磁控溅射氧化铝薄膜的低温晶化及铜(钼)/氧化铝纳米多层膜的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝具有优异的力学、光学、热学等性能,是一种具有广泛应用的陶瓷材料。一方面,利用氧化铝的高硬度和光学透过性,可以用作红外窗口的透明保护膜。但目前一般工艺条件下制得的氧化铝薄膜呈现非晶态,无法充分发挥其机械保护作用,而高质量晶态氧化铝薄膜的制备方法,存在着沉积温度高,工艺复杂以及成本昂贵等问题,严重限制了其作为中红外透明保护材料的应用范围,如何在较低的温度下使用比较简单的工艺方法制得晶态氧化铝薄膜是目前研究的一个热点。另一方面,将氧化铝作为一种单层材料制作成金属/氧化铝纳米多层膜时,多层膜可以具有很低的热导率,而且具有较好的力学性能,是一类结构功能一体化的薄膜材料,在热障涂层领域和热电薄膜材料领域有着广泛的应用前景。目前,对金属/氧化铝纳米多层膜界面特性、力学性能优化机理和导热机制的认识还存在分歧和不足,需要进一步工作的开展。
     针对上述问题,本文采用射频反应磁控溅射制备了氧化铝薄膜,并系统地研究了氧化铝薄膜生长工艺条件与其结构、力学和光学等性能之间的内在联系;通过设计在薄膜制备过程间歇利用反溅技术进行辅助,实现了较低温度下制备高质量的晶态氧化铝薄膜。另一方面,本文采用磁控溅射方法制备了铜(钼)/氧化铝纳米多层膜,并研究了多层厚度周期对多层膜结构的力学和热学等性能的影响机制。
     XRD研究表明采用磁控溅射法制备的氧化铝薄膜呈现非晶态,且随着衬底温度升高,氧化铝薄膜未实现晶化,薄膜硬度基本保持不变,维持在13.6GPa。此外,衬底偏压对氧化铝薄膜的晶态影响同样不明显。
     在薄膜制备过程间歇利用反溅技术进行辅助,氧化铝薄膜出现较明显的晶化现象。纳米硬度分析表明,采用反溅模式磁控溅射法制备的氧化铝薄膜,随着沉积温度由室温增加到600oC,氧化铝薄膜的硬度先增大后减小,在450oC时达到最高值15.7GPa。这是由于随着沉积温度提高到600oC时,反溅过程中离子撞击所照成的损伤会占据主导作用,使得氧化铝的晶态形核变得困难,从而导致薄膜硬度下降。与非晶态氧化铝薄膜相比,采用反溅模式制备的晶态氧化铝薄膜折射率得到了提高。
     通过调整沉积时长,制备了一系列厚度周期不同的铜/氧化铝纳米多层膜和钼/氧化铝纳米多层膜。掠入射X射线反射分析表明,多层膜中铜单层、钼单层和氧化铝单层的密度比其相应体材料的密度稍小。铜(钼)/氧化铝界面的界面粗糙度和氧化铝/铜(钼)界面的界面粗糙度均呈现随距衬底距离的增大而增大的趋势,后者大于前者。
     随着铜(钼)/氧化铝多层膜厚度周期的逐渐变小,多层膜的纳米硬度逐渐增大,多层膜厚度周期减小到20~100nm临界周期时,多层膜的纳米硬度开始减小。该临界厚度周期的存在表明纳米多层膜在压头下变形模式可能存在由位错运动主导到由晶粒间滑动主导的转变。
     铜(钼)/氧化铝多层膜的划擦响应行为与氧化铝薄膜的划擦响应行为有显著不同。氧化铝薄膜的摩擦系数曲线光滑连续,而铜(钼)/氧化铝多层膜的摩擦系数以较快的速率增加到一定值后,摩擦系数值发生震荡。在划擦初期压头纵向载荷较小时,铜(钼)/氧化铝多层膜的耐划擦性能优于氧化铝薄膜。表明多层膜中金属膜层的弹性变形和局部塑性变形改变了压头处的接触边界条件,导致摩擦系数较大,而氧化铝薄膜可容纳的应变量较小,对压头处接触边界条件的改变不如金属/氧化铝多层膜显著,因此摩擦系数较小。
     随着层界面密度的增加,铜(钼)/氧化铝多层膜的热导率逐渐减小。当铜/氧化铝多层膜和钼/氧化铝多层膜的层界面密度增大到约0.2nm~(-1)时,相应多层膜的热导率分别减小到约1.6W·m~(-1)K~(-1)和1.8W·m~(-1)·K~(-1)。相同层界面密度的钼/氧化铝多层膜的热导率比铜/氧化铝多层膜略大,这可能是由于钼的电导率比铜的电导率小,钼/氧化铝多层膜在界面处散射掉的电子携带的热量较小。
     铜/氧化铝多层膜在从室温到500°C的温度下比较稳定;在600°C~800°C之间,铜单层和氧化铝单层反应生成CuAlO2晶态相,但是单质铜相依然存在;在900°C~1000°C之间,单质铜相消失,铜/氧化铝多层膜完全破坏。钼/氧化铝多层膜在从室温到600°C的温度下比较稳定;在700°C~800°C之间,钼单层和氧化铝单层反应生成Al_2(MoO_4)_3晶态相;在900°C~1000°C之间,多层膜中生成Al_2(MoO_4)_3和MoSi_2相。从室温到1000°C,钼/氧化铝多层膜中单质钼相始终存在。与铜/氧化铝多层膜相比,钼/氧化铝多层膜的热稳定性较好,这是因为钼的熔点比铜的熔点高,在相同温度下铜的扩散能力更强,化学性质更活泼。
     本文通过设计反溅辅助技术,在较低温度下制备了高质量的晶态氧化铝薄膜,为低温沉积高质量晶态氧化铝薄膜提供了一种新的途径,从而能有效地降低晶态氧化铝薄膜生产成本,并有助于拓展其应用范围。另一方面,获得了具有较优异力学和热学性能的铜(钼)/氧化铝多层周期薄膜,对其在热障涂层和热电薄膜材料方面的应用具有潜在的价值。
