MDR1和CYP3A基因多态性对地高辛血药浓度的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:检测中国贵州地区汉族心衰患者中MDR1C3435T、CYP3A4*18B和CYP3A5*3等位基因突变率,观察MDR1C3435T、CYP3A4*18B和CYP3A5*3基因多态性对地高辛血药浓度的影响。为以基因多态性为导向的地高辛合理用药和个体化用药提供重要的理论依据。
     方法:收集了111名中国贵州地区汉族心衰患者的治疗药物浓度监测(Therapeutic Drug Monitorng,TDM)数据,及每个患者的人口学、肝肾功能、血常规、合并用药等信息资料。将这些患者测定地高辛血药浓度后的废弃血收集保存,提取血样DNA,并通过聚合酶链反应-限制性片段长度多态性(Polymerase chain reaction-Restriction fragment length polymorphism,PCR-RFLP)法分析患者的MDR1C3435T、CYP3A5*3及CYP3A4*18B基因型。对以上收集及实验获得的数据进行考察,将患者按基因型分为野生型纯合子、突变型杂合子和突变型纯合子三组,分析每个基因的多态性对地高辛血药浓度的影响。
     结果:(1)111例中国汉族患者,地高辛口服剂量为0.125mg,Qd;血药浓度检测值为1.06±0.72ng/mL;(2)MDR1C3435T、CYP3A4*18B和CYP3A5*3等位基因在中国汉族心衰患者中的突变率分别为39.60%、30.60%和66.70%。等位基因和基因型分布符合Hardy-Weinberg平衡;(3)比较MDR1各基因型组的地高辛血药浓度后发现:野生纯合子(CC)组、突变杂合子(CT)组、突变纯合子(TT)组的地高辛血药浓度依次为0.89±0.55ng/mL、1.08±0.73ng/mL、1.37±0.95ng/mL。CC组与TT组的地高辛血药浓度差异有统计学意义(P<0.05);(4)CYP3A4和CYP3A5各基因型组之间的地高辛血药浓度差异均无统计学意义(P>0.05)。
     结论:(1)MDR1C3435T等位基因突变可使地高辛血药浓度提高;(2)CYP3A4*18B和CYP3A5*3等位基因突变对地高辛的血药浓度无明显影响。
Objective:to determine the frequencies of MDR1C3435T, CYP3A4*18B and CYP3A5*3 in Chinese Han patients with chronic heart failure and to observe the impact of MDR1C3435T, CYP3A4*18B and CYP3A5*3 genetic polymorphism on serum digoxin concentration. This study provides an important theoretical evidence for the gene-directed rationalization and individualization of medication for digoxin.
     Methods:A group of 111 unrelated Chinese Han patients with chronic heart failure were recruited after them taken therapeutic drug monitoring (TDM). Demographic data, blood, liver and kidney function data and drug combination data were retrospectively collected. In addition, genotyping of MDR1C3435T, CYP3A4*18B and CYP3A5*3 alleles were conducted by PCR-RFLP method. We investigated above data and analyzed the effect of MDR1C3435T, CYP3A4*18B and CYP3A5*3 genetic polymorphism on serum digoxin concentration.
     Results:(1) The dosage of digoxin for 111 Chinese Han patients is 0.125mg, Qd; and the mean of serum digoxin concentration is 1.06±0.72ng/mL; (2)The frequencies of MDR1C3435T, CYP3A4*18B and CYP3A5*3 in Chinese Han patients of Guizhou were 39.60%、30.60% and 66.70%, respectively. The allelic frequency was consistent with Hardy-Weinberg equilibrium; (3)The serum digoxin concentration in MDR1CC3435 and MDR1TT3435 groups showed a significant difference, with a mean TDM value 0.89+0.55 ng/mL versus 1.37±0.95 ng/mL (P<0.05); (4)There were no statistical difference on the serum digoxin concentration with CYP3A4*18B or CYP3A5*3 genetic polymorphism (P>0.05).
     Conclusions:(1) The effect of MDR1C3435Tgenetic polymorphism increased the serum digoxin concentration; (2) CYP3A4*18B or CYP3A5*3 genetic polymorphism may have no significant effect on the serum digoxin concentration.
引文
[1]Hunt SA, Abraham WT, Casey DE Jr, et al. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure) [J]. J Am Coll Cardiol,2005,46:1116-1143.
