中国汉族癫痫患者中CYP3A4/3A5亚家族基因多态性与卡马西平浓度及疗效的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分CYP3A4*1G, CYP3A5*3, CYP3A4*18/*19基因多态性在卡马西平治疗的中国汉族癫痫患者中的分布
     目的:观察CYP3A4*1G,CYP3A5*3, CYP3A4*18/*19基因多态性在卡马西平治疗的中国汉族癫痫患者中的分布和基因频率。
     方法:选取247例卡马西平治疗(单药或与丙戊酸钠联合治疗)的中国汉族癫痫患者,提取患者外周血DNA,连接酶检测-聚合酶链反应(ligase detection reaction-Polymerase Chain Reaction, LDR-PCR)测序分型检测CYP3A4*1G,CYP3A5*3, CYP3A4*18/*19基因型。
     结果:247例癫痫患者中有10例(4.05%)CYP3A4*1G基因AA型,92例(37.25%)AG型,145例(58.70%)GG型,A等位基因频率为22.67%,G等位基因频率为77.33%。CYP3A5*3基因AA型23例(9.31%),AG型109例(44.13%),GG型115例(46.56%),A等位基因频率为31.38%,G等位基因频率为68.62%。所有患者CYP3A4*18/*19基因都表现为CC型。
     结论:中国汉族癫痫患者的CYP3A4*1G、CYP3A5*3基因多态性分布情况与其他亚洲人群类似。
     第二部分中国汉族癫痫患者中CYP3A4*1G、YP3A5*3基因多态性与卡马西平药物浓度的相关性研究
     目的:观察CYP3A4*1G、CYP3A5*3基因多态性与中国汉族癫痫患者卡马西平稳态药物浓度的相关性。
     方法:应用反向高效液相色谱法检测247例卡马西平治疗的中国汉族癫痫患者的稳态谷值药物浓度,LDR-PCR测序分型检测CYP3A4*1G,CYP3A5*3基因多态性。
     结果:总和组(所有247例患者)中CYP3A4*1G基因AA型的卡马西平标准化浓度为0.23±0.065μg·kg·(ml·g)-1,AG型为0.25±0.065μg·kg·(m1·g)-1,GG型为0.28±0.074μg·kg·(m1·g)-1。三基因型间标准化浓度差异有统计学意义(P=0.005),且AA型低于GG型(P=0.021),AG型低于GG型(P=0.009),差异均有统计学意义,AA型虽有低于AG型的趋势,但差异无统计学意义(P=0.220)。CYP3A5*3基因AA型的卡马西平标准化浓度为0.23±0.06μg·kg·(ml·g)-1, AG型为0.24±0.053μg·kg·(ml·g)-1,GG型为0.31±0.073μg·kg·(ml·g)-1。三基因型间标准化血药浓度差异有统计学意义(P<0.0001),且AA型低于GG型(P<0.0001),AG型低于GG型(P<0.0001),差异均有统计学意义,AA型虽有低于AG型趋势,但差异无统计学意义(P=0.087)。单药组(卡马西平单药治疗)结果与总和组类似,CYP3A4*1G和CYP3A5*3三基因型组间标准化血药浓度差异均有统计学意义(P<0.05),且AA型和AG型均显著低于GG型(P<0.05), AA型虽有低于AG型的趋势,但差异无统计学意义(P>0.05)。但联合用药组(卡马西平+丙戊酸钠联合治疗)中上述基因型间标准化浓度无显著性差异。
     结论:CYP3A4*1G和CYP3A5*3基因型影响中国汉族癫痫患者的卡马西平药物浓度,是造成卡马西平药物浓度个体差异的可能因素。
     第三部分中国汉族癫痫患者中CYP3A4*1G、CYP3A5*3基因多态性与卡马西平疗效的相关性研究
     目的:研究CYP3A4*1G、CYP3A5*3基因多态性与中国汉族癫痫患者卡马西平疗效的相关性。
     方法:检测245例卡马西平治疗的中国汉族癫痫患者外周血CYP3A4*1G、 CYP3A5*3基因多态性,根据基因表现型分为高代谢组(AA型和AG型)和低代谢组(GG型)。抗癫痫治疗6个月后评估疗效,根据发作频率减少情况分为显效(发作频率减少>75%),无效(发作频率减少<50%)和有效(发作频率减少介于50%和75%之间)三组。
     结果:单因素分析发现,总和组中CYP3A4*1G基因高代谢组标准化血药浓度为0.25±0.067μg·kg·(ml·g)-1,显效率为36%,均显著低于低代谢组标准化浓度(0.28±0.080μg·kg·(ml·g)-1)和显效率(48.97%)(P<0.05),而高代谢组无效率(25%)显著高于低代谢组(18.62%)(P<0.05)。单药组结果与总和组类似,但联合用药组中不同CYP3A4*1G表现型间标准化浓度、显效率和无效率间差异无统计学意义(P>0.05)。总和组、单药组和联合用药组中CYP3A5*3GG型的显效率分别为63.48%,60.76%,69.44%,显著高于AG型(30.28%,,36.14%,38.16%)和AA型(4.76%,7.69%,38.16%),差异均有统计学意义(P<0.05),即GG型显效率最高,AA型最低,AG型居中。Logistic回归分析表明CYP3A4*1G基因表现型与疗效无关,而CYP3A5*3基因型是造成中国汉族癫痫患者卡马西平疗效个体差异可能的影响因素。
     结论:CYP3A5*3基因型与卡马西平疗效有关,CYP3A5*3基因GG型标准化浓度高,显效率高,无效率低。
Part1:Single nucleotide polymorphisms and genotype frequencies of CYP3A4*1G, CYP3A5*3, CYP3A4*18/*19in Han Chinese epileptic patients
     Objective To explore the distribution and genotype frequencies of CYP3A4*1G, CYP3A5*3, CYP3A4*18/*19in Han Chinese epileptic patients with carbamazepine(CBZ)-therapy.
     Materials and Methods The CYP3A4*1G,CYP3A5*3, CYP3A4*18/*19genotype was determined by ligase detection reaction-Polymerase Chain Reaction (LDR-PCR) in247Han Chinese epileptic patients with carbamazepine (CBZ)-therapy.
