-1029
    5. Quintás-Cardama A, Kantarjian HM, Cortes JE. Mechanisms of primary andsecondary resistance to imatinib in chronic myeloid leukemia. Cancer Control.2009,16(2):122-1231
    6. Apperley JF. Part II: management of resistance to imatinib in chronic myeloidleukaemia. Lancet Oncol.2007,8(12):1116-1128
    7. Mathisen MS, Kantarjian HM, Cortes J, Jabbour E. Mutant BCR-ABL clones inchronic myeloid leukemia. Haematologica.2011,96(3):347-349.
    8. Nicolini FE, Corm S, Lê QH, Sorel N, Hayette S, Bories D, Leguay T, Roy L,Giraudier S, Tulliez M, Facon T, Mahon FX, Cayuela JM, Rousselot P, MichalletM, Preudhomme C, Guilhot F, Roche-Lestienne C. Mutation status and clinicaloutcome of89imatinib mesylate-resistant chronic myelogenous leukemiapatients: a retrospective analysis from the French intergroup of CML(Fi(phi)-LMC GROUP). Leukemia.2006,20(6):1061-1066.
    9. Jabbour E, Kantarjian H, Jones D, Talpaz M, Bekele N, O'Brien S, Zhou X,Luthra R, Garcia-Manero G, Giles F, Rios MB, Verstovsek S, Cortes J.Frequency and clinical significance of BCR-ABL mutations in patients withchronic myeloid leukemia treated with imatinib mesylate. Leukemia.2006,20(10):1767-1773
    10. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL.Multiple BCRABL kinase domain mutations confer polyclonal resistance to thetyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisischronic myeloid leukemia. Cancer Cell.2002,2(2):117-125.
    11. Chu S, Xu H, Shah NP, Snyder DS, Forman SJ, Sawyers CL, Bhatia R. Detectionof BCR-ABL kinase mutations in CD34+cells from chronic myelogenousleukemia patients in complete cytogenetic remission on imatinib mesylatetreatment. Blood.2005,105(5):2093-2098.
    12. Melo JV, Chuah C. Resistance to imatinib mesylate in chronic myeloidleukaemia. Cancer Lett.2007,249(2):121-132.
    13. Jiang X, Saw KM, Eaves A, Eaves C. Instability of BCR-ABL gene in primaryand cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst.2007,99(9):680-693.
    14. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N,Barbany G, Cazzaniga G, Cayuela JM, Cavé H, Pane F, Aerts JL, De Micheli D,Thirion X, Pradel V, González M, Viehmann S, Malec M, Saglio G, van DongenJJ. Standardization and quality control studies of 'real-time' quantitative reversetranscriptase polymerase chain reaction of fusion gene transcripts for residualdisease detection in leukemia-a Europe Against Cancer program. Leukemia.2003,17(12):2318-2357.
    15. Gurney H, Wong M, Balleine RL, Rivory LP, McLachlan AJ, Hoskins JM,Wilcken N, Clarke CL, Mann GJ, Collins M, Delforce SE, Lynch K, Schran H.Imatinib disposition and ABCB1(MDR1, P-glycoprotein) genotype. ClinPharmacol Ther.2007,82(1):33-40.
    16. Holmes E, Wilson ID, Nicholson JK Metabolic phenotyping in health anddisease. Cell.2008,134(5):714-717.
    17. Keurentjes JJ, Fu J, de Vos CH, Lommen A, Hall RD, Bino RJ, van der Plas LH,Jansen RC, Vreugdenhil D, Koornneef M. The genetics of plant metabolism. NatGenet.2006,38(7):842-849.
    18. Fiehn O, Kopka J, D rmann P, Altmann T, Trethewey RN, Willmitzer L.Metabolite profiling for plant functional genomics. Nat Biotechnol.2000,18(11):1157-1161.
    19. Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer.2004,4(7):551-561.
    20. Gottschalk S, Anderson N, Hainz C, Eckhardt SG, Serkova NJ. Imatinib(STI571)-mediated changes in glucose metabolism in human leukemiaBCR-ABL-positive cells. Clin Cancer Res.2004,10(19):6661-6668.
    21. Kominsky DJ, Klawitter J, Brown JL, Boros LG, Melo JV, Eckhardt SG, SerkovaNJ. Abnormalities in glucose uptake and metabolism in imatinib-resistant humanBCR-ABL-positive cells. Clin Cancer Res.2009,15(10):3442-3450
    22. Liu B, Chen Y, St Clair DK. ROS and p53: A versatile partnership. Free RadicBiol Med.2008,44(8):1529-1535.
    23. Yeung SJ, Pan J, Lee MH. Roles of p53, MYC and HIF-1in regulatingglycolysis-the seventh hallmark of cancer Cell Mol Life Sci.2008,65(24):3981-3999.
    24. Kantarjian H, Schiffer C, Jones D, Cortes J. Monitoring the response and courseof chronic myeloid leukemia in the modern era of BCR-ABL tyrosine kinaseinhibitors: practical advice on the use and interpretation of monitoring methods.Blood.2008,111(4):1774-1780.
    25. Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer.2004,4(7):551-561.
    26. Ghazalpour A, Doss S, Sheth SS, Ingram-Drake LA, Schadt EE, Lusis AJ, DrakeTA. Genomic analysis of metabolic pathway gene expression in mice. GenomeBiol.2005,6(7):R59
    27. Tiziani S, Lodi A, Khanim FL, Viant MR, Bunce CM, Günther UL.Metabolomic profiling ofdrug responses in acute myeloid leukaemia cell lines. PLoS One.2009,4(1):e4251.
    28. Morvan D, Demidem A.Metabolomics by proton nuclear magnetic resonancespectroscopy of the response to chloroethylnitrosourea reveals drug efficacy andtumor adaptive metabolic pathways. Cancer Res.2007,67(5):2150-2159.
    29. Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R.Metabolicfingerprinting as a diagnostic tool. Pharmacogenomics.2007,8(9):1243-1266.
    30. Xu G, Liebich HM, Lehmann R, Müller-Hagedorn S. Capillary electrophoresis ofurinary normal and modified nucleosides of cancer patients. Methods Mol Biol.2001,162:459-474.
    31. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucosemetabolism of cancers. J Nucl Med.2008,49Suppl2:24S-42S.
