B型单端孢霉烯族毒素诱导拒食和呕吐的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
B型单端孢霉烯族毒素是由镰刀菌产生的一组单端孢霉烯族真菌毒素,广泛污染小麦、大麦、玉米等谷物及其产品。这类毒素具有多种毒性作用,能够导致拒食、呕吐、恶心、生长迟滞、神经内分泌紊乱和免疫抑制等,严重威胁动物和人类健康。特别是拒食和呕吐,涉及严重的食源性中毒问题。然而,B型单端孢霉烯族毒素诱导拒食和呕吐反应的剂量和机理尚不清楚。B型单端孢霉烯族毒素包括5种毒素:(1)脱氧雪腐镰刀菌烯(Deoxynivalenol, DON);(2)3-乙酰基脱氧雪腐镰刀菌烯醇(3-acetyldeoxynivalenol,3-ADON);(3)15-乙酰基脱氧雪腐镰刀菌烯醇(15-acetyldeoxynivalenol,15-ADON);(4)镰刀菌酮-X(Fusarenon X, FX);(5)雪腐镰刀菌烯醇(Nivalenol, NIV)。本研究以这5种毒素为研究对象,建立了小鼠急性拒食模型;以DON为代表毒素,从迷走神经和促炎性细胞因子等方面着手,探索了DON诱导拒食反应的机理;比较研究了B型单端孢霉烯族毒素诱导拒食反应的量效关系和持续时问,制定了B型单端孢霉烯族毒素诱导拒食反应的最大无作用剂量(No observed adverse effect, NOAEL)和最小有作用剂量(Lowest observed adverse effect, LOAEL);建立了水貂急性呕吐模型,比较研究了B型单端孢霉烯族毒素诱导呕吐反应的量效关系,呕吐发生率,潜伏期和持续时间,制定了B型单端孢霉烯族毒素诱导呕吐反应的NOAEL和LOAEL,以及半数致呕吐量(50%emetic dose, ED50);并以DON为代表毒素,从神经递质5-羟色胺(Serotonin,5-HT),神经肽肽YY(Peptide YY, PYY)和胆囊收缩素(Cholecystokinin, CCK)的调控作用着手,探索了DON诱导呕吐反应的机理。
     试验Ⅰ小鼠急性拒食模型的建立及DON诱导小鼠拒食反应的机理研究
     应用B6C3F1雌性小鼠建立了一种急性拒食模型,分别通过腹腔注射和灌胃攻毒DON(剂量范围0-5mg-kg-1),然后测定小鼠攻毒后16h内的采食量,研究了DON诱导拒食反应的量效关系,持续时间和耐受性。应用迷走神经切断术,研究了迷走神经在DON诱导的拒食反应中所起的作用。采用DON诱导拒食反应的NOAEL(2.5mg·kg-1)对小鼠进行灌胃攻毒,对照组灌胃PBS,并在攻毒0,2和6h后取小鼠脾脏,应用实时荧光定量PCR(Real-time PCR)技术检测DON对细胞因子白细胞介素IL-1p和IL-6的mRNA基因表达的影响。结果表明:DON能够诱导急性拒食反应,腹腔注射或灌胃攻毒后2h就会发生明显的拒食反应,并且具有剂量依赖性。腹腔注射攻毒时,DON诱导拒食反应的NOAEL和LOAEL分别为0.5和1mg-kg-1,而灌胃攻毒时分别为1和2.5mg-kg-1. DON诱导的拒食反应是短暂的,当给予1mg-kg-1DON时,拒食反应持续3h;而给予5mg-kg-1DON时,拒食反应持续6h。攻毒后2-16h, DON又能够诱导促进食欲反应,并且也呈剂量依赖性。48h重复进行DON攻毒会对其诱导的拒食反应产生轻微的耐受作用。但是7d重复进行DON攻毒却不会产生耐受,说明这种轻微的耐受作用是可逆转的。而切断迷走神经对DON诱导的拒食反应无显著影响,说明DON诱导的拒食反应不涉及迷走神经通路。DON能够上调脾脏中IL-1p和IL-6mRNA表达,灌胃攻毒后2h, IL-1p和IL-6的表达达到峰值;而攻毒6h后,IL-1β和IL-6mRNA的表达回到基础水平,说明DON诱导的急性拒食反应与脾脏中IL-1p和IL-6mRNA的表达呈正相关。
     试验ⅡB型单端孢霉烯族毒素诱导小鼠拒食反应的比较研究
     应用上一章建立的小鼠急性拒食模型,分别通过腹腔注射和灌胃攻毒(剂量范围0-5mg-kg-1),然后测定小鼠攻毒后16h内的采食量,研究了B型单端孢霉烯族毒素中的3-ADON、15-ADON、FX和NIV诱导的拒食反应,并与DON诱导的拒食反应进行了比较。结果表明:与DON相似,腹腔注射和灌胃攻毒3-ADON和15-ADON诱导的拒食反应是急性的,短暂的,攻毒后2h就会发生明显的拒食反应,并且具有剂量依赖性,但是仅仅持续数小时,攻毒后16h,食欲恢复正常。腹腔注射攻毒时,3-ADON和15-ADON诱导拒食反应的NOAEL和LOAEL分别为0.5和1mg-kg-1,而灌胃攻毒时分别为1和2.5mg-kg-1.与之不同的是,腹腔注射或灌胃攻毒FX和NIV能够诱导急性的,持续性的拒食反应,反应能够持续48-96h。FX腹腔注射和灌胃攻毒的NOAEL都是0.025mg-kg-1,而LOAEL都是0.25mg-kg-1bw。而NIV在腹腔注射攻毒时的NOAEL和LOAEL分别为0.01和0.1mg-kg"1,灌胃攻毒时分别为0.1和1mg-kg"1.以上结果说明,腹腔注射攻毒B型单端孢霉烯族毒素诱导的拒食反应强于灌胃。根据NOAEL和LOAEL,B型单端孢霉烯族毒素诱导拒食反应的毒性顺序为:NIV> FX> DON≈3-ADON≈15-ADON(腹腔注射);FX>NIV>DON≈3-ADON≈15-ADON:灌胃)。
     试验Ⅲ水貂急性呕吐模型的建立及B型单端孢霉烯族毒素诱导水貂呕吐反应的比较研究
     建立了一种水貂急性呕吐模型,分别通过腹腔注射和灌胃攻毒(剂量范围0-1mg-kg-1),监测了B型单端孢霉烯族毒素DON、15-ADON、3-ADON、FX和NIV诱导呕吐反应的潜伏期、持续时间、发生率和反应强度,比较了5种毒素诱导呕吐反应的能力。并应用SAS等统计学方法分析得到了B型单端孢霉烯族毒素诱导呕吐反应的NOAEL、LOAEL和EDso。结果表明:B型单端孢霉烯族毒素能够诱导急性短暂的呕吐反应,攻毒后几十分钟就会发生反应,持续数小时,并具有剂量依赖性。随着剂量的增加,呕吐反应的潜伏期会缩短,持续时间会延长,发生率和反应强度会增高。腹腔注射攻毒,DON, FX和NIV的NOAEL和LOAEL分别为0.05和0.1mg-kg-1,而15-ADON和3-ADON的NOAEL都是0.1mg-kg-1, LOAEL分别为0.25和0.2mg-kg-1.灌胃攻毒,DON和FX的NOAEL和LOAEL分别是0.01和0.05mg-kg-1,15-ADON的NOAEL和LOAEL分别是0.01和0.1mg-kg-1,3-ADON的NOAEL和LOAEL分别是0.05和0.25mg-kg-1, NIV的NOAEL和LOAEL分别是0.1和0.25mg-kg-1.腹腔注射攻毒,DON、15-ADON、3-ADON. FX和NIV的EDso分别为80,170,180,70, and60μg·kg-1;而灌胃攻毒DON、15-ADON、3-ADON、FX和NIV的ED5o分别为30,40,290,30and250μg-kg-1.参照NOAEL、LOAEL和EDso,B型单端孢霉烯族毒素诱导呕吐反应的毒性顺序为:NIV≈FX≈DON>15-ADON≈3-ADON(腹腔注射);DON≈FX≈15-ADON> NIV>3-ADON((灌胃)。
     试验ⅣDON诱导水貂呕吐反应的机理研究
     应用上一章建立的水貂急性呕吐模型,研究5-HT3受体拮抗剂格拉司琼(Granisetron, GRA)、Y2受体拮抗剂JNJ-31020028和CCK1受体拮抗剂地伐西匹(Devezepide, DEV)对DON诱导呕吐反应的阻断作用,探索DON诱导呕吐反应的通路。然后,分别采用DON诱导呕吐反应的LOAEL和100%致呕吐剂量0.1和0.25mg-kg-1对水貂进行腹腔注射攻毒,对照组腹腔注射PBS,分别在攻毒后15,30,60和120min采血,应用直接竞争ELISA法测定外周血中DON的含量、神经递质5-HT、神经肽PYY和CCK的表达;同时监测水貂在0-120min内的呕吐反应。结果表明:在呕吐拮抗剂试验中,CCK1受体拮抗剂DEV对DON诱导的呕吐反应无明显阻断作用;Y2受体拮抗剂,fNJ-31020028能够显著减弱DON诱导的呕吐反应;而5-HT3受体拮抗剂GRA既能够彻底阻断DON诱导的呕吐反应,也能够部分阻断PYY诱导的呕吐反应。外周血中DON的浓度在15-30min达到峰值,然后迅速下降,在120min时回到基础水平;DON能够上调外周血中5-HT和PYY的表达,并且具有剂量依赖性。DON腹腔注射攻毒后60min,外周血中5-HT和PYY的浓度达到峰值,而攻毒后120min,外周血中5-HT和PYY的浓度回到基础水平。外周血中PYY的浓度在30min时开始升高,而5-HT在30min时没有明显变化,在60min时才开始升高,说明PYY可能能够诱导5-HT的分泌。而DON对外周血中CCK的表达无明显作用。通过监测水貂在0-120min内的呕吐反应发现,大部分的呕吐反应发生在0-60min,120min之后无呕吐反应发生,说明呕吐反应与血浆中5-HT和PYY的浓度呈正相关。本研究说明,DON诱导的呕吐反应可能是由5-HT和PYY介导的,而PYY诱导的呕吐反应部分涉及5-HT通路。
The8-ketotrichothecenes, sometimes referred to as Type B trichothecenes, are a group of toxic sesquiterpenoid mycotoxins produced by Fusarium, fungus that frequently contaminates cereal staples such as wheat, barley and corn. These mycotoxins have been associated with a spectrum of toxic effects in experimental animals that include anorexia, emesis, nausea, growth retardation, neuroendocrine changes and immunosuppression, especially anorexia and emesis which involve food poisoning.These toxins have been recognized as a severe public health threat for animals and human beings.8-ketotrichothecenes include five toxins:(1) deoxynivalenol (DON),(2)3-acetyldeoxynivalenol (3-ADON),(3)15-acetyldeoxynivalenol (15-ADON),(4) fusarenon X (FX) and (5) nivalenol (NIV). Our lab developed an acute mouse bioassay model for conducting8-ketotrichothecenes-induced anorexia study. We pursued the mechanisms of DON-induced anorexia through vagus nerve and cytokines; We compared the potencies of8-ketotrichothecenes in the mouse anorexia model following intraperitoneal (ip) and oral administration and determined the dose response, duration, no observed adverse effect (NOAEL) and lowest observed adverse effect (LOAEL) of anorexia. Then, our lab developed an acute mink emesis model for conducting8-ketotrichothecenes-induced emesis study. We compared potencies of8-ketotrichothecenes in emetic effects following ip and oral administration and determined the latency, duration, incidence and intensity of emesis.We also established the NOAEL, LOAEL and50%emetic dose (ED5o) of8-ketotrichothecenes-induced emesis; The mechanisms of DON-induced emesis were elucidated through regulation of neurotransmitter serotonin (5-HT), neuropeptide peptide YY(PYY) and Cholecystokinin (CCK).
     1. Characterization and mechanisms of DON-induced anorexia using mouse bioassay