     Results Ten patients(4.05%) were AA allele of CYP3A4*1G,92(37.25%) were AG allele and145(58.70%) were GG allele. A allele frequencies were22.67%, while G allele frequencies were77.33%. Twenty-three patients (9.31%) were AA allele of CYP3A5*3,109patients (44.13%) were AG allele, and115patients (46.56%) were GG allele. And A allele frequencies were31.38%, G allele frequencies were68.62%. All patients were CC allele of CYP3A4*18/*19.
     Conclusion The genotype frequencies of CYP3A4*1G and CYP3A5*3in Han Chinese epileptic patients is similar to it in other Asian population.
     Part2:Effect of CYP3A4*1G, CYP3A5*3genotype on serum carbamazepine concentrations at steady-state in Han Chinese epileptic patients
     Objective The present study aimed to assess the effect of CYP3A4*1G, CYP3A5*3genotype on serum CBZ concentrations at steady-state.
     Materials and Methods The serum concentrations of CBZ in247Han Chinese epileptic patients with CBZ-therapy and their CYP3A4*1G, CYP3A5*3genotype was determined by LDR-PCR method.
     Results Among all247Han Chinese epileptic patients(total group), the normalized concentrations of CBZ were0.23±0.065μg·kg·(ml·g)-1) for CYP3A4*1G AA allele,0.25±0.065μg·kg·(ml·g)-1) for AG allele and0.28±0.074μg·kg·(ml·g)-1) for GG allele. There was a significant difference between these three different genotypes (P=0.005).And the normalized concentrations of both AA allele and AG allele were lower than those of GG allele, and the difference was statistical significance(P<0.05). Although the normalized concentrations of AA allele were lower than those of AG allele, there was no significant difference between them. They were0.23±0.066μg·kg·(ml·g)-1) for CYP3A5*3AA allele,0.24±0.053μg·kg·(ml·g)-1) for AG allele and0.31±0.073μg·kg·(ml·g)-1) for GG allele. There was a significant difference between these three different genotypes (P<0.0001). The normalized concentrations of CBZ were significant higher in GG allele. But there was no significant difference between AA allele and AG allele. The same result was found in monotherapy group but not in add-on group.
     Conclusion The CYP3A4*1G, CYP3A5*3genotype affected the CBZ concentrations in Han Chinese patients that the normalized concentrations of CBZ in patients of GG allele were higher. And it is a possible factor that may contribute to inter-individual variability in CBZ disposition in Han Chinese epileptic patients.
     Part3:Influence of CYP3A4*1G, CYP3A5*3genotype on carbamazepine efficacy in Han Chinese epileptic patients
     Objective To investigate the relationship between the CYP3A4*1G CYP3A5*3genotype and the CBZ treatment outcome in Han Chinese epileptic patients.
     Materials and Methods The CYP3A4*1G CYP3A5*3genotype was determined in245Han Chinese epileptic patients with CBZ-therapy (including total group, monotherapy group and add-on group). Then they were also classified by phenotype of CYP3A4*1G CYP3A5*3gene as the hypermetabolism group (AA allele and AG allele) and the hypometabolism group (GG allele). The efficacy at6months after therapy were classified as markedly effective (the reduction of seizure frequency>75%), effective (50%     Results In total group, both the normalized concentrations (0.25±0.067μg·kg·(ml·g)-1) and the markedly effective rates (36%) of CYP3A4*1G hypermetabolism group, were significant higher than the hypometabolism group (0.28±0.080μg·kg·(ml·g)-1)(48.97%)(P<0.05). While the ineffective rates of hypermetabolism group (25%) were significant higher than the hypometabolism group (18.62%)(P<0.05). The same result was found in monotherapy group but not in add-on group. The markedly effective rates of CYP3A5*3GG allele were63.48%,60.76%,69.44%, in total group, monotherapy group, and add-on group, which were significant higher than those in AG allele(30.28%,36.14%,38.16%) and AA allele(4.76%,7.69%,38.16%). And it showed in Logistic Regression that the CYP3A4*1G genotype had no influence on the CBZ efficacy. But the CYP3A5*3genotype was possible factor that may contribute to inter-individual variability in CBZ efficacy in Han Chinese epileptic patients in Logistic Regression analysis.
     Conclusion The CYP3A5*3genotype had influence on the carbamazepine concentrations and efficacy. The normalized concentrations and markedly effective rates of CYP3A5*3GG allele were significant higher.
引文
[1]MacDonald BK, Cockerell OC, Sander J et al. The incidence and lifetime prevalence of neurological disorders in a prospective community-based study in the UK [J]. Brain 2000,123:665-676.
    [2]Rocca WA, Savettieri G, Anderson DW et al. Door-to-door prevalence survey of epilepsy in three Sicilian municipalities[J]. Neuroepidemiology,2001,20(4): 237-241.
    [3]Ding D, Hong Z, Wang WZ, et al. Assessing the disease burden due to epilepsy by disability adjusted life year in rural China [J]. Epilepsia,2006, 47(12):2032-2037.
    [4]中华医学会.临床诊疗手册-癫痫病分册[M].北京:人民卫生出版社,2007:41.
    [5]洪震,江澄川.现代癫痫学[M].北京:人民卫生出版社,2007:97—109.
    [6]朱国行,吴洵昳,虞培敏等.新诊断癫痫患者的规范化药物治疗[J].中华神经科杂志,2011,44(1):6-9.
    [7]Depondt C. Pharmacogenetics in epilepsy treatment:sense or nonsense [J]? Personalized Medicine,2008,5(2):123-131.
    [8]Ingelman-Sundberg M, Sim SC. Pharmacogenetic biomarkers as tools for improved drug therapy; emphasis on the cytochrome P450 system[J].Biochemical and Biophysical Research Communications, 2010,396(1):90-94.
    [9]Depondt C, Godard P, Espel RS et al. A CANDIDATE GENE ASSOCIATION STUDY OF ANTIEPILEPTIC DRUG TOLERABILITY AND EFFICACY [J]. Epilepsia,2010,51:143-143.