    32. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburgeffect: the metabolic requirements of cell proliferation. Science.2009,324(22):1029-1033.
    33. Jiye A, Trygg J, Gullberg J, Johansson A, Jonsson P, Antti H,Marklund S, MoritzT. Extraction and GC/MS analysis of the human blood plasma metabolome.Anal Chem.2005,77(24):8086-8094.
    34. Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, Clarke S,Schofield PM, McKilligin E, Mosedale DE, Grainger DJ. Rapid and noninvasivediagnosis of the presence and severity of coronary heart disease using1H-NMR-based metabonomics. Nat Med.2002,8(12):1439-1444.
    35. Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S,K nsgen D, Dietel M, Fiehn O. Mass spectrometry-based metabolic profilingreveals different metabolite patterns in invasive ovarian carcinomas and ovarianborderline tumors. Cancer Res.2006,66(22):10795-10804.
    36. Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K, Wilson BA,Heller G, Sauter NP. Altered bone and mineral metabolism in patients receivingimatinib mesylate. N Engl J Med.2006,354(19):2006-2013.
    37. Gottardi M, Manzato E, Gherlinzoni F. Imatinib and hyperlipidemia. N Engl JMed.2005,353(25):2722-2723.
    38. Franceschino A, Tornaghi L, Benemacher V, Assouline S, Gambacorti-PasseriniC. Alterations in creatine kinase, phosphate and lipid values in patients withchronic myeloid leukemia during treatment with imatinib. Haematologica.2008,93(2):317-318.
    39. Zhao F, Mancuso A, Bui TV, Tong X, Gruber JJ, Swider CR, Sanchez PV, LumJJ,Sayed N, Melo JV, Perl AE, Carroll M, Tuttle SW, Thompson CB.Imatinibresistance associated with BCR-ABL upregulation is dependent onHIF-1alpha-induced metabolic reprograming. Oncogene.2010,29(20):2962-
    2672.
    40. G tz A, Eylert E, Eisenreich W, Goebel W. Carbon metabolism of enterobacterialhuman pathogens growing in epithelial colorectal adenocarcinoma (Caco-2) cells.PLoS One.2010,5(5):e10586.
    41. Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancertreatment. Oncogene.2006,25(34):4633-4646.
    42. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, WeiR, Fleming MD, Schreiber SL, Cantley LC.The M2splice isoform of pyruvatekinase is important for cancer metabolism and tumour growth. Nature.2008,452(7184):230-233.
    43. Kluza J, Jendoubi M, Ballot C, Dammak A, Jonneaux A, Idziorek T, Joha S,Dauphin V, Malet-Martino M, Balayssac S, Maboudou P, Briand G, FormstecherP, Quesnel B, Marchetti P. Exploiting mitochondrial dysfunction for effectiveelimination of imatinib-resistant leukemic cells. PLoS One.2011,6(7):e21924.
    44. Redner RL. Why doesn't imatinib cure chronic myeloid leukemia? Oncologist.2010,15(2):182-186.
    45. Diaz G, Batetta B, Sanna F, Uda S, Reali C, Angius F, Melis M, Falchi AM. Lipiddroplet changes in proliferating and quiescent3T3fibroblasts. Histochem CellBiol.2008,129(5):611-621.
    46. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenousleukemia. Nat Rev Cancer.2005,5(3):172-183.
    47. Rowley JD, Blumenthal T. Medicine. The cart before the horse. Science.2008,321(5894):1302-1304.
    48. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H,Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, GonzálezJR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR,Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F,Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T,Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP,Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME. Global variation incopy number in the human genome. Nature.2006,444(7118):444-454.
    49. Dunbar AJ, Gondek LP, O'Keefe CL, Makishima H, Rataul MS, Szpurka H,Sekeres MA, Wang XF, McDevitt MA, Maciejewski JP.250K SNP arraykaryotyping identifies acquired uniparental disomy and homozygous mutations,including novel missense substitutions of c-Cbl, in myeloid malignancies. CancerRes.2008,68(24):10349–10357.
    50. Irving JA, Bloodworth L, Bown NP, Case MC, Hogarth LA, Hall AG.Loss ofheterozygosity in childhood acute lymphoblastic leukemia detected bygenome-wide microarray single nucleotide polymorphism analysis. Cancer Res.2005,65(8):3053-3058.
    51. Nowak D, Ogawa S, Müschen M, Kato M, Kawamata N, Meixel A, Nowak V,Kim HS, Kang S, Paquette R, Chang MS, Thoennissen NH, Mossner M,Hofmann WK, Kohlmann A, Weiss T, Haferlach T, Haferlach C, Koeffler HPSNP array analysis of tyrosine kinase inhibitor-resistant chronic myeloidleukemia identifies heterogeneous secondary genomic alterations. Blood.2010,115(5):1049–1053.
    52. Mughal TI, Goldman JM. Chronic myeloid leukemia: why does it evolve fromchronic phase to blast transformation? Front Biosci.2006,11:198-208.
    53. Wendel HG, de Stanchina E, Cepero E, Ray S, Emig M, Fridman JS, Veach DR,Bornmann WG, Clarkson B, McCombie WR, Kogan SC, Hochhaus A, Lowe SW.Loss of p53impedes the antileukemic response to BCR-ABL inhibition. ProcNatl Acad Sci U S A.2006,103(19):7444-7449.
    54. Nakai H, Misawa S, Toguchida J, Yandell DW, Ishizaki K. Frequent p53genemutations in blast crisis of chronic myelogenous leukemia, especially in myeloidcrisis harboring loss of a chromosome17p. Cancer Res.1992,52(23):6588-6593.
    55.朱雨,徐卫,姚建新,李丽,于慧,仇海荣,李建勇.多重荧光原位杂交检测慢性淋巴细胞白血病复杂核型异常.实用临床医药杂志.2006,10(5):4-6.
    56.朱雨,徐卫,刘琼,潘金兰,仇海荣,王蓉,乔纯,蒋元强,张苏江,范磊,张建富,沈云峰,薛永权,李建勇.伴复杂核型异常的髓系恶性血液病中17号染色体异常分析.中华医学遗传学杂志.2008,25(5):579-582.