    [2]Parker BM, Cusack BJ, Vestal RE. Pharmacokinetic optimization of drug therapy in elderly patients [J]. Drugs Aging,1995,7(1):10-18.
    [3]周宏灏.药理学[M].北京:科学出版社,2003:239.
    [4]Salphati L, Benet LZ. Metabolism of digoxin and digoxigenin digitoxosides in rat liver microsomes:involvement of cytochrome P4503A[J]. Xenobiotica,1999, 29:171-185.
    [5]Zhu B, Liu ZQ, Chen GL, et al. The distribution and gender difference of CYP3A activity in Chinese subjects [J].Br JClin Pharmacol,2003,55(3):264-269.
    [6]Fukushima-Uesaka H, Saito Y Watanabe H, et al. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population[J]. Hum Mutat, 2004,26:100-108.
    [7]Kuehl P, Zhang J, Lin Y, el al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression [J]. Nat Genet,2001,27(4):383-391.
    [8]Huang W, Lin YS, McConn DJ, et al. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism [J]. Drug Metab Dispos,2004,32(12): 1434-1445.
    [9]Hoffmeyer S, Burk O, yon Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene:multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo [J]. Proc Natl Acad Sci USA, 2000,97(7):3473-3478.
    [10]胡永芳,翟所迪,邱雯.CYP3A5*3和CYP3A4*18B基因多态性对肾移植患者环孢素药代动力学的影响[J].中国药理学通报,2009,25(3):378-382.
    [11]Van Sehaik RH, van der Heiden IP, Van den Anker JN, et al. CYP3A5 variant allele frequencies in Dutch Caucasians[J]. Clin Chem,2002,48:1668-1671.
    [12]Sakaeda T, Nakamura T, Horinouchi M, et al. MDR1 genotype-related pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects [J]. Pharm Res,2001,18:1400-1404.
    [13]Kim Rb, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans[J]. Clin Pharmacol Ther, 2001,70:189-199.
    [14]Schaeffeler E, Eichelbaum M, Brinkmann U, et al. Frequency of C3435T polymorphism of MDR1 gene in African people[J]. Lancet,2001,358:383-384.
    [15]Qiu XY, Jiao Z, Zhang M, et al. Association of MDR1, CYP3A4*18B and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients [J]. Eur J Clin Pharmacol,2008,64(11):1069-1084.
    [16]Fukuen S, Fukuda T, Maune H, et al. Novel detection assay by PCR-RFLP and frequency of the CYP3A5 SNPs, CYP3A5*3 and *6, in Japanese population [J]. Pharmacogenetics,2002,12:331-334.
    [17]刘煜,席雅琳,李野.地高辛血浓度监测及其影响因素分析[J].中国药师,2004,7(8):612-613.
    [18]王若伦,叶晓光.3026例次地高辛血药浓度监测及其影响因素分析[J].广州医学院学报,2001,29(4):30-32.
    [19]乔华,贾兴平,刘继保.地高辛尿药浓度与血药浓度关系探讨[J].内蒙古中医药,2009,28(5):67.
    [20]Bachmakov I, Werner U, Endress B, et al. Characterization of beta-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein [J]. Fundam Clin Pharmaco,2006,20(3):273-282.
    [21]Ratnapalan S, Griffiths K, Costei AM, et al. Digoxin-carvedilol interactions in children[J]. J Pediatr,2003,142(5):572-574.
    [22]Wang Er-jia, Casciano C N, Clement R P, et al. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein[J]. Pharm Res,2001, 18(6):800-806.
    [23]Hohzman CW, Wiggins BS, Spinier SA. Role of P-glycoprorein in statin drug interactions[J]. Pharmacotherapy,2006,26(11):1601-1607.
    [24]Schwab M, Eichelbaum M, Fromm MF. Genetic polymorphisms of the human MDR1 drug transporter [J]. Annu Rev Pharmacol Toxicol,2003,43:285-307.
    [25]岑宇翔,陆志诚,汪华侨.汉族人MDR1C3435T基因的多态性[J].解剖学研究,2004,26(1):11-13.
    [26]Hoffmeyer S, Burk O, yon Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene:multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo [J]. Proc Natl Acad Sci USA,2000,97(7):3473-3478.