    [10]沈凌达.癫痫病人SCN1A基因多态性与卡马西平治疗作用关系的研究[D].上海:复旦大学,2007:
    [11]Rizzi M, Caccia S, Guiso G et al. Limbic seizures induce P-glycoprotein in rodent brain:functional implications for pharmacoresistance [J]. J Neurosci, 2002,22(14):5833-5839.
    [12]Siddiqui A, Kerb R, Weale ME et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1 [J]. N Engl J Med,2003,348(15):1442-1448.
    [13]Tishler DM, Weinberg KI, Hinton DR et al. MDR1 gene expression in brain of patients with medically intractable epilepsy [J]. Epilepsia,1995.36(1):1-6.
    [14]Zimprich F, Sunder-Plassmann R, Stogmann E et al. Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy [J]. Neurology,2004,63(6):1087-1089.
    [15]Grinchuk TM, Pavlenko MA, Lipskaia LA et al. Resistance to adriamycin in human chronic promyeloleukemia line K562 correlates with directed genome destabilization--amplification of MDR1 gene and nonrandom changes in karyotype structure [J]. Tsitologiia,1998,40(7):652-660.
    [16]Ameyaw MM, Regateiro F, Li T et al. MDR1 pharmacogenetics:frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity [J]. Pharmacogenetics 2001,11(3):217-221.
    [17]Bialecka M, Hnatyszyn G, Bielicka-Cymerman J, Drozdzik M. The effect of MDR1 gene polymorphism in the pathogenesis and the treatment of drug-resistant epilepsy [J]. Neurol Neurochir Pol,2005,39(6):476-481.
    [18]Fromm MF. The influence of MDR1 polymorphisms on P-glycoprotein expression and function in humans [J]. Adv Drug Deliv Rev, 2002,54(10):1295-1310.
    [19]Hitzl M, Drescher S, van der Kuip H et al. The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+natural killer cells [J]. Pharmacogenetics,2001, 11(4):293-298.
    [20]Chung WH, Hung SI, Hong HS et al. A marker for Stevens-Johnson syndrome [J]. Nature,2004,428(6982):486-486.
    [21]Man CBL, Kwan P, Baum L et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in han Chinese [J]. Epilepsia,2007,48(5):1015-1018.
    [22]Mehta TY, Mittal B, Joshi CG et al. Association of HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome among Indians [J]. Indian J Dermatol Venereol Leprol, 2009,75(6):579-582.
    [23]高玫梅,石奕武,廖卫平等.抗癫痫药物皮肤不良反应与HLA-B*1502基因关联性研究[J].中华神经医学杂志,2009,8(5):493-499.
    [24]Lonjou C, Thomas L, Borot N et al. A marker for Stevens-Johnson syndrome...:ethnicity matters [J]. Pharmacogenomics Journal,2006, 6(4):265-268.
    [25]Ikeda H, Takahashi Y, Yamazaki E et al. HLA Class I markers in Japanese patients with carbamazepine-induced cutaneous adverse reactions [J]. Epilepsia,2010,51(2):297-300.
    [26]Locharernkul C, Loplumlert J, Limotai C et al. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population[J]. Epilepsia,2008,49(12):2087-2091.
    [27]Kato M, Chiba K, Ito T et al. Prediction of Interindividual Variability in Pharmacokinetics for CYP3A4 Substrates in Humans [J]. Drug Metabolism and Pharmacokinetics,2010,25(4):367-378.
    [28]Magliulo L, Viana M, Fallarini S et al. Possible impact of CYP3A4 and CYP3A5 genotypes on carbamazepine metabolism and clinical outcome in epileptic patients[J]. Febs Journal,2010,277:289-290.
    [29]Choi JH, Lee YJ, Jang SB et al. Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects [J]. British Journal of Clinical Pharmacology,2007,64(2):185-191.
    [30]Dai D, Tang J, Rose R et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos [J]. J Pharmacol Exp Ther,2001,299(3):825-831.
    [31]Dong ZL, Li H, Chen QX et al. Effect of CYP3A4*1G on the fentanyl consumption for intravenous patient-controlled analgesia after total abdominal hysterectomy in Chinese Han population [J]. J Clin Pharm Ther,2012, 37:153-156.
    [32]Gao Y, Zhang LR, Fu Q. CYP3A4*1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not of simvastatin [J]. Eur J Clin Pharmacol,2008,64(9):877-882.
    [33]Gijsen V, Mital S, van Schaik RH et al. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients [J]. The Journal of heart and lung transplantation:the official publication of the International Society for Heart Transplantation,2011,30(12):1352-1359.
    [34]Hu YF, Tu JH, Tan ZR et al. Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects [J]. Xenobiotica, 2007,37(3):315-327.
    [35]Miura M, Satoh S, Kagaya H et al. Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients [J]. Pharmacogenomics,2011,12(7):977-984.
    [36]Zhang W, Chang Y-Z, Kan Q-C et al. CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients [J]. European Journal of Clinical Pharmacology,2011,66(1):61-66.
    [37]文娟,黄志军,袁洪等.肾移植后高血压人群中CYP3A4*1G、CYP3A5*3和MDR1C3435T基因多态性对氨氯地平降压疗效的影响[J].中国动脉硬化杂志,2011,19(1):55-60.
    [38]McLeod HL, Watson MA. Editorial overview-Molecular therapeutics:Are we making progress [J]? Current Opinion in Molecular Therapeutics,2003, 5(6):573-574.
    [39]Andreasen AH, Brosen K, Damkier P. A comparative pharmacokinetic study in healthy volunteers of the effect of carbamazepine and oxcarbazepine on CYP 3A4 [J]. European Neuropsychopharmacology,2006,16:239.
    [40]Park PW, Seo YH, Ahn JY et al. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients [J]. Journal of Clinical Pharmacy and Therapeutics,2009,34(5):569-574.
    [41]胡永芳,翟所迪,邱雯CYP3A5*3和CYP3A4*18B基因多态性对肾移植患者环孢素药代动力学的影响[J].中国药理学通报,2009,25(3):378-382.
    [42]李定云,李智,朱利军等.肾移植受者CYP3A5基因多态性对术后他克莫司药物代谢的影响[J].中华器官移植杂志,2010,31(5):280-283.