    57. Johansson B, Fioretos T, Mitelman F. Cytogenetic and molecular geneticevolution of chronic myeloid leukemia. Acta Haematol.2002,107(2):76-94.
    58. Kreil S, Pfirrmann M, Haferlach C, Waghorn K, Chase A, Hehlmann R, Reiter A,Hochhaus A, Cross NC; German Chronic Myelogenous Leukemia (CML) StudyGroup. Heterogeneous prognostic impact of derivative chromosome9deletionsin chronic myelogenous leukemia. Blood.2007,110(4):1283–1290
    59. Perrotti D, Neviani P. ReSETting PP2A tumour suppressor activity in blast crisisand imatinibresistant chronic myelogenous leukaemia. Br J Cancer.2006,95(7):775-781.
    60. Dunwell T, Hesson L, Rauch TA, Wang L, Clark RE, Dallol A, Gentle D,Catchpoole D, Maher ER, Pfeifer GP, Latif F. A genome-wide screen identifiesfrequently methylated genes in haematological and epithelial cancers. MolCancer.2010,25:9:44.
    61. He M, Vanaja DK, Karnes RJ, Young CY. Epigenetic regulation of Myc onretinoic acid receptor beta and PDLIM4in RWPE1cells. Prostate.2009,69(15):1643-1650.
    62. Porro A, Iraci N, Soverini S, Diolaiti D, Gherardi S, Terragna C, Durante S, ValliE, Kalebic T, Bernardoni R, Perrod C, Haber M, Norris MD, Baccarani M.c-MYC oncoprotein dictates transcriptional profiles of ATP-binding cassettetransporter genes in chronic myelogenous leukemia CD34+hematopoieticprogenitor cells. Mol Cancer Res.2011,9(8):1054-1066.
    63. Gribble SM, Reid AG, Roberts I, Grace C, Green AR, Nacheva EP. Genomicimbalances in CML blast crisis:8q24.12-q24.13segment identified as a commonregion of over-representation. Genes Chromosomes Cancer.2003,37(4):346-358
    64. Zheng C, Li L, Haak M, Brors B, Frank O, Giehl M, Fabarius A, Schatz M,Weisser A, Lorentz C, Gretz N, Hehlmann R, Hochhaus A, Seifarth W. Geneexpression profiling of CD34+cells identifies a molecular signature of chronicmyeloid leukemia blast crisis. Leukemia.2006,20(6):1028-1034.
    65. Yong AS, Szydlo RM, Goldman JM, Apperley JF, Melo JV. Molecular profilingof CD34+cells identifies low expression of CD7, along with high expression ofproteinase3or elastase, as predictors of longer survival in patients with CML.Blood.2006,107(1):205-212.
    66. McWeeney SK, Pemberton LC, Loriaux MM, Vartanian K, Willis SG, Yochum G,Wilmot B, Turpaz Y, Pillai R, Druker BJ, Snead JL, MacPartlin M, O'Brien SG,Melo JV, Lange T, Harrington CA, Deininger MW. A gene expression signatureof CD34+cells to predict major cytogenetic response in chronic-phase chronicmyeloid leukemia patients treated with imatinib. Blood.2010,115(2):315-325.
    67. Pauli-Magnus C, Kroetz DL. Functional implications of genetic polymorphismsin the multidrug resistance gene MDR1(ABCB1). Pharm Res.2004,21(6):904-913.
    68. Marzolini C, Paus E, Buclin T, Kim RB.Polymorphisms in human MDR1(P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther.2004,75(1):13-33.
    69. Jamroziak K, Robak T.Pharmacogenomics of MDR1/ABCB1gene: the influenceon risk and clinical outcome of haematological malignancies. Hematology.2004,9(2):91-105.
    70. Turgut S, Yaren A, Kursunluoglu R, Turgut G. MDR1C3435T polymorphism inpatients with breast cancer. Arch Med Res.2007,38(5):539-544.
    71. Michieli M, Damiani D, Ermacora A, Masolini P, Raspadori D, Visani G, ScheperRJ, Baccarani M. P-glycoprotein, lung resistance-related protein and multidrugresistance associated protein in de novo acute non-lymphocytic leukaemias:biological and clinical implications. Br J Haematol.1999,104(2):328-335.
    72. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J,Goldman JM, Melo JV. MDR1gene overexpression confers resistance toimatinib mesylate in leukemia cell line models. Blood.2003,101(6):2368-2373.
    73. Wong M, Evans S, Rivory LP, Hoskins JM, Mann GJ, Farlow D, Clarke CL,Balleine RL, Gurney H. Hepatic technetium Tc99m-labeled sestamibielimination rate and ABCB1(MDR1) genotype as indicators of ABCB1(P-glycoprotein) activity in patients with cancer. Clin Pharmacol Ther.2005,77(1):33-42.
    74. Wong M, Balleine RL, Rivory LP, McLachlan AJ, Hoskins JM, Wilcken N,Clarke CL, Mann GJ, Collins M, Delforce SE, Lynch K, Schran H. Imatinibdisposition and ABCB1(MDR1, P-glycoprotein) genotype. Clin Pharmacol Ther.2007,82(1):33-40.
    75. Larson RA, Druker BJ, Guilhot F, O'Brien SG, Riviere GJ, Krahnke T, GathmannI, Wang Y; IRIS (International Randomized Interferon vs STI571) Study Group.Imatinib pharmacokinetics and its correlation with response and safety inchronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood.2008,111(8):4022-4028.
    76. Dulucq S, Bouchet S, Turcq B, Lippert E, Etienne G, Reiffers J, Molimard M,Krajinovic M, Mahon FX. Multidrug resistance gene (MDR1) polymorphismsare associated with major molecular responses to standard-dose imatinib inchronic myeloid leukemia.Blood.2008,112(5):2024-2027.
    77. Kantarjian HM, Cortes J, La Rosée P, Hochhaus A. Optimizing therapy forpatients with chronic myelogenous leukemia in chronic phase. Cancer.2010,116(6):1419-1430.
    78. Shah NP, Skaggs BJ, Branford S, Hughes TP, Nicoll JM, Paquette RL, SawyersCL. Sequential ABL kinase inhibitor therapy selects for compound drug-resistantBCR-ABL mutations with altered oncogenic potency. J Clin Invest.2007,117(9):2562-2569.