Al_2O_3is one of the important ceramics materials, has excellent mechanicaloptical and thermal properties. Al_2O_3is as infrared transparent protective materialdue to its high hardness and transparent. But Al_2O_3films have been synthesizedthrough common methods are always amorphous and can’t realize mechanicalprotection. However, high quality crystalline Al_2O_3films obtain at the highsynthesis temperature and expensive cost, and the application in mid-infraredtransparent protective films is limited. Multiple periodic metal/Al_2O_3thin filmspossess unique properties such as low thermal conductivity and high mechanicalproperties which have great advantage in the applications of thermal barrier coatingand thermoelectric films. Currently insufficient research is relative to the interfacesof multiple periodic metal/Al_2O_3thin films, mechanical mechanisms, and thermalproperty.
     Aiming at the above problems, Al_2O_3films is synthesized by radio frequencyreactive magnetron sputtering, and the relationship between deposition conditionsand the structure, the mechanical and optical properties has been studied.Cu(Mo)/Al_2O_3nano-multilayers have been prepared by using radio frequencyreactive magnetron sputtering, and the relationship between the thickness period andthe structure, mechanical,and thermal properties of Cu(Mo)/Al_2O_3nano-multilayershas been indicated.
     The XRD results reveal that Al_2O_3films obtained at room temperature bymagnetron sputtering is amorphous, and Al_2O_3films don’t crystallize with thedeposition temperature increasing. The hardness of Al_2O_3films is stable to13.6GPaby varying synthesis temperature. The effect of the bias voltage on thecrystallization of Al_2O_3is not notable.
     The resputtering technique has been designed and this technique is used tosynthesize crystalline Al_2O_3films. The nano-hardness of Al_2O_3films prepared byresputtering technique increased from13.6GPa to15.7GPa along with thedeposition temperature increasing from room temperature to450°C. But thenano-hardness of Al_2O_3films obtained at600°C decreased to14.5GPa. In this case,the damage caused by ion bombardment is dominant when the deposited temperature reaches a critical value, and the damage makes the nucleation difficultso the hardness of films decreases. The refractive index of crystal Al_2O_3filmsprepared by resputtering assisted technology increases compared with amorphousAl_2O_3films. Crystal Al_2O_3films have excellent mechanical property and middleinfrared transmittance, and the industrial application of Al_2O_3films realizes throughlow-cost deposited technique.