     A short-term mouse model was devised to investigate induction of food refusal by the common foodborne trichothecene DON. Mice were dosed DON by either ip or oral exposure at0-5mg-kg-1and food intake were measured in16h post-dosing. Dose response, duration and tolerance of DON-induced anorexia were determined. In order to determine the role of vagus nerve in DON-induced anorexia, we conducted anorexia study using vagotomy mouse. In order to determine the role of cytokines in DON-induced anorexia, we determined the mRNA expressions of interleukin-1β (IL-1β) and interleukin-6(IL-6) in mouse spleen using Real-time PCR at0,2and6h after oral exposure to2.5mg·kg-1DON. The results presented herein indicated that DON dose-dependently induced anorexia within2h of exposure when administered either by ip injection or by oral gavage. The no observed adverse effect and lowest observed adverse effect levels in this assay were0.5and1mg-kg-1for ip exposure and1and2.5mg-kg-1for oral exposure, respectively. DON's effects on food intake were transient, lasting up to3h at1mg-kg-1and up to6h at5mg-kg"1. Interestingly, a dose-dependent orexigenic response was observed in the14h following the initial2h food intake measurement. Toxin-treated mice exhibited partial resistance to feed refusal when exposed to DON subsequently after2d, but not after7d suggesting that this modest tolerance was reversible. DON-induced feed refusal were not affected after vagotomy suggesting that vagus nerve was not associated with DON induced feed refusal. The mRNA expressions of IL-1β and IL-6were upregulated by DON in mouse spleen and reached peak levels at2h post-dosing, and back to basal levels at6h post-dosing, suggesting that DON-induced anorexia was correlated with mRNA expressions of IL-1β and IL-6in mouse spleen.
     2. Comparison of murine anorectic responses to the8-ketotrichothecenes
     The anorectic effects of structurally related8-ketotrichothecenes,3-acetyldeoxynivalenol (3-ADON),15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX) and nivalenol (NIV) were determined in the mouse model for anorexia induction from last chapter and compared with DON. As previously observed for DON, anorectic responses to3-ADON and15-ADON in the B6C3F1female mouse following both intraperitoneal (ip) and oral exposure were transient, lasting only a few hours, with food intake recovering to control levels within16h. For both ADONs, the no observed adverse effect levels (NOAEL) and lowest observed adverse effect levels (LOAEL) were0.5and1mg-kg-1following ip exposure, respectively, and1and2.5mg-kg-1after oral exposure, respectively. In contrast, food refusal persisted from48h to96h following ip and oral exposure to FX and NIV. For both ip and oral FX exposure, the NOAEL was0.025mg-kg-1and LOAEL was0.25mgkg-1, whereas the NOAELs and LOAELs for NIV were0.01and0.1mg·kg-1, respectively, after ip exposure and0.1and1mg-kg-1, respectively following oral exposure. Both these data and a prior DON study suggest that anorectic responses to8-ketotrichothecenes were always greater when administered ip as compared to oral exposure and follow an approximate rank order of NIV>FX>DON≈3-ADON≈15-ADON for ip exposure and FX>NIV>DON≈3-ADON≈15-ADON for oral exposure.
     3. Characterization and comparison of emetic responses to the8-ketotrichothecenes using mink bioassay
     A short-term mink model was devised to investigate induction of emesis by the8-ketotrichothecenes. The emetic capacities of the DON,15-ADON,3-ADON, FX and NIV were compared in female mink via ip and oral administration. In this model, the incidence, latency, duration, and intensity of emesis of all compounds were compared. The NOAELs, LOAELs and ED50of emesis were analyzed by SAS and other statistics methods. The results presented herein indicated that all five congeners dose-dependently induced rapid and short term emesis by both administration methods. Emesis was observed in1hour and lasted several hours. With increasing doses, there were marked decreases in latency to emesis with corresponding increases in emesis duration and number of emetic events. Following IP exposure, the NOAELs and LOAELs were0.05and0.1mg·kg-1, respectively, for DON, FX and NIV. For15-ADON and3-ADON, the NOAELs were both0.1mg-kg-1and LOAELs were0.25and0.2mg-kg-1, respectively. Following oral exposure, the NOAELs and LOAELs were0.01and0.05mg-kg-1for both DON and FX. The NOAEL and LOAEL for15-ADON were0.01and0.1mg-kg-1, for3-ADON,0.05and0.25mg-kg-1, and for NIV,0.1and0.25mg-kg-1, respectively. The effective doses resulting in emetic events in50% of the animals (ED50) for ip exposure to DON,15-ADON,3-ADON, FX and NIV were80,170,180,70, and60μg-kg-1respectively, and for oral exposure were30,40,290,30and250μg-kg-1, respectively. Emetic responses to8-ketotrichothecenes follow an approximate rank order of NIV≈FX≈DON>15-ADON≈3-ADON for ip exposure and DON≈FX≈15-ADON>NIV>3-ADON for oral exposure based on NOAELs, LOAELs and ED50.
     4. Mechanisms of DON-induced emesis using mink bioassay
     The mechanisms of DON-induced emesis were explored in mink model from last chapter.5-HT3receptor antagonist granisetron, Y2receptor antagonist JNJ-31020028and CCK1receptor antagonist devezepide were used to block DON-induced emesis. Then, mink were dosed DON at0.1and0.25mg-kg'1via ip exposure and collected blood at15,30,60and120min post-dosing. DON concentration, neurotransmitter5-HT, neuropeptide PYY and CCK in plasma were measured by ELISA kits. Emetic events were monitored during0-120min. The results presented herein indicated that CCK1receptor antagonist devezepide had no obvious effects on DON-induced emesis. While, Y2receptor antagonist JNJ-31020028significantly attenuated DON-induced emesis. However, that5-HT3receptor antagonist granisetron could totally block DON-induced emesis, partially block PYY induced emesis. Plasma DON concentration reached the peak level in15-30min, declined very quickly thereafter and back to basal level at120min. DON dose-dependently upregulated plasma5-HT and PYY. Plasma5-HT and PYY reached the peak level at60min post-dosing and back to basal level at120min. Plasma PYY increased at30min post-dosing, while5-HT had no changes at that time and increased at60min, suggesting that PYY might induce the release of5-HT. Furthermore, plasma CCK had no changes post-dosing. Most of emetic events happened during0-60min and no emetic events were observed after120min, suggesting that DON-induced emesis might correlate with plasma5-HT and PYY. These results indicated that DON-induced emesis might mediate via5-HT and PYY, while PYY-induced emesis might mediate by5-HT.