    79. Cortes JE, Kantarjian HM, Brümmendorf TH, Kim DW, Turkina AG, Shen ZX,Pasquini R, Khoury HJ, Arkin S, Volkert A, Besson N, Abbas R, Wang J, Leip E,Gambacorti-Passerini C. Safety and efficacy of bosutinib (SKI-606) in chronicphase Philadelphia chromosome-positive chronic myeloid leukemia patients withresistance or intolerance to imatinib.Blood.2011,118(17):4567-4576.
    80. Slupianek A, Poplawski T, Jozwiakowski SK, Cramer K, Pytel D, Stoczynska E,Nowicki MO, Blasiak J, Skorski T. BCR/ABL stimulates WRN to promotesurvival and genomic instability. Cancer Res.2011,71(3):842-851.
    81. Soverini S, Colarossi S, Gnani A, Rosti G, Castagnetti F, Poerio A, Iacobucci I,Amabile M, Abruzzese E, Orlandi E, Radaelli F, Ciccone F, Tiribelli M, diLorenzo R, Caracciolo C, Izzo B, Pane F, Saglio G, Baccarani M, Martinelli G;GIMEMA Working Party on Chronic Myeloid Leukemia.Contribution of ABLkinase domain mutations to imatinib resistance in different subsets ofPhiladelphia-positive patients: by the GIMEMA Working Party on ChronicMyeloid Leukemia. Clin Cancer Res.2006,12(24):7374-7379.
    82. Griswold IJ, MacPartlin M, Bumm T, Goss VL, O'Hare T, Lee KA, Corbin AS,Stoffregen EP, Smith C, Johnson K, Moseson EM, Wood LJ, Polakiewicz RD,Druker BJ, Deininger MW. Kinase domain mutants of Bcr-Abl exhibit alteredtransformation potency, kinase activity, and substrate utilization, irrespective ofsensitivity to imatinib. Mol Cell Biol.2006,26(16):6082-6093.
    83. Hochhaus A, O'Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L, GoldmanJM, Müller MC, Radich JP, Rudoltz M, Mone M, Gathmann I, Hughes TP,Larson RA; IRIS Investigators. Six-year follow-up of patients receiving imatinibfor the first-line treatment of chronic myeloid leukemia. Leukemia.2009,23(6):1054-1061.
    84. Ibrahim AR, Paliompeis C, Bua M, Milojkovic D, Szydlo R, Khorashad JS,Foroni L, Reid A, de Lavallade H, Rezvani K, Dazzi F, Apperley JF, GoldmanJM, Marin D. Efficacy of tyrosine kinase inhibitors (TKIs) as third-line therapyin patients with chronic myeloid leukemia in chronic phase who have failed2prior lines of TKI therapy. Blood.2010,116(25):5497-5500.
    85. Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J, Taylor K,Herrmann R, Seymour JF, Arthur C, Joske D, Lynch K, Hughes T. Detection ofBCR-ABL mutations in patients with CML treated with imatinib is virtuallyalways accompanied by clinical resistance, and mutation in the ATPphosphate-binding loop (P-loop) are associated with a poor prognosis. Blood.2003,102(1):276-283.
    86. Willis SG, Lange T, Demehri S, Otto S, Crossman L, Niederwieser D, StoffregenEP, McWeeney S, Kovacs I, Park B, Druker BJ, Deininger MW. High-sensitivitydetection of BCR-ABL kinase domain mutations in imatinib-naive patients:correlation with clonal cytogenetic evolution but not response to therapy. Blood.2005,106(6):2128-3217.
    87. Hughes TP, Branford S. Monitoring disease response to tyrosine kinase inhibitortherapy in CML. Hematology Am Soc Hematol Educ Program.2009:477-487.
    88. Golas JM, Arndt K, Etienne C, Lucas J, Nardin D, Gibbons J, Frost P, Ye F,Boschelli DH, Boschelli F. SKI-606, a4-anilino-3-quinolinecarbonitrile dualinhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronicmyelogenous leukemia cells in culture and causes regression of K562xenograftsin nude mice. Cancer Res.2003,63(2):375-381.
    89. Parker WT, Lawrence RM, Ho M, Irwin DL, Scott HS, Hughes TP, Branford S.Sensitive detection of BCR-ABL1mutations in patients with chronic myeloidleukemia after imatinib resistance is predictive of outcome during subsequenttherapy. J Clin Oncol.2011,29(32):4250-4259
    90. Roychowdhury S, Talpaz M. Managing resistance in chronic myeloid leukemia.Blood Rev.2011,25(6):279-290.
    91. Soverini S, Rosti G, Iacobucci I, Baccarani M, Martinelli G. Choosing the bestsecond-line tyrosine kinase inhibitor in imatinib-resistant chronic myeloidleukemia patients harboring Bcr-Abl kinase domain mutations: how reliable isthe IC50? Oncologist.2011,16(6):868-876.
    [1] Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics,2009. CACancer J Clin.2009,59(4):225-249.
    [2] de Lavallade H, Apperley JF, Khorashad JS, Milojkovic D, Reid AG, Bua M,Szydlo R, Olavarria E, Kaeda J, Goldman JM, Marin D. Imatinib for newlydiagnosed patients with chronic myeloid leukemia: incidence of sustainedresponses in an intention-to-treat analysis. J Clin Oncol.2008,26(20):3358-3363.
    [3] Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG,Schiffer CA, Talpaz M, Guilhot F, Deininger MW, Fischer T, O'Brien SG,Stone RM, Gambacorti-Passerini CB, Russell NH, Reiffers JJ, Shea TC,Chapuis B, Coutre S, Tura S, Morra E, Larson RA, Saven A, Peschel C,Gratwohl A, Mandelli F, Ben-Am M, Gathmann I, Capdeville R, Paquette RL,Druker BJ. Imatinib induces hematologic and cytogenetic responses inpatients with chronic myelogenous leukemia in myeloid blast crisis: results ofa phase II study. Blood.2002,99(10):3530-3539.
    [4] Mathisen MS, Kantarjian HM, Cortes J, Jabbour E. Mutant BCR-ABL clonesin chronic myeloid leukemia. Haematologica.2011,96(3):347-349.