     Two different multilayer systems of Cu/Al_2O_3and Mo/Al_2O_3were deposited byRF-sputtering system, in which the thickness of each layer can be adjusted bycontrolling deposition time. The size of the grains in the metallic layers can betailored by the thickness of the metallic layer and the influence of the thicknessbecomes weaker for the thicker case, while stronger for the thinner case. It can beconfirmed by analysis of GIXRD that the densities of the Cu, Mo and Al_2O_3areslightly smaller than that of the corresponding bulk states. The roughness of theinterface between metal and Al_2O_3is varied for different deposition sequenceswhich include metal/Al_2O_3and Al_2O_3/metal patterns, in which the Al_2O_3wasdeposited before the metal layer for the former system and the sequence reverses forthe latter case. The roughness of the interfaces for both patterns increases with theincreasing distance from the substrate to the top of the multilayers. And it is notedthat the roughness of Al_2O_3/metal interface is larger than that of the metal/Al_2O_3interface.
     The nano-hardness of the Cu(Mo)/Al_2O_3system decreases with the periodicthickness of the metallic and Al_2O_3layers and then increases with further reductionthe thickness period after reaching a critical value. Especially, the critical periodthicknesses of Cu/Al_2O_3and Mo/Al_2O_3systems both fall in the range of about20~100nm. The emergence of the critical period thickness reveals that the transitionof the deformation mode occurs. The dominant transition is believed to change fromdislocation motion to inter-grains slide in the multilayers under the load ofnano-indenter.
     The scratch-response behavior is quite different between the Cu(Mo)/Al_2O_3multilayers and the Al_2O_3film. The curve of friction coefficient for the Al_2O_3film issmooth and continual while shaked for the metal/Al_2O_3multilayers after a criticalfriction coefficient is reached. In the early stage of the scratch experiment, theperformance of anti-scratch is superior in the Cu(Mo)/Al_2O_3systems compared to the Al_2O_3. It is believed that the boundary conditions between the indenter andsamples is varied by elastic and plastic deformations. The variance of the boundaryconditions induces the increase of the frictional coefficient. In contrast, the frictionalcoefficient is rather smaller response to the variance of the boundary condition dueto the smaller strain that the Al_2O_3can endure.
     The thermal conductivity of the Cu(Mo)/Al_2O_3multilayers is graduallydecreasing with the density of the state of interface above a threshold value. Thethermal conductivities decease to1.6W·m~(-1)K1and1.8W·m~(-1)·K~(-1)1respectivelywhen the density of interface states increase up to about0.2nm-1for both theCu/Al_2O_3and Mo/Al_2O_3systems. The thermal conductivity of the Mo/Al_2O_3systemis slightly larger than that of the Cu/Al_2O_3system possibly due to the smallerelectrical conductivity in metal Mo which can induce smaller dissipation of thermalenergy.
     The Cu/Al_2O_3system is stable from room temperature to500°C, whilecrystalline phase CuAlO2is formed by the reaction between Cu and Al_2O_3in thetemperature range of600°C~800°C along with some remaining Cu phase. TheCu/Al_2O_3multilayers is destroyed above900oC with the complete disappearance ofmetallic Cu. The Mo/Al_2O_3multilayers stably existed up to600°C. In the700°C~800°C range, Mo reacts with Al_2O_3to form crystalline Al_2(MO4)3phase.Among900°C~1000°C, two phases of Al_2(MoO_4)_3and MoSi_2are formed. It is notedthat pure Mo can still exist up to1000°C in Mo/Al_2O_3system. It can be concludedthat the thermal stability of the Mo/Al_2O_3system is better than that of Cu/Al_2O_3system which may partially due to the higher melting point of Mo compared to Cu.In that case, the diffusion is stronger for Cu than that for Mo at same temperature.
     High quality crystalline Al_2O_3films have been obtained at relative lowtemperature by using resputtering assisted technology. This method is a new way toget high quality crystalline Al_2O_3films at low temperature and will have potential inapplications and the cost will decrease. Cu(Mo)/Al_2O_3nano-multilayers that possessexcellent mechnical and thermal properties have potential in the application ofthermal barrier coating and thermoelectric films.