    [27]Johne A, Kopke K, Gerloff T, et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene [J]. Clin Pharmacol Ther,2002, 72(5):584-594.
    [28]Yoon Y, Chun H, Kim E, el al. Genetic and environmental factors influencing on the disposition of digoxin:a population pharmacokinetic approach [J]. Clin Pharmcol Ther,2002,71:73.
    [29]http://www.cypalleles.ki.se/, last update 9-Sep-2008.
    [30]Gellner K, Eiselt R, Hustert E, et al. Genomic organization of the human CYP3A locus:identification of a new, inducible CYP3A gene [J]. Pharmacogenetics,2001, 11(2):111-121.
    [31]Liu YT, Hao HP, Liu CX, et al. Drugs as CYP3A probes, inducers, and inhibitors [J]. Drug Metab Rev,2007,39(4):699-721.
    [32]Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism [J]. Adv Drug Deliv Rev,2002,54(10):1271-1294.
    [33]胡永芳,周宏灏.CYP3A4,CYP3A5和MDR1基因多态性对环孢素处置的影响[J].中国药理学通报,2005,21(3):257-261.
    [34]Hu YF, Tu JH, Tan ZR, et al. Association of CYP3A4*18B polymorphisms with the pharmacokinctics of cyclosporine in healthy subjects [J]. Xenobiotica,2007, 37(3):315-327.
    [35]Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorhism [J]. Pharmacogenetics,2001,11:773-779.
    [36]Wong M, Balleine RL, Collins M, et al. CYP3A5 genotype and midazolam clearance in Australian patients receiving chemotherapy [J]. Clin Pharmacol Ther,2004, 75:529-538.
    [37]Lin YS, Dowling AL, Quigley SD, et al.Co-regulaiton CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism [J]. Mol Pharmacol, 2002,62:162-172.
    [38]Haufroid V, Mourad M, van Kerckhove V, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients[J]. Pharmacogenetics,2004, 14:147-154.
    [39]Zheng H, Webber S, Zeevi A, et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms [J]. Am J Transplant, 2003,3:477-483.
    [40]Hesselink DA, van Schaik RH, van der Heiden IP, et al. Genetic polymorphisms of the CYP3A4, CYP3A5 and MDR1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus [J].Clin Pharmacol Ther,2003,74:245-254.
    [41]陈劲松,黎磊石,唐政,等.CYP3A5基因型对肾移植术后他克莫司血药浓度及疗效的影响[J].肾脏病与透析肾移植杂志,2008,17(1):4-8.
    [42]张澈,涂自良,胡永芳,等.CYP3A5基因型的差异对环孢素药代动力学影响的体外研究[J].中国药理学通报,2009,25(3):378-382.
    [43]孙华宾,刘燕,王道虎.肾移植受者CYP3A5基因多态性对他可莫司代谢的影响[J].国际医药卫生导报,2009,15(3):5-7.
    [44]李定云,李智,朱利军,等.肾移植受者CYP3A5基因多态性对术后他克莫司药物代谢的影响[J].中华器官移植杂志,2010,31(5):280-283.
    [45]石浩强,许倍铭,陈冰,等.中国肾移植患者中不同的CYP3A5*3基因型与西罗莫司血药浓度的关系[J].中国医药工业杂志,2010,41(9):678-682.
    [46]焦正,施孝金,耿芳,等.NONMEM法考察MDR1和CYP3A基因型和CYP3A表型对他克莫司药动学的影响[A].2009年中国药学大会暨第九届中国药师周论文集[C].长沙,2009.
    [47]杨宝峰主编.药理学(第七版)[M].北京:人民卫生出版社,2008:10.
    [48]Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin [J].J Clin Invest,1999,104:147-153.
    [49]谷元,司端运,刘昌孝CYP3A4酶介导的人类药物代谢性别差异[J],中国药理学通报,2009,25(9):1121-1124.
    [50]Hukkanen J, Vaisanen T, Lassila A, et al. Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells[J]. J Pharmacol Exp Ther,2003,304(2):745-52.
    [1]Hunt SA, Baker DW, Chin MH, et al. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult:executive summary:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure)[J]. J Am Coll Cardiol, 2001,38:2101-2113.