    [5] Nicolini FE, Corm S, Le QH, Sorel N, Hayette S, Bories D, Leguay T, Roy L,Giraudier S, Tulliez M, Facon T, Mahon FX, Cayuela JM, Rousselot P,Michallet M, Preudhomme C, Guilhot F, Roche-Lestienne C. Mutation statusand clinical outcome of89imatinib mesylate-resistant chronic myelogenousleukemia patients: a retrospective analysis from the French intergroup of CML(Fi(phi)-LMC GROUP). Leukemia.2006,20(6):1061-1066.
    [6] Jabbour E, Kantarjian H, Jones D, Talpaz M, Bekele N, O'Brien S, Zhou X,Luthra R, Garcia-Manero G, Giles F, Rios MB, Verstovsek S, Cortes J.Frequency and clinical significance of BCR-ABL mutations in patients withchronic myeloid leukemia treated with imatinib mesylate. Leukemia.2006,20(10):1767-1773.
    [7] Martinelli G, Iacobucci I, Soverini S, Cilloni D, Saglio G, Pane F, Baccarani M.Monitoring minimal residual disease and controlling drug resistance inchronic myeloid leukaemia patients in treatment with imatinib as a guide toclinical management. Hematol Oncol.2006,24(4):196-204.
    [8] Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Secondgeneration inhibitors of BCR-ABL for the treatment of imatinib-resistantchronic myeloid leukaemia. Nat Rev Cancer.2007,7(5):345-356.
    [9] Melo JV, Chuah C. Resistance to imatinib mesylate in chronic myeloidleukaemia. Cancer Lett.2007,249(2):121-132.
    [10] Cortes J, Jabbour E, Kantarjian H, Yin CC, Shan J, O'Brien S, Garcia-ManeroG, Giles F, Breeden M, Reeves N, Wierda WG, Jones D. Dynamics ofBCR-ABL kinase domain mutations in chronic myeloid leukemia aftersequential treatment with multiple tyrosine kinase inhibitors. Blood.2007,110(12):4005-4011.
    [11] Bixby D, Talpaz M. Mechanisms of resistance to tyrosine kinase inhibitors inchronic myeloid leukemia and recent therapeutic strategies to overcomeresistance. Hematology Am Soc Hematol Educ Program.2009:461-476.
    [12] Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloidleukaemia. Lancet Oncol.2007,8(11):1018-1029.
    [13] Gabert J, Beillard E, der Velden VH v, Bi W, Grimwade D, Pallisgaard N,Barbany G, Cazzaniga G, Cayuela JM, Cave H, Pane F, Aerts JL, De MicheliD, Thirion X, Pradel V, Gonzalez M, Viehmann S, Malec M, Saglio G, vanDJJ. Standardization and quality control studies of 'real-time' quantitativereverse transcriptase polymerase chain reaction of fusion gene transcripts forresidual disease detection in leukemia-a Europe Against Cancer program.Leukemia.2003,17(12):2318-2357.
    [14] le CP, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G, Marchesi E,Supino R, Gambacorti-Passerini C. Induction of resistance to the Abelsoninhibitor STI571in human leukemic cells through gene amplification. Blood.2000,95(5):1758-1766.
    [15] Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, SawyersCL. Clinical resistance to STI-571cancer therapy caused by BCR-ABL genemutation or amplification. Science.2001,293(5531):876-880.
    [16] von BN, Peschel C, Duyster J. Resistance of Philadelphia-chromosomepositive leukemia towards the kinase inhibitor imatinib (STI571, Glivec): atargeted oncoprotein strikes back. Leukemia.2003,17(5):829-838.
    [17] Desplat V, Belloc F, Lagarde V, Boyer C, Melo JV, Reiffers J, Praloran V,Mahon FX. Overproduction of BCR-ABL induces apoptosis in imatinibmesylate-resistant cell lines. Cancer.2005,103(1):102-110.
    [18] Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J,Goldman JM, Melo JV. MDR1gene overexpression confers resistance toimatinib mesylate in leukemia cell line models. Blood.2003,101(6):2368-2373.
    [19] Jamroziak K, Robak T. Pharmacogenomics of MDR1/ABCB1gene: theinfluence on risk and clinical outcome of haematological malignancies.Hematology.2004,9(2):91-105.
    [20] Ni LN, Li JY, Miao KR, Qiao C, Zhang SJ, Qiu HR, Qian SX. Multidrugresistance gene (MDR1) polymorphisms correlate with imatinib response inchronic myeloid leukemia. Med Oncol.2011,28(1):265-269.
    [21]朱雨,李建勇,潘金兰,吴炜,仇海荣,吴亚芳,杨慧,张建富,陈丽娟,薛永权.119例慢性髓细胞白血病急变期核型分析.中国实验血液学杂志.2006,(06):1074-1078.
    [22] Lahaye T, Riehm B, Berger U, Paschka P, Muller MC, Kreil S, Merx K,Schwindel U, Schoch C, Hehlmann R, Hochhaus A. Response and resistancein300patients with BCR-ABL-positive leukemias treated with imatinib in asingle center: a4.5-year follow-up. Cancer.2005,103(8):1659-1669.
    [23] Paluszczak J, Baer-Dubowska W. Epigenome and cancer: new possibilities ofcancer prevention and therapy?] Postepy Biochem.2005,51(3):244-250.
    [24] Notari M, Neviani P, Santhanam R, Blaser BW, Chang JS, Galietta A, WillisAE, Roy DC, Caligiuri MA, Marcucci G, Perrotti D. A MAPK/HNRPKpathway controls BCR/ABL oncogenic potential by regulating MYC mRNAtranslation. Blood.2006,107(6):2507-2516.
    [25] Porro A, Iraci N, Soverini S, Diolaiti D, Gherardi S, Terragna C, Durante S,Valli E, Kalebic T, Bernardoni R, Perrod C, Haber M, Norris MD, BaccaraniM, Martinelli G, Perini G. c-MYC oncoprotein dictates transcriptional profilesof ATP-binding cassette transporter genes in chronic myelogenous leukemiaCD34+hematopoietic progenitor cells. Mol Cancer Res.2011,9(8):1054-1066.