    [43]Kuehl P, Zhang J, Lin Y et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression [J]. Nature Genetics,2001,27(4):383-391.
    [44]Shi XJ, Geng F, Jiao Z et al. Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects:a population pharmacokinetic analysis [J]. Journal of Clinical Pharmacy and Therapeutics,2011,36(5):614-624.
    [45]杨艺红.MDRl和CYP3A5基因多态性对再生障碍性贫血患者环孢菌素A血药浓度的影响[D].北京:中国协和医科大学,清华大学医学部,2008:
    [46]Provenzani A, Notarbartolo M, Labbozzetta M et al. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients[J]. International Journal of Molecular Medicine,2011,28(6):1093-1102.
    [47]de Wildt SN, van Schaik RHN, Soldin OP et al. The interactions of age. genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation [J]. European Journal of Clinical Pharmacology,2011,67(12):1231-1241.
    [48]Passey C, Birnbaum AK, Brundage RC et al. Dosing equation for tacrolimus using genetic variants and clinical factors[J]. British Journal of Clinical Pharmacology,2011,72(6):948-957.
    [49]高远CYP3A4*18B, CYP3A5*3和MDR1C3435T基因多态性与阿伐他汀降脂疗效的相关性研究[D].郑州:郑州大学基础医学院,2007:
    [50]Hu YF, Zhu HH. Contribution of genetic polymorphisms of the CYP3A4, CYP3A5 and MDR1 genes to cyclosporine disposition[J]. Chin Pharmacol Bull,2005,21(3):257-261.
    [51]储小曼,曹文,闵佩清,等.肾移植病人中CYP3A4基因多态性对环孢素A代谢的影响[J].中国临床药理学杂志,2003,19(6):421-425.
    [52]宋艳.卡马西平的群体药代动力学及其代谢酶CYP3A4基因多态性研究[D].太原:山西医科大学,2010:
    [53]Yamamoto T NN, Ozeki T, Kubota T et al. CYP3A4* 18:it is not rare allele in Japanese Population [J]. Drug Metab Pharmacokinet,2003,18(4):267-268.
    [1]Depondt C, Godard P, Espel RS et al. A CANDIDATE GENE ASSOCIATION STUDY OF ANTIEPILEPTIC DRUG TOLERABILITY AND EFFICACY [J]. Epilepsia 2010,51(2):143-143.
    [2]Ingelman-Sundberg M, Sim SC. Pharmacogenetic biomarkers as tools for improved drug therapy; emphasis on the cytochrome P450 system [J]. Biochemical and Biophysical Research Communications,2010,396(1):90-94.
    [3]中华医学会.临床诊疗手册-癫痫病分册[M].北京:人民卫生出版社,2007:41.
    [4]洪震,江澄川.现代癫痫学[M].北京:人民卫生出版社,2007:97—109.
    [5]朱国行,吴洵昳,虞培敏等.新诊断癫痫患者的规范化药物治疗[J].中华神经科杂志,2011,44(1):6-9.
    [6]Kato M, Chiba K, Ito T et al. Prediction of Interindividual Variability in Pharmacokinetics for CYP3A4 Substrates in Humans [J]. Drug Metabolism and Pharmacokinetics,2010,25(4):367-378.
    [7]Caligula L, Viana M, Fallarini S et al. Possible impact of CYP3A4 and CYP3A5 genotypes on carbamazepine metabolism and clinical outcome in epileptic patients[J]. Febs Journal,2010,277:289-290.
    [8]Depondt C. Pharmacogenetics in epilepsy treatment:sense or nonsense [J]? Personalized Medicine,2008,5(2):123-131.
    [9]Zhang W, Chang Y-Z, Kan Q-C et al. CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients [J]. European Journal of Clinical Pharmacology,2011,66(1):61-66.
    [10]文娟,黄志军,袁洪等.肾移植后高血压人群中CYP3A4*1G、CYP3A5*3和MDR1C3435T基因多态性对氨氯地平降压疗效的影响[J].中国动脉硬化杂志,2011,19(1):55-60.
    [11]McLeod HL, Watson MA. Editorial overview-Molecular therapeutics:Are we making progress [J]? Current Opinion in Molecular Therapeutics,2003, 5(6):573-574.
    [12]. Andreasen AH, Brosen K, Damkier P. A comparative pharmacokinetic study in healthy volunteers of the effect of carbamazepine and oxcarbazepine on CYP 3A4 [J]. European Neuropsychopharmacology,2006,16:239.
    [13]. Park PW, Seo YH, Ahn JY et al. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients [J]. Journal of Clinical Pharmacy and Therapeutics,2009,34(5):569-574.
    [14]胡永芳,翟所迪,邱雯CYP3A5*3和CYP3A4*18B基因多态性对肾移植患者环孢素药代动力学的影响[J].中国药理学通报,2009,25(3):378-382.
    [15]李定云,李智,朱利军等.肾移植受者CYP3A5基因多态性对术后他克莫司药物代谢的影响[J].中华器官移植杂志,2010,31(5):280-283.
    [16]Kuehl P, Zhang J, Lin Y et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression [J]. Nature Genetics,2001,27(4):383-391.
    [17]Hu YF, Tu JH, Tan ZR et al. Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects [J]. Xenobiotica, 2007,37(3):315-327.
    [18]宋艳.卡马西平的群体药代动力学及其代谢酶CYP3A4基因多态性研究[D].太原:山西医科大学,2010:
    [19]Yamamoto T NN, Ozeki T, Kubota T et al. CYP3A4*18:it is not rare allele in Japanese Population [J]. Drug Metab Pharmacokinet,2003,18(4):267-268.
    [20]Ding D, Hong Z, Wang WZ et al. Assessing the disease burden due to epilepsy by disability adjusted life year in rural China [J]. Epilepsia,2006,47 (12):2032-2037.
    [21]Choi JH, Lee YJ, Jang SB et al. Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects [J]. British Journal of Clinical Pharmacology,2007,64(2):185-191.
    [22]Dai D, Tang J, Rose R et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos [J]. J Pharmacol Exp Ther,2001.299(3):825-831.