    [2]中华医学会心血管病分会,中华心血管病杂志编辑委员会.慢性收缩性心衰竭治疗建议[J].中华心血管病杂志,2007,35(12):1076-1094
    [3]国家药典委员会主编.中华人民共和国药典临床用药须知:化学药和生物制品卷(2005年版)[M].北京:人民卫生出版社,2005:142-144.
    [4]Adams KF JR, Gheorghiade M, Uretsky BF, et al. Clinical Benefits of Low Serum Digoxin Concentrations in Heart Failure[J]. J Am Coll Cardiol,2002,39: 946-953.
    [5]Rathore SS, Curtis JP, Wang Y, el al. Association of Serum Digoxin Concentration and Outcomes in Patients With Heart Failure[J]. JAMA,2003, 289:871-878.
    [6]Hunt SA, Abraham WT, Casey DE Jr, et al. ACC/AHA 2005 guidelineupdate for the diagnosis and management of chronic heart failure in the adult:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management ofHeart Failure)[J]. J Am Coll Cardiol,2005,46:1116-1143.
    [7]Parker BM, Cusack BJ, Vestal RE. Pharmacokinetic optimisation of drug therapy in elderly patients [J]. Drugs Aging,1995,7(1):10-18.
    [8]周宏灏.药理学[M].北京:科学出版社,2003:239.
    [9]刘煜,席雅琳,李野.地高辛血浓度监测及其影响因素分析[J].中国药师,2004,7(8):612-613.
    [10]王若伦,叶晓光.3026例次地高辛血药浓度监测及其影响因素分析[J].广州医学院学报,2001,29(4):30-32.
    [11]李剑芳,杨鸿,罗苑娇.老年患者地高辛血药浓度监测及影响因素分析[J].实用医学杂志,2005,21(19):2196-2197.
    [12]Lindenbaum J, Rund DG, Butler VP Jr, et al. Inactivation of digoxin by the gut flora:reversal by antibiotic therapy[J]. N Engl J Med,1981,305:789-794
    [13]Olsen SJ, Uderman HD, Kaul S, et al. Lack of interaction between concomitantly administered gatifloxacine and digoxin[A].39th ICAAC San Francisco,1999,36(7):199.
    [14]Zapater P, Reus S, Tello A, et al. A prospective study of the clarithromycin-digoxin interaction in elderly patients [J]. Journal of Antimicrobial Chemotherapy,2002,50:601-606.
    [15]Schwarz UI, Gramatte T, Krappweis J, et al. P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans[J]. Int J Clin Pharmacol Ther,2000,38:161-167.
    [16]Wakasugi H, Yano I, Ito T, et al. Effect of clarithromycin on renal excretion of digoxin:interaction with P-glycoprotein[J]. Clin Pharmacol Ther,1998, 64:123-128.
    [17]Guo GL, Klaassen CD. Protein kinase C suppresses rat organic anion transporting polypeptide 1-and 2-mediated uptake [J]. J Pharmacol Exp Ther, 2001,299:551-557.
    [18]Kullak-Ublick GA, Ismair MG, Stieger B, et al. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver[J]. Gastroenterology,2001,120:525-533.
    [19]Lau YY, Wu CY, Okochi H, et al. Ex situ inhibition of hepatic uptake and efflux significantly changes metabolism:hepatic enzyme-transporter interplay[J]. J Pharmacol Exp Ther,2004,308:1040-1045.
    [20]Shitara Y, Sugiyama D, Kusuhara H, et al. Comparative inhibitory effects of different compounds on rat Oatpl (Slc21a1)-and Oatp2 (Slc21a5)-mediated transport[J]. Pharm Res,2002,19:147-153.
    [21]杨宝峰主编.药理学(第七版)[M].北京:人民卫生出版社,2008:10.
    [22]Salphati L, Benet LZ. Metabolism of digoxin and digoxigenin digitoxosides in rat liver microsomes:involvement of cytochrome P4503A[J]. Xenobiotica, 1999,29(2):171-185.
    [23]Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin [J]. J Clin Invest,1999,104:147-153.
    [24]彭文兴,汪新亮,李焕德.体内药物相互作用新位点—P-糖蛋白[J].中国临床药理学杂志,2001,17(5):386.
    [25]刘念,耿小平,熊茂明.P-糖蛋白抑制剂的研究进展[J].国外医学药学分册,2006,33(2):107-110
    [26]Fromm MF, Kim RB, Stein CM,et al. Inhibition of P-glycoprotein-mediated drug transport:a unifying mechanism to explain the interaction between digoxin and quinidine [J]. Circulation,1999,99:552-557.