    [26] Wendel HG, de Stanchina E, Cepero E, Ray S, Emig M, Fridman JS, VeachDR, Bornmann WG, Clarkson B, McCombie WR, Kogan SC, Hochhaus A,Lowe SW. Loss of p53impedes the antileukemic response to BCR-ABLinhibition. Proc Natl Acad Sci U S A.2006,103(19):7444-7449.
    [27] Gottschalk S, Anderson N, Hainz C, Eckhardt SG, Serkova NJ. Imatinib(STI571)-mediated changes in glucose metabolism in human leukemiaBCR-ABL-positive cells. Clin Cancer Res.2004,10(19):6661-6668.
    [28] Kominsky DJ, Klawitter J, Brown JL, Boros LG, Melo JV, Eckhardt SG,Serkova NJ. Abnormalities in glucose uptake and metabolism inimatinib-resistant human BCR-ABL-positive cells. Clin Cancer Res.2009,15(10):3442-3450.
    [29] Vander HMG, Cantley LC, Thompson CB. Understanding the Warburg effect:the metabolic requirements of cell proliferation. Science.2009,324(5930):1029-1033.
    [30] Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancertreatment. Oncogene.2006,25(34):4633-4646.
    [31] Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ,Huang P. Inhibition of glycolysis in cancer cells: a novel strategy to overcomedrug resistance associated with mitochondrial respiratory defect and hypoxia.Cancer Res.2005,65(2):613-621.
    [32] Liu B, Chen Y, St CDK. ROS and p53: a versatile partnership. Free Radic BiolMed.2008,44(8):1529-1535.
    [33] A J, Qian S, Wang G, Yan B, Zhang S, Huang Q, Ni L, Zha W, Liu L, Cao B,Hong M, Wu H, Lu H, Shi J, Li M, Li J. Chronic myeloid leukemia patientssensitive and resistant to imatinib treatment show different metabolicresponses. PLOS ONE.2010,5(10):e13186.
    [34] Yeung SJ, Pan J, Lee MH. Roles of p53, MYC and HIF-1in regulatingglycolysis-the seventh hallmark of cancer. Cell Mol Life Sci.2008,65(24):3981-3999.
    [35] Shin YK, Yoo BC, Chang HJ, Jeon E, Hong SH, Jung MS, Lim SJ, Park JG.Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancercells with induced5-fluorouracil resistance. Cancer Res.2005,65(8):3162-3170.
    [36] Li RJ, Zhang GS, Chen YH, Zhu JF, Lu QJ, Gong FJ, Kuang WY.Down-regulation of mitochondrial ATPase by hypermethylation mechanism inchronic myeloid leukemia is associated with multidrug resistance. AnnOncol.2010,21(7):1506-1514.
    [37] Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape.Cell.2007,128(4):635-638.
    [38] Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG.Aberrant patterns of DNA methylation, chromatin formation and geneexpression in cancer. Hum Mol Genet.2001,10(7):687-692.
    [39] Rottach A, Leonhardt H, Spada F. DNA methylation-mediated epigeneticcontrol. J Cell Biochem.2009,108(1):43-51.
    [40] Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M,Kuhl C, Enns A, Prinz M, Jaenisch R, Nerlov C, Leutz A, Andrade-NavarroMA, Jacobsen SE, Rosenbauer F. DNA methylation protects hematopoieticstem cell multipotency from myeloerythroid restriction. Nat Genet.2009,41(11):1207-1215.
    [41] Hennessy BT, Garcia-Manero G, Kantarjian HM, Giles FJ. DNA methylationin haematological malignancies: the role of decitabine. Expert Opin InvestigDrugs.2003,12(12):1985-1993.
    [42] Bartova E, Krejci J, Hajek R, Harnicarova A, Kozubek S. Chromatin structureand epigenetics of tumour cells: a review. Cardiovasc Hematol Disord DrugTargets.2009,9(1):51-61.
    [43] Asimakopoulos FA, Shteper PJ, Krichevsky S, Fibach E, Polliack A,Rachmilewitz E, Ben-Neriah Y, Ben-Yehuda D. ABL1methylation is adistinct molecular event associated with clonal evolution of chronic myeloidleukemia. Blood.1999,94(7):2452-2460.
    [44] Issa JP, Byrd JC. Decitabine in chronic leukemias. Semin Hematol.2005,42(3Suppl2):S43-49.
    [45] Issa JP, Zehnbauer BA, Civin CI, Collector MI, Sharkis SJ, Davidson NE,Kaufmann SH, Baylin SB. The estrogen receptor CpG island is methylated inmost hematopoietic neoplasms. Cancer Res.1996,56(5):973-977.
    [46] Issa JP, Zehnbauer BA, Kaufmann SH, Biel MA, Baylin SB. HIC1hypermethylation is a late event in hematopoietic neoplasms. Cancer Res.1997,57(9):1678-1681.
    [47] Nguyen TT, Mohrbacher AF, Tsai YC, Groffen J, Heisterkamp N, Nichols PW,Yu MC, Lubbert M, Jones PA. Quantitative measure of c-abl and p15methylation in chronic myelogenous leukemia: biological implications.Blood.2000,95(9):2990-2992.
    [48] Roman-Gomez J, Castillejo JA, Jimenez A, Cervantes F, Boque C, HermosinL, Leon A, Granena A, Colomer D, Heiniger A, Torres A. Cadherin-13, amediator of calcium-dependent cell-cell adhesion, is silenced by methylationin chronic myeloid leukemia and correlates with pretreatment risk profile andcytogenetic response to interferon alfa. J Clin Oncol.2003,21(8):1472-1479.
    [49] Strathdee G, Holyoake TL, Sim A, Parker A, Oscier DG, Melo JV, Meyer S,Eden T, Dickinson AM, Mountford JC, Jorgensen HG, Soutar R, Brown R.Inactivation of HOXA genes by hypermethylation in myeloid and lymphoidmalignancy is frequent and associated with poor prognosis. Clin Cancer Res.2007,13(17):5048-5055.
    [50] Jiang XY, Trujillo JM, Dao D, Liang JC. Studies of BCR and ABL generearrangements in chronic myelogenous leukemia patients by conventionaland pulsed-field gel electrophoresis using gel inserts. Cancer Genet Cytogenet.1989,42(2):287-294.