    [23]Dong ZL, Li H, Chen QX et al. Effect of CYP3A4*1G on the fentanyl consumption for intravenous patient-controlled analgesia after total abdominal hysterectomy in Chinese Han population [J]. J Clin Pharm Ther,2012, 37:153-156.
    [24]Gao Y, Zhang LR, Fu Q. CYP3A4*1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not of simvastatin [J]. Eur J Clin Pharmacol,2008,64(9):877-882.
    [25]Gijsen V, Mital S, van Schaik RH et al. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients [J]. The Journal of heart and lung transplantation:the official publication of the International Society for Heart Transplantation,2011,30(12):1352-1359.
    [26]Hu YF, Tu JH, Tan ZR et al. Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects [J]. Xenobiotica, 2007,37(3):315-327.
    [27]Yuan R, Zhang X, Deng Q et al. Impact of CYP3A4*1G polymorphism on metabolism of fentanyl in Chinese patients undergoing lower abdominal surgery [J]. Clin Chim Acta,2011,412(9-10):755-760.
    [28]Shi XJ, Geng F, Jiao Z, Cui XY, Qiu XY, Zhong MK. Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects:a population pharmacokinetic analysis[J]. Journal of Clinical Pharmacy and Therapeutics,2011, 36(5):614-624.
    [1]中华医学会.临床诊疗手册-癫痫病分册[M].北京:人民卫生出版社,,2007:41.
    [2]洪震,江澄川.现代癫痫学[M].北京:人民卫生出版社,2007:97—109.
    [3]朱国行,吴洵昳,虞培敏等.新诊断癫痫患者的规范化药物治疗[J].中华神经科杂志,2011,44(1):6-9.
    [4]Kato M, Chiba K, Ito T et al. Prediction of Interindividual Variability in Pharmacokinetics for CYP3A4 Substrates in Humans [J]. Drug Metabolism and Pharmacokinetics,2010,25(4):367-378.
    [5]Magliulo L, Viana M, Fallarini S et al. Possible impact of CYP3A4 and CYP3A5 genotypes on carbamazepine metabolism and clinical outcome in epileptic patients[J]. Febs Journal,2010,277:289-290.
    [6]Depondt C. Pharmacogenetics in epilepsy treatment:sense or nonsense [J]? Personalized Medicine,2008,5(2):123-131.
    [7]Zhang W, Chang Y-Z, Kan Q-C et al. CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients [J]. European Journal of Clinical Pharmacology,2011,66(1):61-66.
    [8]文娟,黄志军,袁洪等.肾移植后高血压人群中CYP3A4*1G、CYP3A5*3和MDR1C3435T基因多态性对氨氯地平降压疗效的影响[J].中国动脉硬化杂志,2011,19(1):55-60.
    [9]McLeod HL, Watson MA. Editorial overview-Molecular therapeutics:Are we making progress [J]? Current Opinion in Molecular Therapeutics,2003, 5(6):573-574.
    [10]Hu YF, Tu JH, Tan ZR et al. Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects [J]. Xenobiotica, 2007,37(3):315-327.
    [11]Park PW, Seo YH, Ahn JY et al. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients [J]. Journal of Clinical Pharmacy and Therapeutics,2009,34(5):569-574.
    [12]胡永芳,翟所迪,邱雯CYP3A5*3和CYP3A4*18B基因多态性对肾移植患者环孢素药代动力学的影响[J].中国药理学通报,2009,25(3):378-382.
    [13]李定云,李智,朱利军等.肾移植受者CYP3A5基因多态性对术后他克莫司药物代谢的影响[J].中华器官移植杂志,2010,31(5):280-283.
    [14]Shi XJ, Geng F, Jiao Z et al. Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects:a population pharmacokinetic analysis [J]. Journal of Clinical Pharmacy and Therapeutics,2011,36(5):614-624.
    [15]杨艺红.MDR1和CYP3A5基因多态性对再生障碍性贫血患者环孢菌素A血药浓度的影响[D].北京:中国协和医科大学,清华大学医学部,2008:
    [16]Provenzani A, Notarbartolo M, Labbozzetta M et al. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients [J]. International Journal of Molecular Medicine,28(6):1093-1102.
    [17]de Wildt SN, van Schaik RHN, Soldin OP et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation [J]. European Journal of Clinical Pharmacology,2011,67(12):1231-1241.
    [18]Gijsen V, Mital S, van Schaik RH et al. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients [J]. The Journal of heart and lung transplantation:the official publication of the International Society for Heart Transplantation,2011,30(12):1352-1359.
    [19]Choi JH, Lee YJ, Jang SB et al. Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects [J]. British Journal of Clinical Pharmacology,2007,64(2):185-191.
    [20]Passey C, Birnbaum AK, Brundage RC et al. Dosing equation for tacrolimus using genetic variants and clinical factors[J]. British Journal of Clinical Pharmacology,2011,72(6):948-957.
    [21]高远CYP3A4*18B、CYP3A5*3和MDR1C3435T基因多态性与阿伐他汀降脂疗效的相关性研究[D].郑州:郑州大学基础医学院,2007:
    [22]MacDonald BK, Cockerell OC, Sander J, Shorvon SD. The incidence and lifetime prevalence of neurological disorders in a prospective community-based study in the UK [J]. Brain,2000,123:665-676.
    [23]Rocca WA, Savettieri G, Anderson DW et al. Door-to-door prevalence survey of epilepsy in three Sicilian municipalities[J]. Neuroepidemiology,2001, 20(4):237-241.
    [24]Ding D, Hong Z, Wang WZ et al. Assessing the disease burden due to epilepsy by disability adjusted life year in rural China [J]. Epilepsia 2006, 47(12):2032-2037.
    [25]Miura M, Satoh S, Kagaya H et al. Impact of the CYP3A4* 1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients [J]. Pharmacogenomics,2011,12(7):977-984.
    [26]Andreasen AH, Brosen K, Damkier P. A comparative pharmacokinetic study in healthy volunteers of the effect of carbamazepine and oxcarbazepine on CYP 3A4 [J]. European Neuropsychopharmacology,2006.16:S239-S239.
    [1]周宏灏.细胞色素P450药物代谢酶的遗传药理学进展[J].药理学进展,2000,19:31-38.