引文
1S. J. Pearce, M. D. B. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, J. S.Wilkinson. Structural Characteristics and Optical Properties of PlasmaAssisted Reactive Magnetron Sputtered Dielectric Thin Films for PlanarWaveguiding Applications. Surface&Coatings Technology.2012,206(23):4930~4939
    2W. Kim, R. Wang, A. Majumdar. Nanostructuring Expands Thermal Limits.Nano Today.2007,2(1):40~47
    3B. J. Shen, Z. G. Zeng, C. Lin, Z. Y. Hu. Thermal Conductivity Measurementof Amorphous Si/SiGe Multilayer Films by3Omega Method. InternationalJournal of Thermal Sciences.2013,66:19~23
    4J. P. Feser, E. M. Chan, A. Majumdar, R. A. Segalman, J. J. Urban. UltralowThermal Conductivity in Polycrystalline CdSe Thin Films with ControlledGrain Size. Nano Letters.2013,13(5):2122
    5R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, S. M. George.Ultra-Low Thermal Conductivity in W/Al2O3Nanolaminates. Science.2004,303(5660):989~990
    6C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski,P. Zschack. Ultralow Thermal Conductivity in Disordered, Layered WSe2Crystals. Science.2007,315(5810):351~353
    7W. H. Gitzen. Alumina as a Ceramic Material. Wiley,1970:31~64
    8I. Levin, D. Brandon. Metastable Alumina Polymorphs: Crystal Structures andTransition Sequences. Journal of the American Ceramic Society.1998,81(8):1995~2012
    9W. C. Oliver, G. M. Pharr. An Improved Technique for Determining Hardnessand Elastic-Modulus Using Load and Displacement Sensing IndentationExperiments. Journal of Materials Research.1992,7(6):1564~1583
    10K. Wefers, C. Misra. Oxides and Hydroxides of Aluminum. Alcoa ResearchLaboratories,1987:35~37
    11R. H. French. Electronic Band Structure of Al2O3, with Comparison to Alonand Ain. Journal of the American Ceramic Society.1990,73(3):477~489
    12S. Ruppi. Deposition, Microstructure and Properties of Texture-ControlledCVD Alpha-Al2O3Coatings. International Journal of Refractory Metals andHard Materials.2005,23(4):306~316
    13D. Hochauer, C. Mitterer, M. Penoy, S. Puchner, C. Michotte, H. P. Martinz, H.Hutter, M. Kathrein. Carbon Doped Alpha-Al2O3Coatings Grown byChemical Vapor Deposition. Surface&Coatings Technology.2012,206(23):4771~4777
    14M. Fallqvist, S. Ruppi, M. Olsson, M. Ottosson, T. M. Grehk. Nucleation andGrowth of CVD Alpha-Al2O3on TixOyTemplate. Surface&CoatingsTechnology.2012,207:254~261
    15D. Hochauer, C. Mitterer, M. Penoy, C. Michotte, H. P. Martinz, M. Kathrein.Thermal Stability of Doped CVD Kappa-Al2O3Coatings. Surface&CoatingsTechnology.2010,204(21~22):3713~3722
    16C. Barbatti, J. Garcia, R. Pitonak, H. Pinto, A. Kostka, A. Di Prinzio, M. H.Staia, A. R. Pyzalla. Influence of Micro-Blasting on the Microstructure andResidual Stresses of CVD Kappa-Al2O3Coatings. Surface&CoatingsTechnology.2009,203(24):3708~3717
    17A. Osada, E. Nakamura, H. Homma, T. Hayahi, T. Oshika. Wear Mechanismof Thermally Transformed CVD Al2O3Layer. International Journal ofRefractory Metals and Hard Materials.2006,24(5):387~391
    18A. Riedl, N. Schalk, C. Czettl, B. Sartory, C. Mitterer. Tribological Propertiesof Al2O3Hard Coatings Modified by Mechanical Blasting and PolishingPost-Treatment. Wear.2012,289:9~16