    [27]胡大一主译.心血管疾病药物治疗手册(第2版)[M].北京:人民卫生出版社,2006.
    [28]Bachmakov I, Werner U, Endress B, et al. Characterization of beta-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein[J]. Fundam Clin Pharmaco,2006,20(3):273-282.
    [29]Ratnapalan S, Griffiths K, Costei AM, et al. Digoxin-carvedilol interactions in children[J]. J Pediatr,2003,142(5):572-574.
    [30]乔华,贾兴平,刘继保.地高辛尿药浓度与血药浓度关系探讨[J].内蒙古中医药,2009,28(5):67.
    [31]吴小庆,朱剑秋,王强,等.阿米洛利或吲达帕胺对血清地高辛浓度的影响 [J].中国临床药学杂志,2004,13(6):342-345.
    [32]Wang Er-jia, Casciano CN, Clement RP, et al. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein[J]. Pharm Res, 2001,18(6):800-806.
    [33]Hohzman CW, Wiggins BS, Spinier SA. Role of P-glycoprorein in statin drug interactions[J]. Pharmacotherapy,2006,26(11):1601-1607.
    [34]Boyd R A。 Stern R H, Stewart B H, et al. Atorvastatin coadministration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion[J]. J Clin Pharmaeol,2000,40(1):91-98.
    [35]Penzak S R, Shen J M, Alfaro R M, et al. Ritonavir decreases the nonrenal clearance of digoxin in healthy volunteers with known MDR1 genotypes[J]. Ther Drug Monit,2004,26(3):322-330.
    [36]Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Effects of the antifungal agents on oxidative drug metabolism [J]. Clin Pharmacikinet,2000,38(2):111.
    [37]Hoffmeyer S, Burk O, yon Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene:multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo [J]. Proc Natl Acad Sci USA,2000,97(7):3473-3478.
    [38]Johne A, Kopke K, Gerloff T, et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene [J]. Clin Pharmacol Ther,2002, 72(5):584-594.
    [39]Hu Z, Yang X, Ho PC, et al. Herb-drug interactions:a literature review [J]. Drugs, 2005,65(9):1239-1282.
    [40]Izzo AA, Di Carlo G, Borrelli F, et al. Cardiovascular pharmacotherapy and herbal medicines:the risk of drug interaction[J]. Int J Cardiol,2005,98(1):1-14.
    [41]Dasgupta A, Reyes MA. Effect of Brazilian, Indian, Siberian, Asian, and North American ginseng on serum digoxin measurement by immunoassays and binding of digoxin-like immunoreactive components of ginseng with Fab fragment of antidigoxin antibody (Digibind)[J]. Am J Clin Pathol,2005,124(2):229-236.
    [42]Wabed A, Dasgup A. Positive and negative in vitro interference of Chinese medicine dan shen in serum digoxin measurement:Elimination of interference by monitoring free digoxin concentration[J]. Am J Clin Pathol,2001,116(3): 403-408.
    [43]Dasgupta A, Biddle DA, Wells A, et al. Positive and negative interference of the Chinese medicine Chan Su in serum digoxin measurement:Elimination of Interference by Using a Monoclonal Chemiluminescent Digoxin Assay or Monitoring Free Digoxin Concentration[J]. Am J Clin Pathol,2000,114(2): 174-179.
    [44]田静远,徐为人,王恒和,等.生脉注射液对充血性心力衰竭患者地戈辛血药浓度和药动学参数的影响[J].中国中西医结合杂志,2003,23(5):347-350.
    [45]张忠德,黄东晖,毛炜,等.黄芪注射液对肺心病患者血清地高辛浓度的影响[J].新中医,1999,31(4):35.
    [46]Konishi H, Shimizu S, Chiba M, et al. Predictive performance of serum digoxin concentration in patients with congestive heart failure by a hyperbolic model based on creatinine clearance[J]. J Clin Pharm Ther,2002,27:257-265.
    [47]Muzzarelli S, Stricker H, Pfister O, et al. Individual dosage of digoxin in patients with heart failure[J]. Q J Med,2010, doi:10.1093/qjmed/hcq 196.