    [2]Zhang W, Chang Y-Z, Kan Q-C et al. CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients [J]. European Journal of Clinical Pharmacology,2011,66(1):61-66.
    [3]文娟,黄志军,袁洪等.肾移植后高血压人群中CYP3A4*1G, CYP3A5*3和MDR1C3435T基因多态性对氨氯地平降压疗效的影响[J].中国动脉硬化杂志,2011,19(1):55-60.
    [4]McLeod HL, Watson MA. Editorial overview-Molecular therapeutics:Are we making progress [J]? Current Opinion in Molecular Therapeutics,2003, 5(6):573-574.
    [5]Hu YF, Tu JH, Tan ZR et al. Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects [J]. Xenobiotica, 2007,37(3):315-327.
    [6]Miura M, Satoh S, Kagaya H et al. Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients [J]. Pharmacogenomics,2011,12(7):977-984.
    [7]Dong ZL, Li H, Chen QX et al. Effect of CYP3A4*1G on the fentanyl consumption for intravenous patient-controlled analgesia after total abdominal hysterectomy in Chinese Han population [J]. J Clin Pharm Ther,2012, 37:153-156.
    [8]Zhang W, Yuan JJ, Kan QC et al. Influence of CYP3A5*3 polymorphism and interaction between CYP3A5*3 and CYP3A4*1G polymorphisms on post-operative fentanyl analgesia in Chinese patients undergoing gynaecological surgery [J]. Eur J Anaesthesiol,2011,28(4):245-250.
    [9]Yuan R, Zhang X, Deng Q et al. Impact of CYP3A4*1G polymorphism on metabolism of fentanyl in Chinese patients undergoing lower abdominal surgery [J]. Clin Chim Acta,2011,412(9-10):755-760.
    [10]Gao Y, Zhang LR, Fu Q. CYP3A4*1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not of simvastatin [J]. Eur J Clin Pharmacol,2008,64(9):877-882.
    [11]Okuno T, Ito M, Nakano S et al. Carbamazepine therapy and long-term prognosis in epilepsy of childhood [J]. Epilepsia,1989,30(1):57-61.
    [12]Kamiishi A, Seki T, Tachibana Y et al. Prognosis of childhood epilepsy after discontinuation of antiepileptic drug therapy [J]. Jpn J Psychiatry Neurol,1993, 47(2):354-355.
    [13]Andreasen AH, Brosen K, Damkier P. A comparative pharmacokinetic study in healthy volunteers of the effect of carbamazepine and oxcarbazepine on CYP 3A4 [J]. European Neuropsychopharmacology,2006,16:239.
    [14]Park PW, Seo YH, Ahn JY et al. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients [J]. Journal of Clinical Pharmacy and Therapeutics,2009,34(5):569-574.
    [15]胡永芳,翟所迪,邱雯CYP3A5*3和CYP3A4*18B基因多态性对肾移植患者环孢素药代动力学的影响[J].中国药理学通报,2009,25(3):378-382.
    [16]李定云,李智,朱利军等.肾移植受者CYP3A5基因多态性对术后他克莫司药物代谢的影响[J].中华器官移植杂志,2010,31(5):280-283.
    [17]杨艺红.MDR1和CYP3A5基因多态性对再生障碍性贫血患者环孢菌素A血药浓度的影响[D].北京:中国协和医科大学,清华大学医学部,2008:
    [18]Provenzani A, Notarbartolo M, Labbozzetta M et al. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients [J]. International Journal of Molecular Medicine,2011,28(6):1093-1102.
    [19]de Wildt SN, van Schaik RHN, Soldin OP et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation [J]. European Journal of Clinical Pharmacology,2011,67(12):1231-1241.
    [20]Gijsen V, Mital S, van Schaik RH et al. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients [J]. The Journal of heart and lung transplantation:the official publication of the International Society for Heart Transplantation,2011,30(12):1352-1359.
    [21]Choi JH, Lee YJ, Jang SB et al. Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects [J]. British Journal of Clinical Pharmacology,2007,64(2):185-191.
    [22]Passey C, Birnbaum AK, Brundage RC et al. Dosing equation for tacrolimus using genetic variants and clinical factors[J]. British Journal of Clinical Pharmacology,72:948-957.
    [1]Ding D, Hong Z, Wang WZ. Assessing the disease burden due to epilepsy by disability adjusted life year in rural China [J]. Epilepsia,2006, 47(12):2032-2037.
    [2]朱国行,吴洵昳,虞培敏等.新诊断癫痫患者的规范化药物治疗[J].中华神经科杂志,2011,44(1)6-9.
    [3]Depondt C. Pharmacogenetics in epilepsy treatment:sense or nonsense [J]? Personalized Medicine,2008,5(2):123-131.
    [4]Ingelman-Sundberg M, Sim SC. Pharmacogenetic biomarkers as tools for improved drug therapy; emphasis on the cytochrome P450 system [J]. Biochemical and Biophysical Research Communications,2010,396(1):90-94.
    [5]Depondt C, Godard P, Espel RS et al. A CANDIDATE GENE ASSOCIATION STUDY OF ANTIEPILEPTIC DRUG TOLERABILITY AND EFFICACY. Epilepsia,2010,51:143-143.
    [6]Kato M, Chiba K, Ito T et al. Prediction of Interindividual Variability in Pharmacokinetics for CYP3A4 Substrates in Humans [J]. Drug Metabolism and Pharmacokinetics,2010,25(4):367-378.
    [7]Magliulo L, Viana M, Fallarini S et al. Possible impact of CYP3A4 and CYP3A5 genotypes on carbamazepine metabolism and clinical outcome in epileptic patients[J]. Febs Journal,2010,277:289-290.
    [8]高远CYP3A4*18B、CYP3A5*3和MDR1C3435T基因多态性与阿伐他汀降脂疗效的相关性研究[D].郑州:郑州大学基础医学院,2007:
    [9]. Chung WH, Hung SI, Hong HS et al. A marker for Stevens-Johnson syndrome [J]. Nature,2004,428(6982):486-486.