    19Y. You, A. Ito, R. Tu, T. Goto. Low-Temperature Deposition of Alpha-Al2O3Films by Laser Chemical Vapor Deposition Using a Diode Laser. AppliedSurface Science.2010,256(12):3906~3911
    20S. Canovic, B. Ljungberg, M. Halvarsson. CVD TiC/Alumina MultilayerCoatings Grown on Sapphire Single Crystals. Micron.2011,42(8):808~818
    21M. N. Popov, J. Spitaler, M. Muehlbacher, C. Walter, J. Keckes, C. Mitterer, C.Draxl. TiO2(100)/Al2O3(0001) Interface: A First-Principles Study Supportedby Experiment. Physical Review B.2012,86(20):205309
    22A. Blomqvist, C. Arhammar, H. Pedersen, F. Silvearv, S. Norgren, R. Ahuja.Understanding the Catalytic Effects of H2S on CVD-Growth ofAlpha-Alumina: Thermodynamic Gas-Phase Simulations and DensityFunctional Theory. Surface&Coatings Technology.2011,206(7):1771~1779
    23G. Pozina, D. H. Trinh, H. Hogberg, M. Collin, I. Reineck, L. Hultman. PhaseIdentification in Gamma-and Kappa-Alumina Coatings byCathodoluminescence. Scripta Materialia.2009,61(4):379~382
    24K. Jiang, K. Sarakinos, S. Konstantinidis, J. M. Schneider. Low TemperatureSynthesis of Alpha-Al2O3Films by High-Power Plasma-Assisted ChemicalVapor Deposition. Journal of Physics D-Applied Physics.2010,43(32):325202
    25K. Jiang, S. Muenstermann, H. J. Guenther, J. M. Schneider. Up-Scaling of aLow Temperature Pacvd Process for the Deposition ofAlpha/Gamma-Nanocrystalline Alumina Coated Tools for Thixocasting of1.2208Steel. Steel Research International.2010,81(7):597~602
    26O. Kyrylov, D. Kurapov, J. M. Schneider. Effect of Ion Irradiation DuringDeposition on the Structure of Alumina Thin Films Grown by Plasma AssistedChemical Vapour Deposition. Applied Physics A.2005,80(8):1657~1660
    27R. Brill, F. Koch, J. Mazurelle, D. Levchuk, M. Balden, Y. Yamada-Takamura,H. Maier, H. Bolt. Crystal Structure Characterisation of Filtered ArcDeposited Alumina Coatings: Temperature and Bias Voltage. Surface andCoatings Technology.2003,174~175:606~610
    28Y. Y. Takamura, F. Koch, H. Maier, H. Bolt. Characterization of Αlpha-PhaseAluminum Oxide Films Deposited by Filtered Vacuum Arc. Surface andCoatings Technology.2001,142~144:260~264
    29J. Rosén, S. Mráz, U. Kreissig, D. Music, J. Schneider. Effect of Ion Energyon Structure and Composition of Cathodic Arc Deposited Alumina Thin Films.Plasma Chemistry and Plasma Processing.2005,25(4):303~317
    30A. Carrado, M. A. Taha, N. A. E. Mahallawy. Nanocrystalline Gamma-Al2O3Thin Film Deposited by Magnetron Sputtering (MS) at Low Temperature.Journal of Coatings Technology and Research.2010,7(4):515~519
    31J. Musil, J. Blazek, P. Zeman, S. Proksova, M. Sasek, R. Cerstvy. ThermalStability of Alumina Thin Films Containing Gamma-Al2O3Phase Prepared byReactive Magnetron Sputtering. Applied Surface Science.2010,257(3):1058~1062
    32N. M. Figueiredo, C. Louro, R. Escobar Galindo, A. C. Font, A. Cavaleiro.Structural and Mechanical Properties of Au Alloyed AlO Sputter DepositedCoatings. Surface&Coatings Technology.2012,206(11~12):2740~2745
    33P. Eklund, M. Sridharan, M. Sillassen, J. Bottiger. Alpha-Cr2O3Template-Texture Effect on Alpha-Al2O3Thin-Film Growth. Thin Solid Films.2008,516(21):7447~7450