    [51] Zion M, Ben-Yehuda D, Avraham A, Cohen O, Wetzler M, Melloul D,Ben-Neriah Y. Progressive de novo DNA methylation at the bcr-abl locus inthe course of chronic myelogenous leukemia. Proc Natl Acad Sci U S A.1994,91(22):10722-10726.
    [52] Issa JP, Kantarjian H, Mohan A, O'Brien S, Cortes J, Pierce S, Talpaz M.Methylation of the ABL1promoter in chronic myelogenous leukemia: lack ofprognostic significance. Blood.1999,93(6):2075-2080.
    [53] Jelinek J, Gharibyan V, Estecio MR, Kondo K, He R, Chung W, Lu Y, ZhangN, Liang S, Kantarjian HM, Cortes JE, Issa JP. Aberrant DNA methylation isassociated with disease progression, resistance to imatinib and shortenedsurvival in chronic myelogenous leukemia. PLOS ONE.2011,6(7):e22110.
    [54] Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, ZhangX, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES.Genome-scale DNA methylation maps of pluripotent and differentiated cells.Nature.2008,454(7205):766-770.
    [55] Trowbridge JJ, Snow JW, Kim J, Orkin SH. DNA methyltransferase1isessential for and uniquely regulates hematopoietic stem and progenitor cells.Cell Stem Cell.2009,5(4):442-449.
    [56] Ben-Yehuda D, Krichevsky S, Rachmilewitz EA, Avraham A, Palumbo GA,Frassoni F, Sahar D, Rosenbaum H, Paltiel O, Zion M, Ben-Neriah Y.Molecular follow-up of disease progression and interferon therapy in chronicmyelocytic leukemia. Blood.1997,90(12):4918-4923.
    [57] Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N, BarowM, Mountford JC, Holyoake TL. Dasatinib (BMS-354825) targets an earlierprogenitor population than imatinib in primary CML but does not eliminatethe quiescent fraction. Blood.2006,107(11):4532-4539.
    [58] Hu Z, Negrotto S, Gu X, Mahfouz R, Ng KP, Ebrahem Q, Copelan E, Singh H,Maciejewski JP, Saunthararajah Y. Decitabine maintains hematopoieticprecursor self-renewal by preventing repression of stem cell genes by adifferentiation-inducing stimulus. Mol Cancer Ther.2010,9(6):1536-1543.
    [59] Aichberger KJ, Mayerhofer M, Krauth MT, Vales A, Kondo R, Derdak S,Pickl WF, Selzer E, Deininger M, Druker BJ, Sillaber C, Esterbauer H, ValentP. Low-level expression of proapoptotic Bcl-2-interacting mediator inleukemic cells in patients with chronic myeloid leukemia: role of BCR/ABL,characterization of underlying signaling pathways, and reexpression by novelpharmacologic compounds. Cancer Res.2005,65(20):9436-9444.
    [60] Kuroda J, Puthalakath H, Cragg MS, Kelly PN, Bouillet P, Huang DC,Kimura S, Ottmann OG, Druker BJ, Villunger A, Roberts AW, Strasser A. Bimand Bad mediate imatinib-induced killing of Bcr/Abl+leukemic cells, andresistance due to their loss is overcome by a BH3mimetic. Proc Natl Acad SciU S A.2006,103(40):14907-14912.
    [61] San JE, Agirre X, Jimenez-Velasco A, Cordeu L, Martin V, Arqueros V, GarateL, Fresquet V, Cervantes F, Martinez-Climent JA, Heiniger A, Torres A,Prosper F, Roman-Gomez J. Epigenetic down-regulation of BIM expression isassociated with reduced optimal responses to imatinib treatment in chronicmyeloid leukaemia. Eur J Cancer.2009,45(10):1877-1889.
    [62] Bashirova AA, Markelov ML, Shlykova TV, Levshenkova EV, Alibaeva RA,Frolova EI. The human RIL gene: mapping to human chromosome5q31.1,genomic organization and alternative transcripts. Gene.1998,210(2):239-245.
    [63] Vanaja DK, Grossmann ME, Cheville JC, Gazi MH, Gong A, Zhang JS, AjtaiK, Burghardt TP, Young CY. PDLIM4, an actin binding protein, suppressesprostate cancer cell growth. Cancer Invest.2009,27(3):264-272.
    [64] Zhang Y, Tu Y, Zhao J, Chen K, Wu C. Reversion-induced LIM interactionwith Src reveals a novel Src inactivation cycle. J Cell Biol.2009,184(6):785-792.
    [65] He M, Vanaja DK, Karnes RJ, Young CY. Epigenetic regulation of Myc onretinoic acid receptor beta and PDLIM4in RWPE1cells. Prostate.2009,69(15):1643-1650.
    [66] Lissandrini D, Vermi W, Vezzalini M, Sozzani S, Facchetti F, Bellone G,Mafficini A, Gentili F, Ennas MG, Tecchio C, Sorio C. Receptor-type proteintyrosine phosphatase gamma (PTPgamma), a new identifier for myeloiddendritic cells and specialized macrophages. Blood.2006,108(13):4223-4231.
    [67] Baker EK, Johnstone RW, Zalcberg JR, El-Osta A. Epigenetic changes to theMDR1locus in response to chemotherapeutic drugs. Oncogene.2005,24(54):8061-8075.
    [68] Ando T, Nishimura M, Oka Y. Decitabine (5-Aza-2'-deoxycytidine) decreasedDNA methylation and expression of MDR-1gene in K562/ADM cells.Leukemia.2000,14(11):1915-1920.
    [69] Kantharidis P, El-Osta A, deSilva M, Wall DM, Hu XF, Slater A, Nadalin G,Parkin JD, Zalcberg JR. Altered methylation of the human MDR1promoter isassociated with acquired multidrug resistance. Clin Cancer Res.1997,3(11):2025-2032.
    [70] Kobayashi Y, Shibusawa A, Saito H, Ohshiro N, Ohbayashi M, Kohyama N,Yamamoto T. Isolation and functional characterization of a novel organicsolute carrier protein, hOSCP1. J Biol Chem.2005,280(37):32332-32339.