引文
[1]Sudakin DL. Trichothecenes in the environment:relevance to human health [J]. Toxicol Lett 2003, 143(2):97-107.
    [2]张向民.镰刀菌属分类学研究历史与现状[J].菌物研究,2005,3(2):59-63.
    [3]黄秀琴,吴晶琼.镰刀菌毒素[J].微生物学通报,1994,21(3):176-179.
    [4]林清洪,黄志宏.镰刀菌研究概述[J].亚热带植物通讯,1996,25(1):51-57.
    [5]Wei, R. D. and F. S. Chu. Production and characterization of a generic antibody against group A trichothecenes [J]. Anal Biochem,1987,160(2):399-408.
    [6]Fan, T. S., S. L. Schubring, et al. Production and characterization of a monoclonal antibody cross-reactive with most group A trichothecenes [J]. Appl Environ Microbiol,1988,54(12):2959-2963.
    [7]Grove, J. F. Non-macrocyclic trichothecenes [J]. Nat Prod Rep,1988,5(2):187-209.
    [8]Jemmali, M., Y. Ueno, et al. Natural occurrence of trichothecenes (nivalenol, deoxynivalenol, T-2) and zearalenone in corn [J]. Experientia,1978,34(10):1333-1334.
    [9]Pestka, J.J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol[J]. World Mycotoxin Journal,2010,3:323-347.
    [10]Li, F. Q., X. Y. Luo, et al. Mycotoxins (trichothecenes, zearalenone and fumonisins) in cereals associated with human red-mold intoxications stored since 1989 and 1991 in China [J]. Nat Toxins, 1999,7(3):93-97.
    [11]徐达尊.真菌毒素的研究进展[M].人民卫生出版社(第一版),1979,252.
    [12]Devegowda, G, M VLN Raju, N Afzali, et al. Mycotoxin picture worldwide:Novel solutions for their counteraction [J]. Feed Compounder,1998,18 (6):22-27.
    [13]Lee US, Jang HS, Tanaka T, et al. The coexistence of the Fusarium mycotoxins nivalenol, deoxynivalenol and zearalenone in Korean cereals harvested in 1983 [J]. Food Addit Contain,1985, 2:185-192.
    [14]Tutte J, et al. Wheat scab in soft red winter wheat in Indiana (USA) in 1986 and its relation to some quality measurement [J]. Plant Dis,1990,74(12):959-967.
    [15]Tutelyan VA, et al. A survey of the occurrence of deoxynivalenol in wheat from 1986-1988 harvests in the USSR [J]. Food Addit Contam,1990,7:521-529.
    [16]Trucksess MW, Thomas F, Young K,et al.Survey of deoxynivalenol in U.S.1993 wheat and barley crops by enzyme-linked immunosorbent assay [J]. AOAC Int,1995,78(3):631-6.
    [17]Wood, GE. Mycotoxins in foods and feeds in the United States [J]. J Anim Sci,1992,70:3941-3949.
    [18]Cirillo, T, A Ritieni, F Galvano, et al. Natural cooccurrence of deoxynivalenol and fumonisins Bi and B2 in Italian marketed food stuffs [J]. Food Addit Contam,2003,20:566-567.
    [19]Adejumo T, Hettwer U, Karlovsky P. Occurrence of Fusarium species and trichothecenes in Nigerian maize [J]. Int J Food Microbiol,2007,116:350-357.
    [20]Muller HM, Schwadorf K. A survey of the natural of Fusarium toxins in wheat grown in a southwestern area of Germany [J]. Mycopathologia,1993,121:115-121.
    [21]Schollenberger M, Suchy S, Jara HT. A survey of Fusarium toxins in cereal-based foods marketed in an area of southwest Germany [J]. Mycopathologia,1999,147:49-57.
    [22]Schollenberger M, Muller HM, Ruffe M,et al. Natural occurrence of 16 Fusarium toxins in edible oil marketed in Germany [J]. Food Control,2008,19:475-482.
    [23]Omurtag GZ, Beyoglu D. Occurrence of deoxynivalenol (vomitoxin) in beer in Turkey detected by HPLC [J]. Food Control,2007,18:163-16.
    [24]Scott PM, Kanhere SR, Weber D. Analysis of Canadian and imported beers for Fusarium mycotoxins by gas chromatography-mass spectrometry [J]. Food Addit Contam,1993,10:381-389.
    [25]Niessen L, Bohm-Schrami M, Vogel H, Donhauser S. Deoxynivalenol in commercial beer-screening for the toxin with an indirect competitive ELISA [J]. Mycotoxin Research,1993,9:99-109.
    [26]Labuda R, Parich A, Berthiller F, et al. Incidence of trichothecenes and zearalenone in poultry feed mixtures from Slovakia [J]. Int J Food Microbiol,2005,105:19-25.
    [27]张丞,刘颖莉.百奥明公司2006年第二季度饲料和原料中霉菌毒素调查报告[J].饲料广角,2006,14:21-24.
    [28]王若军,苗朝华,张振雄等.中国饲料及饲料原料受霉菌毒素污染的调查报告[J].饲料工业,2003,24(7):53-54.
    [29]陆刚,李李.安徽省谷物及其制品中脱氧雪腐镰刀菌烯醇的污染调查[J].中华预防医学杂志,1994,28(1):27-30.
    [30]张帆,吴志远,吴健丽等.食管癌高发区粮食中镰刀菌毒素的含量及其致突变作[J].中华预防医学杂志,2000,34(1):53-55.
    [31]郭红卫,柳启沛,胡卓汉等.河南产麦区小麦镰刀菌毒素污染状况及农民摄入量[J].中国食品卫生杂志,1989,1(2):20-24.
    [32]王晓云,于雅琴,俞琼.2005年中国居民膳食DON污染调查及暴露评估[J].长治医学院学报,2007,21(2):101-103.
    [33]吕明斌,陈刚,汪尧春等.北方地区饲料原料霉菌毒素污染状况[J].中国饲料,2004,9:32-34.
    [34]贺玉梅,贾珍珍,张泽.北京市粮库库存小麦中T-2毒素的污染情况调查[J].中国食品卫生杂志,1998,10(6):21.
    [35]陈必芳.我国饲料霉菌及霉菌毒素污染现状[J].中国药理学与毒理学杂志,1997,11(2):91-92.
    [36]史志诚.动物毒物学[M].北京:中国农业出版社,2001:437-439.
    [37]Wolf C E, Bullerman LB. Heat and pH alter the concentration of deoxynivalenol in an aqueous environment [J]. J Food Prot,1998,61:365-367.
    [38]Sato N. Mycotoxins in human and animal Health.Pathotox [J]. Park Forst South,1997,304-306.
    [39]Bretz M, Beyer M, Cramer B, Humpf HU. Stable isotope dilution analysis of the Fusarium mycotoxins Vomitoxin (deoxynivalenol) (DON) and 3-acetyl Vomitoxin (deoxynivalenol) (DON) [J]. Mol Nutr Food Res,2006,50(3):251-60.
    [40]刘宗平.动物中毒病学[M].北京:中国农业出版社,2006:258-259.
    [41]Scott PM, Kanhere SR, Weber D. Analysis of Canadian and imported beers for Fusarium mycotoxins by gas chromatography-mass spectrometry [J]. Food Addit Contam,1993,10:381-389.
    [42]付杨,李洪军,贺稚非等.脱氧雪腐镰刀菌烯醇研究进展[J].中国食品卫生杂志,2011,32(21):289-292.
    [43]JECFA 56th.2001. Joint FAO/WHO Expert Committee on Food Additives 56th Report. Safety evaluation of certain mycotoxins in food. Food and Agriculture Organization of the United Nations, paper 74. World Health Organization Food Additives Series 47, World Health Organization, Geneva, Switzerland.
    [44]Hascheck, WM, KA Voss and VR Beasley. Selected mycotoxins affecting animal and human health. In:Handbook of Toxicologic Pathology.2nd Ed, Vol.1, Academic Press,2002,645-699.
    [45]孟昭赫.食品卫生学检验方法注解,微生物学部分[M].人民卫出版社,1990.6.
    [46]Young, L.Cz, L.McGin, Valli VE, et al., Vomitoxin in com fed to young pigs [J]. J Anim Sci,1983, 57:655-664.
    [47]李群伟.真菌毒素与人体健康[M].北京,人民军医出版社,2005.
    [48]Iverson F, Armstrong C, Nera E, et al. Chronic feeding study of deoxynivalenol in B6C3F1 male and female mice [J]. Theratog Carcinog Mutagen,1995,15(6):283.
    [49]Robert L Sprando, Thomas F X, et al. Characterization of the effect of deoxynivalenol on selected male reproductive endpoints [J]. Food Chem.Toxicol,2005,43:623-635.
    [50]李月红,张祥宏,王俊灵等.脱氧雪腐镰刀菌烯醇对小鼠胸腺细胞凋亡和增殖的影响[J].中国病理生理,2002,18:778-781.