    34M. strand, T. I. Selinder, F. Fietzke, H. Klostermann. PVD-Al2O3-CoatedCemented Carbide Cutting Tools. Surface and Coatings Technology.2004,188~189:186~192
    35R. Cremer, M. Witthaut, D. Neuschütz, G. Erkens, T. Leyendecker, M.Feldhege. Comparative Characterization of Alumina Coatings Deposited byRf, Dc and Pulsed Reactive Magnetron Sputtering. Surface and CoatingsTechnology.1999,120~121:213~218
    36J. M. Schneider, W. D. Sproul, A. A. Voevodin, A. Matthews. CrystallineAlumina Deposited at Low Temperatures by Ionized Magnetron Sputtering.Journal of Vacuum Science&Technology A-Vacuum Surfaces and Films.1997,15(3):1084~1088
    37A. Khanna, D. G. Bhat. Nanocrystalline Gamma Alumina Coatings byInverted Cylindrical Magnetron Sputtering. Surface and Coatings Technology.2006,201(1~2):168~173
    38O. Zywitzki, G. Hoetzsch. Influence of Coating Parameters on the Structureand Properties of Al2O3Layers Reactively Deposited by Means of PulsedMagnetron Sputtering. Surface and Coatings Technology.1996,86~87, Part2:640~647
    39O. Zywitzki, G. Hoetzsch, F. Fietzke, K. Goedicke. Effect of the SubstrateTemperature on the Structure and Properties of Al2O3Layers ReactivelyDeposited by Pulsed Magnetron Sputtering. Surface and Coatings Technology.1996,82(1~2):169~175
    40O. Zywitzki, G. Hoetzsch. Correlation between Structure and Properties ofReactively Deposited Al2O3Coatings by Pulsed Magnetron Sputtering.Surface and Coatings Technology.1997,94~95:303~308
    41Q. Li, Y. H. Yu, C. S. Bhatia, L. D. Marks, S. C. Lee, Y. W. Chung.Low-Temperature Magnetron Sputter-Deposition, Hardness, and ElectricalResistivity of Amorphous and Crystalline Alumina Thin Films. Journal ofVacuum Science&Technology A: Vacuum, Surfaces, and Films.2000,18(5):2333~2338
    42W. Engelhart, W. Dreher, O. Eibl, V. Schier. Deposition of Alumina Thin Filmby Dual Magnetron Sputtering: Is It Gamma-Al2O3? Acta Materialia.2011,59(20):7757~7767
    43E. Cattaruzza, M. Back, G. Battaglin, P. Riello, E. Trave. Er-Doped AluminaCrystalline Films Deposited by Radiofrequency Magnetron Co-Sputtering.Optical Materials.2011,33(7):1135-1138
    44H. Fujiyama, T. Sumomogi, M. Nakamura. Effect of O2Gas Partial Pressureon Mechanical Properties of Al2O3Films Deposited by Inductively CoupledPlasma-Assisted Radio Frequency Magnetron Sputtering. Journal of VacuumScience&Technology A.2012,30(5):051511
    45A. N. Cloud, S. Kumar, M. Kavdia, H. H. Abu-Safe, M. H. Gordon. ProteinAdsorption on Low Temperature Alpha Alumina Films for SurgicalInstruments. Surface&Coatings Technology.2008,203(5~7):913~917
    46A. N. Cloud, S. Canovic, H. H. A. Safe, M. H. Gordon, M. Halvarsson. TemInvestigation of Alpha Alumina Films Deposited at Low Temperature. Surface&Coatings Technology.2008,203(5~7):808~811
    47P. Jin, G. Xu, M. Tazawa, K. Yoshimura, D. Music, J. Alami, U. Helmersson.Low Temperature Deposition of Alpha-Al2O3Thin Films by Sputtering Usinga Cr2O3Template. Journal of Vacuum Science Technology.2002,20:2134~2136
    48J. M. Andersson, Z. Czigany, P. Jin, U. Helmersson. Microstructure ofAlpha-Alumina Thin Films Deposited at Low Temperatures on ChromiaTemplate Layers. Journal of Vacuum Science&Technology A: Vacuum,Surfaces, and Films.2004,22(1):117~121