    [71] Oki Y, Kantarjian HM, Gharibyan V, Jones D, O'brien S, Verstovsek S, CortesJ, Morris GM, Garcia-Manero G, Issa JP. Phase II study of low-dosedecitabine in combination with imatinib mesylate in patients with acceleratedor myeloid blastic phase of chronic myelogenous leukemia. Cancer.2007,109(5):899-906.
    [72] Schnekenburger M, Grandjenette C, Ghelfi J, Karius T, Foliguet B, Dicato M,Diederich M. Sustained exposure to the DNA demethylating agent,2'-deoxy-5-azacytidine, leads to apoptotic cell death in chronic myeloidleukemia by promoting differentiation, senescence, and autophagy. BiochemPharmacol.2011,81(3):364-378.
    [73] Sacchi S, Kantarjian HM, O'Brien S, Cortes J, Rios MB, Giles FJ, Beran M,Koller CA, Keating MJ, Talpaz M. Chronic myelogenous leukemia innonlymphoid blastic phase: analysis of the results of first salvage therapy withthree different treatment approaches for162patients. Cancer.1999,86(12):2632-2641.
    [74] Jabbour E, Issa JP, Garcia-Manero G, Kantarjian H. Evolution of decitabinedevelopment: accomplishments, ongoing investigations, and future strategies.Cancer.2008,112(11):2341-2351.
    [75] Issa JP, Gharibyan V, Cortes J, Jelinek J, Morris G, Verstovsek S, Talpaz M,Garcia-Manero G, Kantarjian HM. Phase II study of low-dose decitabine inpatients with chronic myelogenous leukemia resistant to imatinib mesylate. JClin Oncol.2005,23(17):3948-3956.
    [76] Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y, Sasaki H.Expression of DNA methyltransferases DNMT1,3A, and3B in normalhematopoiesis and in acute and chronic myelogenous leukemia. Blood.2001,97(5):1172-1179.
    [77] Kantarjian HM, O'Brien SM, Keating M, Beran M, Estey E, Giralt S,Kornblau S, Rios MB, de Vos D, Talpaz M. Results of decitabine therapy inthe accelerated and blastic phases of chronic myelogenous leukemia.Leukemia.1997,11(10):1617-1620.
    [78] Kantarjian HM, O'Brien S, Cortes J, Giles FJ, Faderl S, Issa JP,Garcia-Manero G, Rios MB, Shan J, Andreeff M, Keating M, Talpaz M.Results of decitabine (5-aza-2'deoxycytidine) therapy in130patients withchronic myelogenous leukemia. Cancer.2003,98(3):522-528.
    [79] La Rosee P, Johnson K, Corbin AS, Stoffregen EP, Moseson EM, Willis S,Mauro MM, Melo JV, Deininger MW, Druker BJ. In vitro efficacy ofcombined treatment depends on the underlying mechanism of resistance inimatinib-resistant Bcr-Abl-positive cell lines. Blood.2004,103(1):208-215.
    [80] Oki Y, Aoki E, Issa JP. Decitabine--bedside to bench. Crit Rev OncolHematol.2007,61(2):140-152.
    1. Swerdlow SH, Campo E, Harris NL, et al. eds. WHO Classification of Tumoursof Haematopoietic and Lymphoid Tissues. Lyon: IARC;2008.
    2. Jaffe ES, Harris NL, Stein H, Vardiman JW eds. World Health OrganizationClassification of Tumours. Pathology and Genetics of Tumours ofHaematopoietic and Lymphoid Tissues. Lyon: IARC;2001.
    3. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet,2008,371(9617):1030-1043.
    4. Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. JClin Oncol,2005,23(26):6306-6315.
    5. Vardiman JW, Thiele J, Arber DA, et al. The2008revision of the WHOclassification of myeloid neoplasms and acute leukemia: rationale and importantchanges. Blood, Prepublished online Apr8,2009; doi:10.1182/blood-2009-03-209262.
    6. Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologicneoplasms. Blood,2008,111(8):3941-3967.
    7.陈丽娟,李建勇,吴雨洁等.T细胞急性淋巴细胞白血病免疫表型分析.中国实验血液学杂志,2007,15(4):692-695.
    8. Ryan J, Quinn F, Meunier A, et al. Minimal residual disease detection inchildhood acute lymphoblastic leukaemia patients at multiple time-points revealshigh levels of concordance between molecular and immunophenotypicapproaches. Br J Haematol,2009,144(1):107-115.
    9. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursorleukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. LancetOncol,2009,10(2):147-156.
    10. Rimsza LM,Viswanatha DS,Winter SS, et al. The presence of CD34+cellclusters predicts impending relapse in children with acute lymphoblasticleukemia receiving maintenance chemotherapy. Am J ClinPathol,1998,110(3):313-320.
    11. Xu W, Li JY, Qian SX, et al. Outcome of treatment with Hyper-CVAD regimenin Chinese patients with acute lymphocytic leukemia. LeukRes,2008,32(6):930-935.
    12. Dorrance AM, Liu S, Chong A, Pulley B, Nemer D, Guimond M, Yuan W,Chang D, Whitman SP, Marcucci G, Caligiuri MA. The Mll partial tandemduplication: differential, tissue-specific activity in the presence or absence of thewild-type allele. Blood.2008;112(6):2508-2511.
    13.田甜钱思轩徐卫等.间期双色双融合荧光原位杂交技术检测成人B细胞急性淋巴细胞白血病费城染色体.中华医学遗传学杂志,2009,26(1):78-81.
    14.李建勇,马力,肖冰等.多色荧光原位杂交技术检测急性淋巴细胞白血病复杂核型异常.中国实验学杂志,2006;14(1):42-45.
    15. Pullarkat V, Slovak ML, Kopecky KJ, et al. Impact of cytogenetics on theoutcome of adult acute lymphoblastic leukemia: results of Southwest OncologyGroup9400study. Blood,2008,111(5):2563-2572.
    16. Winter SS, J iang Z, Khawaja HM, et al. Identification of genomic classifiers thatdistinguish induction failure in T-lineage acute lymphoblastic leukemia: a reportfrom the Children’s Oncology Group. Blood,2007,110(5):1429-1438.
    17. Holleman A, den BoerML. The expression of70apoptosis genes in relation tolineage, genetic subtype, cellular drug resistance, and outcome in childhood acutelymphoblastic leukemia. Blood,2006,107(2):769-776.