    [51]Rotter, BA and YN Oh. Mycotoxin fumonisin B1 simulates nitric oxide production in a murine macrophage cell line [J]. Nat. Toxins,1996,4:291-294.
    [52]Drochner, W, M Schollenberger, H P Piepho, et al. Serum IgA-promoting effects induced by feed loads containing isolated deoxynivalenol (DON) in growing piglets [J]. Tox Env. Health A,2004, 67:1051-1067.
    [53]Pestka J J. Deoxynivalenol-induced IgA production and IgA nephropathy-aberrant mucosal immune response with systemic repercussions [J]. Toxicol. Lett,2003,140:287-295.
    [54]Li M., Cuff, C F, et al. Modulation of murine host response to enteric reovirus infection by the trichothecene deoxynivalenol[J]. Toxicol. Sci,2005,87,134-145.
    [55]Li M., Harkema J R., Cuff C.F. et al. Deoxynivalenol exacerbates viral bronchopneumonia-induced by Reovirus infection [J]. Toxicol. Sci.,2007,95:412-426.
    [56]Philippe Pinton, Francesc Accensi, Erwan Beauchampa, et al. Patrick Callu b, Franc,ois Grosjean b, Isabelle P. Oswald Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses [J]. Toxicol. Lett,2008,177:215-222.
    [57]Cossette F, Miller J D. Phytoxic effect of deoxynivalenol and gibberellaear rot resistance of corn [J]. Nat Toxins,1995,3(5):383-388.
    [58]Ueno Y. General toxicology. In:Ueno Y, editor. Developments in Food Science. Ⅳ Trichothecenes-Chemical, biological and toxicological aspects. Tokyo/Amsterdam:Kodansha/Elsevier,1983a: 135-146.
    [59]Thompson WL, Wannemacher RW. Structure-function relationships of 12,13-epoxytrichothecene mycotoxins in cell culture:comparison to whole animal lethality [J]. Toxicon,1986,24:985-994.
    [60]Schiefer HB, Nicholson S, Kasali OB, Hancock DS, Greenhalgh R. Pathology of acute 3-acetyldeoxynivalenol toxicity in mice [J]. Can J Comp Med,1985,49:315-318.
    [61]Schiefer HB, Hancock DS, Bhatti AR. Systemic effects of topically applied trichohecenes.Ⅰ. Comparative study of various trichothecenes in mice [J]. J Vet Med A,1986,33:373-383.
    [62]Kasali OB, Schiefer HB, Hancock DS, Blakley BR, Tomar RS, Greenhalgh R. Subacute txicity of dietary 3-acetyldeoxynivalenol toxicity in mice [J]. Can J Comp Med 1985,49:319-322.
    [63]Atkinson HAC, Miller K. Inhibitory effect of deoxynivlenol,3-acetyldeoxynivalenol and zearalenone on induction of rat and human lymphocyte proliferation [J]. Toxicol lett 1984,23: 215-221.
    [64]Berek L, Petri IB, et al. Effects of mycotoxins on human immune functions in vitro [J]. Toxicol in vitro,2001,15:25-30.
    [65]Forsell JH, Jensen R, Tai J-H, Witt M, Lin WS, Pestka JJ. Comparison of acute toxicities of deoxynivalenol (vomitoxin) and 15-acetyldeoxynivalenol in the B6C3F1 mouse [J]. Food Chem.Toxicol,1987,25:155-162.
    [66]Pestka JJ, Lin WS, Miller ER. Emetic activity of the trichothecene 15-acetyldeoxynivalenol in swine [J]. Food Chem.Toxicol,1987,25:855-858.
    [67]Pestka JJ, Lin WS, Forsell JH. Decreased feed consumption and body-weight gain in the B6C3F1 mouse after dietary exposure to 15-acetyldeoxynivalenol [J]. Food Chem.Toxicol,1986,24: 1309-1313.
    [68]Forsell JH, Pestka JJ. Relation of 8-ketotrichothecene and zearalenone analog structure to inhibition of mitogen-induced human lymphocyte blatogenesis [J]. Appl Environ Microbiol,1985,50: 1304-1307.
    [69]Ouyang YL, Azcona-Olivera JI, Pestka JJ. Effects of trichothecene structure on cytokine secretion and gene expression in murine CD4+ T-cell [J]. Toxicology 1995,104:187-202.
    [70]Prelusky DB, Hamilton RMG, Trenholm HL. Application of the chick embryotoxicity bioassay for the evaluation of mycotoxin toxicity [J]. Microbiol Alimets Nutr 1989,7:57-65.
    [71]Thompson WL, Wannemacher RW. Structure-function relationships of 12,13-epoxytrichothecene mycotoxins in cell culture:comparison to whole animal lethality [J]. Toxicon,1986,24:985-994.
    [72]Ueno Y. Toxicological features of T-2 toxin and related trichotheneces [J]. Fundam Appl Toxicol, 1984,4:124-132.
    [73]Ueno Y. General toxicology. In:Ueno Y, editor. Developments in Food Science. IV Trichothecenes-Chemical, biological and toxicological aspects. Tokyo/Amsterdam:Kodansha/Elsevier,1983a: 135-146.
    [74]Saito M, Horiuchi T, Ohtsubo K, Hatanaka Y, Ueno Y. Low tumor incidence in rats with long-term feeding of fusarenon-X, a cytotoxic trichothenece produced by Fusarium nivale [J]. Jpn J Exp Med 1980,50:293-302.
    [75]IARC. Monographs on the evaluation of carcinogenic risks to humans. Volume 56-Some naturally occurring stubstances:food items and constituents, heterocyclic aromatic amines and mycotoxins. Lyon:International Agency for Research on Cancer, World Health Organzation 1993:397-444.
    [76]Ito Y, Ohtsuo K, Saito M. Effects of fusarenon-X, a trichothenece produced by Fusarium nivale, on pregnant mice and their fetuses [J]. Jpn J Exp Med 1980,50:167-172.
    [77]Ryu J-C, Ohtsubo K, Izumiyama N, et al. The acute and chronic toxicities of nivalenol in mice [J]. Fundam Appl Toxicol 1988,11:38-47.
    [78]史志诚.动物毒物学[M].北京:中国农业出版社,2001:437-439.
    [79]Ueno Y. General toxicology. In:Ueno Y, editor. Developments in Food Science. IV Trichothecenes-Chemical, biological and toxicological aspects. Tokyo/Amsterdam:Kodansha/Elsevier,1983a: 135-146.
    [80]Ohtsubo K, Ryu J-C, Izumiyama N, et al. Chronic toxicity of nivalenol in female mice:a 2-year feeding study with Fusarium nivale Fn 2B-moulded rice [J]. Food Chem.Toxicol,1989,27:591-598.
    [81]申红红,杨美华,欧阳臻.镰刀菌毒素DON和NIV研究进展[J].安徽农业科学,2010,38(16):8425-8428.
    [82]夏求洁,陆小秋,吴建丽等.食管喷门癌高发区粮食中的单端孢霉烯族毒素及其致癌潜力[J].中华肿瘤杂志,1988,10:381-382.
    [83]Ueno Y, Kobayashi T, Yamamura H, et al. Effect of long-term feeding of nivalenol on aflatoxin B\-initiated hepatocarcinogenesis in mice. In:O'Neill IK, Chen J, Bartsch H, editors. Relevance to human cancer of N-nitroso compounds tobacco and mycotoxins. IARC Scientific Publications no. 105. Lyon:International Agency for Research on Cancer, World Health Organization,1991:420-423.
    [84]赵瑞琦.真菌毒素NIV研究进展[J].国外医学医学地理分册,1999,20(4):166-169.
    [85]曹峻岭,熊咏民,张矢远等.真菌毒素DON,122和NIV对培养软骨细胞作用的实验研究[J].中国地方病防治杂志,1995,10(2):69-71.
    [86]Hinoshita F, Suzuki Y, Yokohama K, et al. Experimental IgA nephropathy induced by a low-dose enviromental mycotoxin, nivalenol [J]. Nephron 1997,75:469-478.
    [87]李斌,郭红卫.镰刀菌毒素DON、NIV的细胞毒性和致突变、致畸、致癌研究进展[J].癌变畸变突变,1999,11(4):206-207.
    [1]刘磊,宋志刚.动物食欲调节的中枢信号通路[J].动物营养学报,2012,24(2):226-231.
    [2]梁万年,李春雨.恶心和呕吐[J].中国全科医学,2002,5(4):259-261.
    [3]Pestka, J.J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol [J]. World Mycotoxin Journal,2010,3:323-347.
    [4]Vesonder, R.F., Ciegler, A., Jensen, A.H.,1973. Isolation of the emetic principle from Fusarium-infected corn [J]. Appl Microbiol,26:1008-1010.
    [5]石琼,金红军,郭霞珍.下丘脑的食欲调节网络[J].国外医学内分泌学分册,1999,19(5):203-206.
    [6]Fahrenkrog S, Harder T, Stolaczyk E, et al. Cross fostering to diabetic rat dams affects early development of mediobasal hypothal amic nuclei regulating food intake, body weight, and metabolism [J]. J Nutr,2004,134:648-654.
    [7]Konturek P C, Konturek J W, et al. Neuro-hormonal control of food intake:basic mechanisms and clinical implications[J]. J Physiol Pharmacol,2005,56(6):5-25.