    49P. Eklund, N. J. Mikkelsen, M. Sillassen, E. J. Bienk, J. Bottiger. ChromiumOxide-Based Multilayer Coatings Deposited by Reactive MagnetronSputtering in an Industrial Setup. Surface&Coatings Technology.2008,203(1~2):156~159
    50P. Eklund, M. Sridharan, G. Singh, J. Bottiger. Thermal Stability and PhaseTransformations of Gamma-/Amorphous-Al2O3Thin Films. Plasma Processesand Polymers.2009,6:S907~S911
    51K. Pedersen, J. Bottiger, M. Sridharan, M. Sillassen, P. Eklund. Texture andMicrostructure of Cr2O3and (Cr,Al)2O3Thin Films Deposited by ReactiveInductively Coupled Plasma Magnetron Sputtering. Thin Solid Films.2010,518(15):4294~4298
    52T. Kohara, H. Tamagaki, Y. Ikari, H. Fujii. Deposition of Αlpha-Al2O3HardCoatings by Reactive Magnetron Sputtering. Surface and CoatingsTechnology.2004,185(2~3):166~171
    53肖兴成,江伟辉,宋力昕,胡行方.超硬膜的研究进展.无机材料学报.1999,14(5):705~710
    54R. C. Cammarata. Mechanical Properties of Nanocomposite Thin Films. ThinSolid Films.1994,240(1~2):82~87
    55J. H. Zhu, H. Z. Liu, L. Liu, H. J. Zhao, B. Shen, W. B. Hu. Preparation andCharacterisation of Electroformed Cu/Nano Al2O3Composite. MaterialsScience and Technology.2007,23(6):665~670
    56Y. Liu, D. Bufford, H. Wang, C. Sun, X. Zhang. Mechanical Properties ofHighly Textured Cu/Ni Multilayers. Acta Materialia.2011,59(5):1924~1933
    57J. Y. Zhang, Y. Liu, J. Chen, Y. Chen, G. Liu, X. Zhang, J. Sun. MechanicalProperties of Crystalline Cu/Zr and Crystal-Amorphous Cu/Cu-Zr Multilayers.Materials Science and Engineering A-Structural Materials PropertiesMicrostructure and Processing.2012,552:392~398
    58J. Y. Zhang, P. Zhang, X. Zhang, R. H. Wang, G. Liu, G. J. Zhang, J. Sun.Mechanical Properties of FCC/FCC Cu/Nb Nanostructured Multilayers.Materials Science and Engineering A-Structural Materials PropertiesMicrostructure and Processing.2012,545:118~122
    59Y. Chen, Y. Liu, C. Sun, K. Y. Yu, M. Song, H. Wang, X. Zhang.Microstructure and Strengthening Mechanisms in Cu/Fe Multilayers. ActaMaterialia.2012,60(18):6312~6321
    60M. Imran, F. Hussain, M. Rashid, S. A. Ahmad. Molecular Dynamics Study ofthe Mechanical Characteristics of Ni/Cu Bilayer Using Nanoindentation.Chinese Physics B.2012,21(12):126802
    61D. Bufford, Z. Bi, Q. X. Jia, H. Wang, X. Zhang. Nanotwins and StackingFaults in High-Strength Epitaxial Ag/Al Multilayer Films. Applied PhysicsLetters.2012,101(22):223112
    62J. Y. Zhang, J. J. Niu, X. Zhang, P. Zhang, G. Liu, G. J. Zhang, J. Sun.Tailoring Nanostructured Cu/Cr Multilayer Films with Enhanced Hardnessand Tunable Modulus. Materials Science and Engineering A-StructuralMaterials Properties Microstructure and Processing.2012,543:139~144
    63J. W. Yan, G. P. Zhang, X. F. Zhu, H. S. Liu, C. Yan. Microstructures andStrengthening Mechanisms of Cu/Ni/W Nanolayered Composites.Philosophical Magazine.2013,93(5):434~448
    64B. Kucharska, E. Kulej, G. Pyka, J. Kanak, T. Stobiecki. Research into theRelationship between the Surface Topography, Texture and MechanicalProperties of PVD-Cu/Ni Multilayers. Materials Science-Poland.2013,31(1):101-107