    [10]Zhang W, Chang Y-Z, Kan Q-C et al. CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients [J]. European Journal of Clinical Pharmacology,2011,66(1):61-66.
    [11]文娟,黄志军,袁洪等.肾移植后高血压人群中CYP3A4*1G、CYP3A5*3和MDR1C3435T基因多态性对氨氯地平降压疗效的影响[J].中国动脉硬化杂志, 2011,19(1):55-60.
    [12]McLeod HL, Watson MA. Editorial overview-Molecular therapeutics:Are we making progress [J]? Current Opinion in Molecular Therapeutics,2003, 5(6):573-574.
    [13]Hu YF, Tu JH, Tan ZR et al. Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects [J]. Xenobiotica, 2007,37(3):315-327.
    [14]Hu YF, Zhu HH. Contribution of genetic polymorphisms of the CYP3A4, CYP3A5 and MDR1 genes to cyclosporine disposition[J]. Chin Pharmacol Bull,2005,21 (3):257-261.
    [15]储小曼,曹文,闵佩清,等.肾移植病人中CYP3A4基因多态性对环孢素A代谢的影响[J].中国临床药理学杂志,2003,19(6):421-425.
    [16]宋艳.卡马西平的群体药代动力学及其代谢酶CYP3A4基因多态性研究[D].太原:山西医科大学,2010:
    [17]Yamamoto T NN, Ozeki T, Kubota T et al. CYP3A4* 18:it is not rare allele in Japanese Population [J]. Drug Metab Pharmacokinet,2003,18(4):267-268.
    [18]Andreasen AH, Brosen K, Damkier P. A comparative pharmacokinetic study in healthy volunteers of the effect of carbamazepine and oxcarbazepine on CYP 3A4 [J]. European Neuropsychopharmacology,2006,16:239.
    [19]Park PW, Seo YH, Ahn JY et al. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients [J]. Journal of Clinical Pharmacy and Therapeutics,2009,34(5):569-574.
    [20]胡永芳,翟所迪,邱雯CYP3A5*3和CYP3A4*18B基因多态性对肾移植患者环孢素药代动力学的影响[J].中国药理学通报,2009,25(3):378-382.
    [21]李定云,李智,朱利军等.肾移植受者CYP3A5基因多态性对术后他克莫司药物代谢的影响[J].中华器官移植杂志,2010,31(5):280-283.
    [22]Kuehl P, Zhang J, Lin Y et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression [J]. Nature Genetics,2001,27(4):383-391.
    [23]Shi XJ, Geng F, Jiao Z et al. Association of ABCBl, and CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects:a population pharmacokinetic analysis [J]. Journal of Clinical Pharmacy and Therapeutics,36(5):614-624.
    [24]杨艺红.MDR1和CYP3A5基因多态性对再生障碍性贫血患者环孢菌素A血药浓度的影响[D].北京:中国协和医科大学,清华大学医学部,2008:
    [25]Provenzani A, Notarbartolo M, Labbozzetta M et al. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients[J]. International Journal of Molecular Medicine,28(6):1093-1102.
    [26]de Wildt SN, van Schaik RHN, Soldin OP et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation [J]. European Journal of Clinical Pharmacology,2011,67(12):1231-1241.
    [27]Gijsen V, Mital S, van Schaik RH et al. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients [J]. The Journal of heart and lung transplantation:the official publication of the International Society for Heart Transplantation,2011,30(12):1352-1359.
    [28]Choi JH, Lee YJ, Jang SB et al. Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects [J]. British Journal of Clinical Pharmacology,2007,64(2):185-191.
    [29]Passey C, Birnbaum AK, Brundage RC et al. Dosing equation for tacrolimus using genetic variants and clinical factors[J]. British Journal of Clinical Pharmacology,72(6):948-957.
    [30]Klemm M, Eidens M, Lorenz M et al. Development of a high throughput single nucleotide polymorphism screening method for the cytochrome P450 1A2 polymorphisms CYP1A2*1C and CYP1A2*1F:are they useful as predictive markers in mental disorders[J]? Clin Lab,2010,56(9-10):473-480.
    [31]Olivieri EH, da Silva SD, Mendonca FF et al. CYP1A2*1C, CYP2E1*5B, and GSTM1 polymorphisms are predictors of risk and poor outcome in head and neck squamous cell carcinoma patients [J]. Oral Oncol,2009,45(9):e73-79.
    [32]Gokalp O, Gunes A, Cam H et al. Mild hypoglycaemic attacks induced by sulphonylureas related to CYP2C9, CYP2C19 and CYP2C8 polymorphisms in routine clinical setting [J]. Eur J Clin Pharmacol,2011,67(12):1223-1229.
    [33]Henningsson A, Marsh S, Loos WJ et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel[J]. Clin Cancer Res,2005, 11(22):8097-8104.
    [34]Tomalik-Scharte D, Fuhr U, Hellmich M et al. Effect of the CYP2C8 genotype on the pharmacokinetics and pharmacodynamics of repaglinide[J]. Drug Metab Dispos,2011,39(5):927-932.
    [35]Hruska MW, Frye RF, Langaee TY. Pyrosequencing method for genotyping cytochrome P450 CYP2C8 and CYP2C9 enzymes [J]. Clin Chem, 2004.50(12):2392-2395.
    [36]Dai D, Zeldin DC, Blaisdell JA et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid [J]. Pharmacogenetics,2001,11 (7):597-607.
    [37]Harmsze AM, van Werkum JW, Ten Berg JM et al. CYP2C19*2 and CYP2C9*3 alleles are associated with stent thrombosis:a case-control study [J]. Eur Heart J,2010,31 (24):3046-3053.
    [38]Harmsze A, van Werkum JW, Bouman HJ et al. Besides CYP2C19*2, the variant allele CYP2C9*3 is associated with higher on-clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective coronary stent implantation [J]. Pharmacogenet Genomics,2010,20(1):18-25.
    [39]Jiang D, Bai X, Zhang Q et al. Effects of CYP2C19 and CYP2C9 genotypes on pharmacokinetic variability of valproic acid in Chinese epileptic patients: nonlinear mixed-effect modeling[J]. European Journal of Clinical Pharmacology,2009,65(12):1187-1193.