    [8]Ellacott K L, Cone R D. The central melanocortin system and the integration of short and long term regulators of energy homeostasis [J]. Recent Prog Horm Res,2004,59:395-407.
    [9]Van vugt D A, Lujan M E, Froats M, et al. Effect of fasting on cocaine amphetamine regulated transcript, neuropeptide Y, and leptin receptor expression in the non human primate hypothalamus [J]. Neuroendocrinol,2006,84(2):83-93.
    [10]Kas M J, Tiesjema B, Van Dijk G, et al. Induction of brain region specific forms of obesity by agouti [J]. J Neursci,2004,24(45):10176-10181.
    [11]Mendoza J, Graff C, Dardente H, et al. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light dark cycle [J]. J Neursci,2005, 5(6):1514-1522.
    [12]Granados F D, Prolo L M, Abraham U, et al. The suprach iasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulb [J]. J Neursci,2004,24(3):615-619.
    [13]Ruiter M, La Fleur S E, Van Heijningen C, et al. The daily rhythm in plasma glucagon concentration in the rat is modulated by the biological clock and by feeding behavior [J]. Diabetes, 2003,52:1709-1715.
    [14]Yokosuka M, Xu B, Pu S, et al. Neural substrates for leptin and neuropeptide Y (NPY) interaction:hypothalamic sites associated with inhibition of NPY induced food intake [J]. Physiol Behav,1998,64:331-338.
    [15]Schwartz G J.The role of gastrointestinal vagal afferents in the control of food intake:current prospects [J]. Nutrition,2000,16:866-873.
    [16]Bray G A. Afferent signals regulating food intake [J]. Proc. Nutr. Soc.,2000,59(3):373-384.
    [17]Yuan C S, Barber W D. Hypothalamic unitary response to gastric vagal input from the proximal stomach [J]. AM J. Physiol.,1992,262:74-80.
    [18]李在琉,中山沃.刺激饱中枢和摄食中枢对迷走神经胃支传出性活动和胃运动的影响[J].中华消化杂志,1983(3):247-249.
    [19]Espat N J, Moldawer L L, Copeland E M. Cytokine-mediated alterations in host metabolism prevent nutritional repletion in cachectic cancer patients[J]. J Surg Oncol,1995,58:77-82.
    [20]Dantzer R, Bluthe R M, Kent S, et al. Behavioral effects of cytokine:an insight into mechanisms of sickness behavior[J]. Methods Neurosci,1993,17:130-150.
    [21]Dunn A J. Pituitary-adrenal activation and behavioral activity of interleukin-1[J]. Neuropsychopharmacology,1994,194(10):841.
    [22]Plata-Salaman C R, Sonti G, Borkoski J P, et al. Anorexia induced by chronic central administration of cytokines at estimated pathophysiological concentrations[J]. Physiol Behav,1996,60:867-875.
    [23]Johnson R W, Immune and endocrine regulation of food intake in sick animals[J]. Domest Anim Endocrinol,1998,15:309-319.
    [24]Langstein H N, Doherty G M, Fraker D L, et al.The roles of gamma interferon and tumor necrosis factor alpha in an experimental rat model of cancer cachexia[J]. Cancer Res,1991,51:2302-2306.
    [25]Dantzer R, Bluthe R M, Kent S, et al. Behavioral effects of cytokine:an insight into mechanisms of sickness behavior[J]. Methods Neurosci,1993,17:130-150.
    [26]Schiller J H, Storer B E, Witt P L, et al. Biological and clinical effects of intravenous tumor necrosis factor-alpha administrated three times weekly[J]. Cancer Res,1991,51:1651-1658.
    [27]Holden R J, Pakula I S. The role of tumor necrosis factor-alpha in the pathogenesis of anorexia and bulimia nervosa, cancer cachexia and obesity[J]. Med Hypotheses,1996,47:423-438.
    [28]Konsman J P, Dantzer R. How the immune and nervous systems interact during disease-associated anorexia[J]. Nutrition,2001,17:664-668.
    [29]Kaye W H, Weltzin T E. Serotonin activity in anorexia nervosa and bulimia nervosa. Elationship to the modulation of feeding and mood[J]. J Clin Psychiatry,1991,52 (Suppl.):41-48.
    [30]Bambilla F, Ferrari E, Brunetta M, et al. Immunoendocrine aspects of anorexia nervosa[J]. Psychiatry Res,1996,62:97-104.
    [31]Bambilla F, Bellodi L, Arancio C, et al. Central dopaminergic function in anorexia and bulimia nervosa:a psychoneuroendocrine approach[J]. Psychoneuroendocrinology,2001,26:393-409.
    [32]Shintani F, Kanba S, Nakaki T, et al. Interleukin-1 beta augments release of norepinephrine, dopamine, and serotonin in the rat anterior hypothalamus[J]. J Neurosci,1993,13:3574-3581.
    [33]Smagin G N, Swiergiel A H, Dunn A J. Peripheral administration of interleukin-1 increases extracellular concentrations of norepinephrine in rat hypothalamus:comparison with plasma corticosterone[J]. Psychoneuroendocrinology,1996,21:83-93.
    [34]Borison HL, Wang SC. Physiology and pharmacology of vomiting [J]. Pharmcol Rev,1953,5: 193-230.
    [35]高首,孙立宁,孔哲等.恶心呕吐及其神经化学机制的研究[J].医学综述,2007,13(14):1043-1045.
    [36]Stable R, Andrews PL R, Bailey HE, et al. Antiemetic properties of the 5-HT3 receptor antagonist GR38032F [J]. Cancer Treat Rev,1987,14:333-336.
    [37]Missale C, Nash SR, Robinson SW, et al. Dopamine receptors from structure to function [J]. Physiol Rev,1998,78(1):189-225.
    [38]Grunberg SM, Hesketh PJ. Control of chemotherapy-induced emesis[J]. N Engl J Med,1993,329 (24):1790-1796.
    [39]Prelusky D B, Trenholm H L. The efficacy of various classes of anti-emetics in preventing deoxynivalenol-induced vomiting in swine [J]. Nat Toxins,1993,1:296-302.
    [40]Bradley PB, Engel G, Feniuk W, et al. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine [J]. Neuropharmacology,1986,25(6):563-576.
    [41]Hawthorn J, Cunningham D. Dexamethasone can potentiate the anti-emetic action of a 5-HT3 receptor antagonist on cyclophosphamide induced vomiting in the ferret [J]. Br J Cancer,1990, 61(1):56-60.
    [42]Andrews MD,Bunce KT, Tyers MB. The role of 5-HT in postoperative nausea and vomiting [J]. Br J Anaesth,1992,69(7):60-62.
    [43]Elizabethli R, Ettinger DS.5-HT3 receptor antagonists for the prevention of chemotherapy-induced nausea and vomiting [J]. Drugs,1998,55(2):173-189.
    [44]Prelusky D B. The effect of low-level deoxynivalenol on neurotransmitter levels measured in pig cerebral spinal fluid [J]. J Environ Sci Health B,1993,28:731-761.
    [45]Prelusky D B.The effect of deoxynivalenol on serotoninergic neurotransmitter levels in pig blood[J]. J Environ Sci Health B,1994,29:1203-1218.
    [46]Taylor IL. Role of peptide YY in the endocrine control of digestion [J]. Dairy Science,1993,76(7): 2094-2101.
    [47]Batterham R L, Cohen M A, Ellis S M, et al. Inhibition of food intake in obese subjects by PeptideYY3-36 [J].J Med,2003,349:941-948.
    [48]Batterham R L, Cowley MA, Small CJ, et al. Gut hormone PYY (3-36) physiologically inhibits food intake [J]. Nature,2002,418:650-654.
    [49]Koda S, Date Y, Murakami N,et al. The role of the vagal nerve inperipheral PYY3.36 induced feeding reduction in rats [J].Endocrinology,2005,146:2369-2375.
    [50]HongYang, Keishi Kawakubo, Helen Wong, et al. Peripheral PYY inhibits intracisternal TRH-induced gastric acid secretion by acting in the brain [J]. Am J Physiol Gastrointest Liver Physiol, 2000,279:575-581.
    [51]Harding R K, McDonald T J. Identification and characterization of the emetic effects of peptide YY [J]. Peptides,1989,10(1):21-24.
    [52]Keire DA, Solomon TE, Reeve JR Jr.NMR evidence for different conformations of the bioactive region of rat CCK-8 and CCK-58 [J].Biochem Biophys Res Commun,2002,293(3):1014-1020.
    [53]EysseleinVE, Reeve JR Jr, Eberlein G, et al. Cholecystokinin genestructure and molecular forms in tissue and blood [J]. J Gastroenterol,1986,24(10):645-659.
    [54]N Tsujino, A Yamanaka, K Ichiki, et al. Cholecyst okinin activat es orexin/hypocret in neurons through the cholecystokinin A receptor [J]. J Neurosci,2005,25(2):7459-7469.
    [55]王丽.胆囊收缩素受体及其信号转导研究进展[J].国际检验医学杂志,2006,27(4):352-354.
    [56]Jin H O, Lee K Y, Chang T M, et al. Physiological role of CCK in gastric emptying acid output in dogs [J]. Dig Dis Sci,1994,39:2306-2314.
    [57]Ebenezer IS, Parrot t RF. A70104 and food intake in pigs:implication for the CCK satiety hypothesis [J]. Neuroreport,1993,4(5):495-498.
    [58]Billig I, Yates B J, Rinaman L. Plasma hormone levels and central c-Fos expression in ferrets after systemic administration of cholecystokinin [J]. Appetite and obesity,2001,281(4):1243-1255.
    [1]Lauren, D. R., Smith, W. A., Stability of the fusarium mycotoxins nivalenol, deoxynivalenol and zearalenone in ground maize under typical cooking environments [J]. Food Addit Contain,2001,18: 1011-1016.
    [2]Schothorst, R. C., van Egmond, H. P., Report from SCOOP task 3.2.10 "collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states". Subtask:trichothecenes [J]. Toxicol Lett,2004,153:133-143.
    [3]Vesonder, R. F., Ciegler, A., Jensen, A. H., Isolation of the emetic principle from Fusarium-infected corn [J]. Appl Microbiol,1973,26:1008-1010.
    [4]Vesonder, R. F., Hesseltine, C. W., Vomitoxin:Natural Occurrence on Cereal Grains and Significance as a Refusal and Emetic Factor to Swine[J]. Process Biochemistry,1980,16:211-213.
    [5]Pieters, M. N., Freijer, J., Baars, B. J., Fiolet, D. C., et al., Risk assessment of deoxynivalenol in food: concentration limits, exposure and effects [J]. Adv Exp Med Biol,2002,504:235-248.
    [6]Amuzie, C. J., Pestka, J. J., Suppression of insulin-like growth factor acid-labile subunit expression-a novel mechanism for deoxynivalenol-induced growth retardation[J].Toxicol Sci,2010,113:412-421.
    [7]Pestka, J. J., Moorman, M. A., Warner, R. L., Dysregulation of IgA production and IgA nephropathy induced by the trichothecene vomitoxin[J]. Food Chem Toxicol,1989,27:361-368.
    [8]Forsyth, D. M., Yoshizawa, T., Morooka, N., Tuite, J., Emetic and refusal activity of deoxynivalenol to swine[J]. Appl Environ Microbiol,1977,34:547-552.
    [9]Amuzie, C. J., Flannery, B. M., Ulrich, A. M., Pestka, J. J., Effects of deoxynivalenol consumption on body weight and adiposity in the diet-induced obese mouse [J]. J Toxicol Env Heal A,2011,74(10): 234-242.
    [10]Forsell, J. H., Witt, M. F., Tai, J. H., Jensen, R., Pestka, J. J., Effects of 8-week exposure of the B6C3F1 mouse to dietary deoxynivalenol (vomitoxin) and zearalenone [J]. Food Chem Toxicol, 1986,24:213-219.
    [11]Arnold, D. L., McGuire, P. F., Nera, E. A., Karpinski, K. F., et al. The toxicity of orally administered deoxynivalenol (vomitoxin) in rats and mice [J]. Food Chem Toxicol,1986,24:935-941.
    [12]Trenholm, H. L., Hamilton, R. M, Friend, D. W., Thompson, B. K., Hartin, K. E. Feeding trials with vomitoxin (deoxynivalenol)-contaminated wheat:effects on swine, poultry, and dairy cattle [J]. J Am Vet Med Assoc,1984,185:527-531.
    [13]Prelusky, D. B., Effect of intraperitoneal infusion of deoxynivalenol on feed consumption and weight gain in the pig [J]. Nat Toxins 1997,5:121-125.
    [14]Prelusky, D. B., The effect of low-level deoxynivalenol on neurotransmitter levels measured in pig cerebral spinal fluid [J]. J Environ Sci Health B 1993,28,731-761.
    [15]Prelusky, D. B., Trenholm, H. L., The efficacy of various classes of anti-emetics in preventing deoxynivalenol-induced vomiting in swine[J]. Nat Toxins 1993,1,296-302.
    [16]Fioramonti, J., Dupuy, C., Dupuy, J., Bueno, L., The mycotoxin, deoxynivalenol, delays gastric emptying through serotonin-3 receptors in rodents[J]. J Pharmacol Exp Ther 1993,266,1255-1260.
    [17]Girish, C. K., MacDonald, E. J., Scheinin, M, Smith, T. K. Effects of feedborne fusarium mycotoxins on brain regional neurochemistry of turkeys [J]. Poult Sci 2008,87,1295-1302.
    [18]Pestka, J. J. Deoxynivalenol:mechanisms of action, human exposure, and toxicological relevance [J]. Arch Toxicol 2010,84,663-679.
    [19]Pestka, J. J., Zhou, H. R., Effects of tumor necrosis factor type 1 and 2 receptor deficiencies on anorexia, growth and IgA dysregulation in mice exposed to the trichothecene vomitoxin [J]. Food Chem Toxicol 2002,40,1623-1631.
    [20]Pestka, J. J., Zhou, H. R. Interleukin-6-deficient mice refractory to IgA dysregulation but not anorexia induction by vomitoxin (deoxynivalenol) ingestion [J]. Food Chem Toxicol.2000,38, 565-575.
    [21]Cameron, T. P., Hickman, R. L., Kornreich, M. R., Tarone, R. E., History, survival, and growth patterns of B6C3F1 mice and F344 rats in the National Cancer Institute Carcinogenesis Testing Program[J]. Fundam Appl Toxicol.1985,5,526-538.
    [22]Hattori, K. K., Amuzie, C. J., Flannery, B. M., Pestka, J. J.Body Composition and Hormonal Effects Following Exposure to Mycotoxin Deoxynivalenol in the High Fat Diet-Induced Obese Mouse [J]. Mol.Nutr. Food Res.2011,55,1070-1078.
    [23]Ford, D. J., Influence of diet pellet hardness and particle size on food utilization by mice, rats and hamsters [J]. Lab Anim 1977,11,241-246.
    [24]Forsell, J. H., Jensen, R., Tai, J. H., Witt, M., et al. Comparison of acute toxicities of deoxynivalenol (vomitoxin) and 15-acetyldeoxynivalenol in the B6C3F1 mouse[J]. Food Chem Toxicol 1987,25, 155-162.
    [25]Goyarts, T., Danicke, S. Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig [J]. Toxicol Lett 2006,163,171-182.
    [26]Turner, P. C., Rothwell, J. A., White, K. L., Gong, Y., et al.Urinary deoxynivalenol is correlated with cereal intake in individuals from the United kingdom [J]. Environ Health Perspect 2008,116,21-25.
    [27]Schwartz, M. W., Central nervous system regulation of food intake [J]. Obesity (Silver Spring) 2006, 14 Suppl 1,1S-8S.
    [28]Swamy, H. V., Smith, T. K., MacDonald, E. J. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on brain regional neurochemistry of starter pigs and broiler chickens [J]. J Anim Sci 2004,82,2131-2139.
    [29]Ossenkopp, K. P., Hirst, M., Rapley, W. A., Deoxynivalenol (vomitoxin)-induced conditioned taste aversions in rats are mediated by the chemosensitive area postrema [J]. Pharmacol Biochem Behav 1994,47,363-367.
    [30]Pestka, J. J., Islam, Z., Amuzie, C. J., Immunochemical assessment of deoxynivalenol tissue distribution following oral exposure in the mouse[J]. Toxicol Lett 2008,178,83-87.
    [31]Prelusky, D. B., The effect of deoxynivalenol on serotoninergic neurotransmitter levels in pig blood [J]. J Environ Sci Health B 1994,29,1203-1218.
    [32]Prelusky, D. B., Rotter, B. A., Thompson, B. K., Trenholm, H. L., Effect of the appetite stimulant cyproheptadine on deoxynivalenol-induced reductions in feed consumption and weight gain in the mouse [J]. J Environ Sci Health B 1997,32,429-448.
    [33]Amuzie, C. J., Shinozuka, J., Pestka, J. J., Induction of suppressors of cytokine signaling by the trichothecene deoxynivalenol in the mouse [J]. Toxicol Sci 2009,111,277-287.
    [34]Amuzie, C. J., Harkema, J. R., Pestka, J. J., Tissue distribution and proinflammatory cytokine induction by the trichothecene deoxynivalenol in the mouse:comparison of nasal vs oral exposure[J]. Toxicology 2008,248,39-44.
    [35]Azcona-Olivera, J. I., Ouyang, Y., Murtha, J., Chu, F. S., Pestka, J. J. Induction of cytokine mRNAs in mice after oral exposure to the trichothecene vomitoxin (deoxynivalenol):relationship to toxin distribution and protein synthesis inhibition[J]. Toxicol Appl Pharmacol 1995,133,109-120.
    [36]Plata-Salaman, C. R., Oomura, Y., Kai, Y., Tumor necrosis factor and interleukin-1 beta: suppression of food intake by direct action in the central nervous system[J]. Brain Res 1988,448, 106-114.
    [37]Plata-Salaman, C. R., Sonti, G, Borkoski, J. P., Wilson, C. D., French-Mullen, J. M. b., Anorexia induced by chronic central administration of cytokines at estimated pathophysiological concentrations[J]. Physiol Behav 1996,60,867-875.