    [40]何楠,周宏灏CYP2C19遗传多态性的研究进展[J]。生理科学进展,2003,34:171-174.
    [41]Xie HG, Kim RB, et al. CYP2C9 allelic variants:ethnic distribution and functional significance [J]. Adv Drug Deliv Rev,2002,54:.1257-1270.
    [42]Hung CC, Chen CC,et al. Dosage Reconnnendation of Phenytoin for Patients with Epilepsy with differente CYP2C19/CYP2C9 polymorphisms [J]. Ther Drug Monit,2004,26:534-540.
    [43]Odani A, Otsuki Y. Genetic polymorphism of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy [J]. Clin Phamacol Ther,1997,62:287-292.
    [44]Amini-Shirazi N, Ghahremani MH, Ahmadkhaniha R et al. Influence of CYP2C9 polymorphism on metabolism of valproate and its hepatotoxin metabolite in Iranian patients[J]. Toxicol Mech Methods,20(8):452-457.
    [45]白向荣,姜德春,王育琴等.中国人群癫痫患者CYP2 C19, CYP2 C9的基因型对丙戊酸清除率影响的研究[J].中国临床药理学与治疗学,2007,,12(12):1405-1410.
    [46]van Waterschoot RAB, Lagas JS, Wagenaar E et al. Individual and combined roles of CYP3A, P-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) in the pharmacokinetics of docetaxel [J]. International Journal of Cancer,2011, 127(12):2959-2964.
    [47]Hemauer SJ, Nanovskaya TN, Abdel-Rahman SZ et al. Modulation of human placental P-glycoprotein expression and activity by MDR1 gene polymorphisms[J]. Biochem Pharmacol 2009,79(6):921-925.
    [48]Hitzl M, Drescher S, van der Kuip H et al. The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+natural killer cells [J]. Pharmacogenetics,2001, 11(4):293-298.
    [49]Rizzi M, Caccia S, Guiso G et al. Limbic seizures induce P-glycoprotein in rodent brain:functional implications for pharmacoresistance [J]. J Neurosci, 2002,22(14):5833-5839.
    [50]Cisternino S, Rousselle C, Dagenais C, Scherrmann JM. Screening of multidrug-resistance sensitive drugs by in situ brain perfusion in P-glycoprotein-deficient mice [J]. Pharm Res,2001,18(2):183-190.
    [51]Ameyaw MM, Regateiro F, Li T et al. MDR1 pharmacogenetics:frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity [J]. Pharmacogenetics,2001,11(3):217-221.
    [52]Zimprich F, Sunder-Plassmann R, Stogmann E et al. Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy [J]. Neurology,2004,63(6):1087-1089.
    [53]Hung CC, Tai JJ, Lin CJ et al. Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response[J]. Pharmacogenomics,2005,6(4):411-417.
    [54]Tan NC, Heron SE, Scheffer IE et al. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy [J]. Neurology, 2004,63(6):1090-1092.
    [55]Sills GJ, Mohanraj R, Butler E et al. Lack of association between the C3435T polymorphism in the human multidrug resistance (MDR1) gene and response to antiepileptic drug treatment [J]. Epilepsia,2005,46(5):643-647.
    [56]Kim DW, Kim M, Lee SK et al. Lack of association between C3435T nucleotide MDR1 genetic polymorphism and multidrug-resistant epilepsy [J]. Seizure,2006,15(5):344-347.
    [57]Kim YO, Kim MK, Woo YJ et al. Single nucleotide polymorphisms in the multidrug resistance 1 gene in Korean epileptics[J]. Seizure,2006, 15(1):67-72.
    [58]Kwan P, Baum L, Wong V et al. Association between ABCB1 C3435T polymorphism and drug-resistant epilepsy in Han Chinese [J]. Epilepsy Behav, 2007,11(1):112-117.
    [59]Lakhan R, Misra UK, Kalita J et al. No association of ABCB1 polymorphisms with drug-refractory epilepsy in a north Indian population [J]. Epilepsy Behav, 2009,14(1):78-82.
    [60]Man CBL, Kwan P, Baum L et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in han Chinese [J]. Epilepsia,2007,48(5):1015-1018.
    [61]Hung SI, Chung WH, Liu ZS et al. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese [J]. Pharmacogenomics,2010, 11(3):349-356.
    [62]Mehta TY, Mittal B, Joshi CG et al. Association of HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome among Indians [J]. Indian J Dermatol Venereol Leprol,2009,75(6):579-582.
    [63]Locharernkul C, Loplumlert J, Limotai C et al. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population [J]. Epilepsia,2008,49:2087-2091.
    [64]Ikeda H, Takahashi Y, Yamazaki E et al. HLA Class I markers in Japanese patients with carbamazepine-induced cutaneous adverse reactions [J]. Epilepsia,2010,51(5):297-300.
    [65]Kazeem GR, Cox C, Aponte J et al. High-resolution HLA genotyping and severe cutaneous adverse reactions in lamotrigine-treated patients [J]. Pharmacogenetics and Genomics,2009,19(9):661-665.
    [66]Lonjou C, Thomas L, Borot N et al. A marker for Stevens-Johnson syndrome...:ethnicity matters [J]. Pharmacogenomics,2006,6(4):265-268.
    [67]Alfirevic A, Jorgensen AL, Williamson PR et al. HLA-B locus in Caucasian patients with carbamazepine hypersensitivity [J]. Pharmacogenomics,2006, 7(6):813-818.
    [68]高玫梅,石奕武,廖卫平等.抗癫痫药物皮肤不良反应与HLA-B* 1502基因关联性研究[J].中华神经医学杂志,2009,8(5):493-499.
    [69]Hu FY, Wu XT, An DM et al. Pilot association study of oxcarbazepine-induced mild cutaneous adverse reactions with HLA-B* 1502 allele in Chinese Han population [J]. Seizure-European Journal of Epilepsy,2011,20(2):160-162.
    [70]An D-M, Wu X-T, Hu F-Y et al. Association study of lamotrigine-induced cutaneous adverse reactions and HLA-B*1502 in a Han Chinese population[J]. Epilepsy Res,2010,92(2-3):226-230.