    [38]Sonti, G., Ilyin, S. E., Plata-Salaman, C. R., Anorexia induced by cytokine interactions at pathophysiological concentrations[J]. Am J Physiol 1996,270, R1394-1402.
    [39]Lawrence, C. B., Rothwell, N. J., Anorexic but not pyrogenic actions of interleukin-1 are modulated by central melanocortin-3/4 receptors in the rat[J]. J Neuroendocrinol 2001,13,490-495.
    [40]Wallenius, K., Wallenius, V., Sunter, D., Dickson, S. L., Jansson, J. O., Intracerebroventricular interleukin-6 treatment decreases body fat in rats[J]. Biochem Biophys Res Commun 2002,293, 560-565.
    [41]Glendinning, J. I., How do predators cope with chemically defended foods[J]. Biol Bull 2007,213, 252-266.
    [42]Wu, S. V., Rozengurt, N., Yang, M., Young, S. H., et al., Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells[J]. Proc Natl Acad Sci 2002,99,2392-2397.
    [43]Ueno, S., Matsuki, N., Saito, H., Suncus murinus:a new experimental model in emesis research[J]. Life Sci 1987,41,513-518.
    [44]Young, L. G., McGirr, L., Valli, V. E., Lumsden, J. H.,Lun, A.Vomitoxin in corn fed to young pigs[J]. J Anim Sci 1983,57,655-664.
    [45]Pestka, J. J., Lin, W. S., Miller, E. R.Emetic activity of the trichothecene 15-acetyldeoxynivalenol in swine [J]. Food Chem Toxicol 1987,25,855-858.
    [46]Andrews, P. L., Horn, C. C., Signals for nausea and emesis:Implications for models of upper gastrointestinal diseases [J]. Auton Neurosci 2006,125,100-115.
    [1]Desjardins, A.E., Manandhar, G., Plattner, R.D., Maragos, C.M., Shrestha, K., McCormick, S.P. Occurrence of Fusarium species and mycotoxins in Nepalese maize and wheat and the effect of traditional processing methods on mycotoxin levels [J]. J.Agric.Food Chem.2000,48,1377-1383.
    [2]Su, S.Y. Production of 8-ketotrichothecenes by Fusarium graminearum on corn and barley [J]. Korea J. Plant Pathol.1998,14,418-424.
    [3]Schwartz, M.W., Woods, S.C., Porte, D., Seeley, R.J., Baskin, D.G. Central nervous system control of food intake [J]. Nature 2000,404,661-671.
    [4]Pestka, J.J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol[J]. World Mycotoxin Journal 2010,3,323-347.
    [5]Miller, J.D., Greenhalgh, R., Wang, Y.Z., Lu, M. Trichothecene chemotypes of three Fusarium species[J]. Mycologia 1991,83,121-130.
    [6]Ward, T.J., Bielawski, J.P., Kistler, H.C., Sullivan, E., O'Donnell, K.Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium[J]. Proc. Natl. Acad. Sci.2002,99,9278-9283.
    [7]Jackson, L.S., Bullerman, L.B. Effect of processing on Fusarium mycotoxins [J]. Adv.Exp.Med.Biol. 1999,459,243-261.
    [8]Amuzie, C.J., Shinozuka, J., Pestka, J.J. Induction of suppressors of cytokine signaling by the trichothecene deoxynivalenol in the mouse[J]. Toxicol. Sci.2009,111,277-287.
    [9]Flannery, B.M., Wu, W., Pestka, J.J. Characterization of deoxynivalenol-induced anorexia using mouse bioassay[J]. Food Chem. Toxicol.2011,49,1863-1869.
    [10]Girardet, C., Bonnet, M.S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Roux, J., Lebrun, B., Mounien, L., Trouslard, J. Central inflammation and sickness-like behavior induced by the food contaminant Deoxynivalenol:A PGE2-independent mechanism[J]. Toxicol. Sci.2011,124,179-191.
    [11]Girardet, C., Bonnet, M.S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Roux, J., Lebrun, B., Wanaverbecq, N., Mounien, L.,. The food-contaminant deoxynivalenol modifies eating by targeting anorexigenic neurocircuitry[J]. PLoS One 2011,6, e26134.
    [12]Pestka, J., Lin, W., Forsell, J. Decreased feed consumption and body-weight gain in the B6C3F1 mouse after dietary exposure to 15-acetyldeoxynivalenol[J].Food Chem.Toxicol.1986,24,1309-1313.
    [13]Takahashi, M., Shibutani, M., Sugita-Konishi, Y., Aihara, M., Inoue, K., Woo, G.H., Fujimoto, H., Hirose, M. A 90-day subchronic toxicity study of nivalenol, a trichothecene mycotoxin, in F344 rats [J]. Food Chem. Toxicol.2008,46,125-135.
    [14]Abbas, H., Mirocha, C., Tuite, J.Natural occurrence of deoxynivalenol,15-acetyldeoxynivalenol and zearalenone in refusal factor corn stored since 1972[J]. Appl. Environ. Microbiol.1986,51,841-843.
    [15]Yoshizawa, T., Shirota, T., Morooka, N.,. Trichothecenes from mold infested cereals in Japan. In: Mycotoxins in Human and Animal Health[M]. Pathotox Publishers Inc, Park Forest South,Ill, pp. 1977,309-321.
    [16]Eriksen, G., Pettersson, H., Lindberg, J. Absorption, metabolism and excretion of 3-acetyl DON in pigs[J]. Arch. Anim. Nutr.2003,57,335-345.
    [17]Forsell, J., Jensen, R., Tai, J.H., Witt, M., Lin, W., Pestka, J. Comparison of acute toxicities of deoxynivalenol (vomitoxin) and 15-acetyldeoxynivalenol in the B6C3F1 mouse[J]. Food Chem. Toxicol.1987,25,155-162.
    [18]Azcona-Olivera, J.I., Ouyang, Y., Murtha, J., Chu, F.S., Pestka, J.J. Induction of cytokine mRNAs in mice after oral exposure to the trichothecene vomitoxin (deoxynivalenol):relationship to toxin distribution and protein synthesis inhibition[J]. Toxicol.Appl.Pharmacol.1995,133,109-120.
    [19]Prelusky, D., Hartin, K., Trenholm, H., Miller, J. Pharmacokinetic fate of 14C-labeled deoxynivalenol in swine[J]. Fundam.Appl.Toxicol.1988,10,276-286.
    [20]Poapolathep, A., Sugita-Konishi, Y., Doi, K., Kumagai, S. The fates of trichothecene mycotoxins, nivalenol and fusarenon-X, in mice[J]. Toxicon 2003,41,1047-1054.
    [21]Pestka, J.J., Amuzie, C.J. Tissue distribution and proinflammatory cytokine gene expression following acute oral exposure to deoxynivalenol:Comparison of weanling and adult mice [J]. Food Chem. Toxicol.2008,46,2826-2831.
    [22]Berthoud, H.R. Multiple neural systems controlling food intake and body weight[J]. Neurosci. Biobehav. Rev.2002,26,393-428.
    [23]Oh, S., Shimizu, H., Satoh, T., Okada, S., Adachi, S., Inoue, K., Eguchi, H., Yamamoto, M., Imaki, T., Hashimoto, K.,. Identification of nesfatin-1 as a satiety molecule in the hypothalamus[J]. Nature 2006,443,709-712.
    [24]Kobayashi Hattori, K., Amuzie, C.J., Flannery, B.M., Pestka, J.J. Body composition and hormonal effects following exposure to mycotoxin deoxynivalenol in the high fat diet induced obese mouse[J]. Mol. Nutr. Food Res.2011,55,1070-1078.
    [25]Vuagnat, B.A.M., Pierroz, D.D., Lalaoui, M., Englaro, P., Pralong, F.P., Blum, W.F., Aubert, M.L. Evidence for a leptin-neuropeptide Y axis for the regulation of growth hormone secretion in the rat[J]. Neuroendocrinology 2000,67,291-300.
    [26]Pestka, J.J. Deoxynivalenol:mechanisms of action, human exposure, and toxicological relevance[J]. Arch.Toxicol.2010,84,663-679.
    [27]Kelley, K.W., Bluthe,R.M., Dantzer, R., Zhou, J.H., Shen, W.H., Johnson, R.W., Broussard, S.R. Cytokine-induced sickness behavior[J]. BrainBehav.Immun.2003,17,112-118.
    [28]Plata-Salaman, C.R. Cytokines and anorexia:a brief overview[J]. Semin. Oncol.1998,25,64-72.
    [29]Plata-Salaman, C.R., Sonti, G., Borkoski, J.P., Wilson, C.D., MH, F.M. Anorexia induced by chronic central administration of cytokines at estimated pathophysiological concentrations[J]. Physiol.Behav.1996,60,867-875.
    [30]Sonti, G, Ilyin, S.E., Plata-Salaman, C.R. Anorexia induced by cytokine interactions at pathophysiological concentrations[J]. Am. J. Physiol.1996,270, R1394-R1402.
    [31]Amuzie, C.J., Harkema, J.R., Pestka, J.J.Tissue distribution and proinflammatory cytokine induction by the trichothecene deoxynivalenol in the mouse:comparison of nasal vs. oral exposure[J]. Toxicology 2008,248,39-44.
    [32]Pestka, J.J., Islam, Z., Amuzie, C.J. Immunochemical assessment of deoxynivalenol tissue distribution following oral exposure in the mouse[J]. Toxicol.Lett.2008,178,83-87.
    [33]Lee, M.G., Li, S., Jarvis, B.B., Pestka, J.J.,. Effects of satratoxins and other macrocyclic trichothecenes on IL-2 production and viability of EL-4 thymoma cells[J]. J. Toxicol. Environ. Health Part A 1999,57,459-474.
    [34]Marin, M.L., Murtha, J., Dong, W., Pestka, J.J. Effects of mycotoxins on cytokine production and proliferation in EL-4 thymoma cells[J]. J. Toxicol. Environ. Health 1996,48,379-396.
    [35]Yang, GH., Jarvis, B.B., Chung, Y.J., Pestka, J.J. Apoptosis induction by the satratoxins and other trichothecene mycotoxins:relationship to ERK, p38 MAPK, and SAPK/JNK activation[J]. Toxicol.Appl.Pharmacol.2000,164,149-160.
    [36]Sugita-Konishi, Y, Pestka, J.J. Differential upregulation of TNF-a, IL-6, and IL-8 production by deoxynivalenol (vomitoxin) and other 8-ketotrichothecenes in a human macrophage model [J]. J. Toxicol. Environ. Health Part A 2001,64,619-636.
    [37]Pestka, J.J., Uzarski, R.L., Islam, Z. Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol:role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes[J]. Toxicology 2005,206,207-219.
    [1]Grove, J. Macrocyclic trichothecenes[J]. Nat Prod Rep,1993,10(5):429-448.
    [2]Pestka, J. J. Deoxynivalenol:toxicity, mechanisms and animal health risks[J]. Anim Feed Sci Tech, 2007,137(3-4):283-298.
    [3]Abbas, H. K., C. J. Mirocha, et al. Natural occurrence of deoxynivalenol,15-acetyl-deoxynivalenol, and zearalenone in refusal factor corn stored since[J]. Appl Environ Microb,1986,51(4):841-843.
    [4]Vesonder, R.F., Ciegler, A., Jensen, A.H.,. Isolation of the emetic principle from Fusarium-infected corn [J]. Appl Microbiol,1973,26:1008-1010.
    [5]Ueno, Y., K. Ishii, et al. Toxicological approaches to metabolites of fuaria vomiting factor from mold corn infected with fusarium-spp[J]. Jpn J Exp Med,1974,44(1):123-127.
    [6]Ueno, Y., I. Ueno, et al. Toxicological approaches to metabolites of fuaria acute toxicity of fusarenon-X [J]. Jpn J Exp Med,1971,41(6):521-523.
    [7]Yoshizawa, T. and N. Morooka.Studies on the toxic substances in the infected cereals.Acute toxicities of new trichothecene mycotoxins:deoxynivalenol and its monoacetate. J Food Hyg Soc Jpn,1974,15: 261-269.
    [8]Yoshizawa, T. and N. Morooka. Trichothecenes from mold-infested cereals in JapanfJ]. Mycotoxins in human anim,1977,11:309-321.
    [9]Hughes, D. M., M. J. Gahl, et al. Overt signs of toxicity to dogs and cats of dietary deoxynivalenol[J]. J Anim Sci,1999,77(3):693-700.
    [10]Stables, R., P. L. R. Andrews, et al. Antemetic properties of the 5-HT3 receptor antagonist GR38032F[J]. Cancer Treat Rev,1987,14(3):333-336.
    [11]Eriksen, G.S., H. Pettersson, et al. Absorption, metabolism and excretion of 3-acetyl DON in pigs[J]. Arch Anim Nutr,2003,57(5):335-345.
    [12]Poapolathep, A., Y. Sugita-Konishi, et al. The fates of trichothecene mycotoxins, nivalenol and fusarenon-X, in mice[J]. Toxicon,2003,41(8):1047-1054.
    [13]European Medicines Agency. Guideline on non-clinical and clinical development of medicinal products for the treatment of nausea and vomiting associted with cancer chemotherapy. CPMP/EWP/4937/03, EMEA (ed).2006, London, UK.
    [14]Pestka, JJ, WS. Lin, et al. Emetic activity of the trichothecene 15-acetyl-deoxynivalenol in swine [J]. Food Chem Toxicol,1987,25(11):855-858.
    [15]Young, J. C., H. L. Trenholm, et al. Detoxification of deoxynivalenol with sodium bisulfite and evaluation of the effects when pure mycotoxin or contaminated corn was treated and given to pigs [J]. J Agr Food Chem,1987,35(2):259-261.
    [16]Prelusky, D. B. The effect of low-level deoxynivalenol on neurotransmitter levels measured in pig cerbral spinal-fluid[J]. J Environ Sci Heal B,1993,28(6):731-761.
    [17]Pestka, JJ. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol [J]. World Mycotoxin Journal,2010,3 (4):323-347.
    [18]Rotter, B. A. Invited Review:Toxicology of deoxynivalenol (Vomitoxin)." J Toxicol Environ Heal A, 1996,48(1):1-34.
    [I]Ueno, Y., K. Ishii, et al. Toxicological approaches to metabolites of fuaria vomiting factor from mold corn infected with fusarium-spp[J]. Jpn J Exp Med,1974,44(1):123-127.
    [2]Ueno, Y., I. Ueno, et al. Toxicological approaches to metabolites of fuaria acute toxicity of fusarenon-X [J]. Jpn J Exp Med,1971,41(6):521-523.
    [3]Yoshizawa, T. and N. Morooka. Studies on the toxic substances in the infected cereals. Acute toxicities of new trichothecene mycotoxins:deoxynivalenol and its monoacetate. J Food Hyg Soc Jpn, 1974,15:261-269.
    [4]Yoshizawa, T. and N. Morooka. Trichothecenes from mold-infested cereals in Japan [J]. Mycotoxins in Human Anim,1977,11:309-321.
    [5]Hughes, D. M., M. J. Gahl, et al. Overt signs of toxicity to dogs and cats of dietary deoxynivalenol[J]. J Anim Sci,1999,77(3):693-700.
    [6]Prelusky, D. B. The effect of low-level deoxynivalenol on neurotransmitter levels measured in pig cerbral spinal-fluid[J]. J Environ Sci Heal B,1993,28(6):731-761.
    [7]Pestka, J. J. Deoxynivalenol:toxicity, mechanisms and animal health risks[J]. Anim Feed Sci Tech, 2007,137(3-4):283-298.
    [8]Prelusky D B. The effect of deoxynivalenol on serotoninergic neurotransmitter levels in pig blood [J]. J Environ Sci Health B,1994,29:1203-1218.
    [9]Harding RK, McDonald TJ. Identification and characterization of the emetic effects of peptide YY[J]. Peptides,1989,10(1):21-24.
    [10]Billig I, Yates B J, Rinaman L. Plasma hormone levels and central c-Fos expression in ferrets after systemic administration of cholecystokinin [J]. Appetite and obesity,2001,281 (4):1243-1255.
    [11]Prelusky, D. B. and H. L. Trenholm. The efficacy of various classes of anti-emetics in preventing deoxynivalenol-induced vomiting in swine [J]. Nat Toxins,1993,1(5):296-302.
    [12]Fioramonti, J., C. Dupuy, et al. The mycotoxin, deoxynivalenol, delays gastric-emptying through serotnin-3 receptors in rodents [J]. J Pharmacol Exp Ther,1993,266(3):1255-1260.
    [13]Batterham R L, Cowley MA, Small CJ, et al. Gut hormone PYY (3-36) physiologically inhibits food intake [J]. Nature,2002,418:650-654.
    [14]H Yang, Y Tache. PYY in brain stem nuclei induces vagal stimulation of gastric acid secretion in rats [J]. Am J Physiol,1995,268(6):943-948.
    [15]Koda S, Date Y, Murakami N,et al. The role of the vagal nerve inperipheral PYY3-36 induced feeding reduction in rats [J]. Endocrinology,2005,146:2369-2375.
    [16]Perry M R. Plasma levels of Peptide YY correlate with cisplatin-induced emesis in dogs [J]. J Pharm Pharmacol,1994,46(5):553-557.
    [17]Kucharczyk J, Harding R K. Regulatory peptides and the onset of nausea and vomiting [J]. Can J Physiol Pharmacol,1990,68(4):289-293.
    [18]I M Lang, J Marvig, S K Sarna. Comparison of gastrointestinal responses to CCK-8 and associated with vomiting [J]. Am J Physiol,1988,254(2):254-263.
    [19]Verbalis, Joseph G, et al. Oxytocin secretion in response to cholecystokinin and food:differentiation of nausea from satiety [J]. Science,1986,232(4):1417-1419.
    [20]K Eberle Wang, K J Simansky. The CCK-A receptor antagonist, devazepide, blocks the anorectic action of CCK but not peripheral serotonin in rats [J]. Pharmacol Biochem Be,1992,43(3):943-947.
    [21]Billig I, Yates B J, Rinaman L. Plasma hormone levels and central c-Fos expression in ferrets after systemic administration of cholecystokinin [J]. Appetite and obesity,2001,281(4):1243-1255.