    65X. Chu, S. A. Barnett. Model of Superlattice Yield Stress and HardnessEnhancements. Journal of Applied Physics.1995,77(9):4403~4411
    66李宁,宋绪丁.超硬多层薄膜的研究现状及展望.材料保护.2005,27(7):31-35
    67宋绪丁,李宁.超硬多层薄膜的研究现状及展望.表面技术.2005,34(3):5~8
    68S. K. Kim, L. Vinh Van. Cathodic Arc Plasma Deposition ofNano-Multilayered ZrN/AlSiN Thin Films. Surface&Coatings Technology.2011,206(6):1507~1510
    69K. Singh, A. C. Bidaye, A. K. Suri. Magnetron Sputtered NbN Films withElectroplated Cr Interlayer. Vacuum.2011,86(3):267~274
    70D. Yin, X. Peng, Y. Qin, Z. Wang. Adhesion, Atomic Structure, and BondingVariation at TiN/VN Interface by Chemical Segregation. Surface and InterfaceAnalysis.2012,44(9):1261~1270
    71D. Yin, X. Peng, Y. Qin, Z. Wang. Impact of Residual Stress on the Adhesionand Tensile Fracture of TiN/CrN Multi-Layered Coatings from First Principles.Physica E-Low-Dimensional Systems&Nanostructures.2012,44(9):1838~1845
    72Y. Shi, F. Pan, M. Bao, Z. Yang, L. Wang. Effect of N2Flow Rate on Structureand Property of ZrNbAlNxMultilayer Films Deposited by MagnetronSputtering. Journal of Alloys and Compounds.2013,559:196~202
    73P. Holubar, M. Jilek, M. Sima. Present and Possible Future Applications ofSuperhard Nanocomposite Coatings. Surface and Coatings Technology.2000,133~134:145~151
    74J. C. S. Lopez, D. M. Martinez, C. L. Cartes, A. Fernandez. TribologicalBehaviour of Titanium Carbide/Amorphous Carbon Nanocomposite Coatings:From Macro to the Micro-Scale. Surface&Coatings Technology.2008,202(16):4011~4018
    75A. D. Pogrebnjak, A. P. Shpak, N. A. Azarenkov, V. M. Beresnev. Structuresand Properties of Hard and Superhard Nanocomposite Coatings.Physics-Uspekhi.2009,52(1):29~54
    76S. Veprek, R. F. Zhang, M. G. J. Veprek-Heijman, S. H. Sheng, A. S. Argon.Superhard Nanocomposites: Origin of Hardness Enhancement, Properties andApplications. Surface&Coatings Technology.2010,204(12~13):1898~1906
    77M. D. Abad, J. C. S. Lopez, M. Brizuela, A. Garcia-Luis, D. V. Shtansky.Influence of Carbon Chemical Bonding on the Tribological Behavior ofSputtered Nanocomposite TiBC/a-C Coatings. Thin Solid Films.2010,518(19):5546~5552
    78T. Moskalewicz, B. Wendler, S. Zimowski, B. Dubiel, A.Czyrska-Filemonowicz. Microstructure, Micro-Mechanical and TribologicalProperties of the NC-WC/a-C Nanocomposite Coatings Magnetron Sputteredon Non-Hardened and Oxygen Hardened Ti-6Al-4V Alloy. Surface&Coatings Technology.2010,205(7):2668~2677
    79K. P. Shaha, Y. T. Pei, D. Martinez-Martinez, J. T. M. De Hosson. Influence ofSurface Roughness on the Transfer Film Formation and Frictional Behavior ofTiC/a-C Nanocomposite Coatings. Tribology Letters.2011,41(1):97~101
    80J. M. Chappe, M. C. M. de Lucas, L. Cunha, C. Moura, J. F. Pierson, L.Imhoff, O. Heintz, V. Potin, S. Bourgeois, F. Vaz. Structure and ChemicalBonds in Reactively Sputtered Black Ti-C-N-O Thin Films. Thin Solid Films.2011,520(1):144~151
    81N. Kumar, P. K. Ajikumar, S. Dash, M. Kamruddin, A. K. Tyagi, B. Raj.Ultra-Low Friction of TiC/a-C Composite Coatings. Tribology International.2011,44(10):1251~1256
    82A. A. El Mel, B. Angleraud, E. Gautron, A. Granier, P. Y. Tessier. XPS Studyof the Surface Composition Modification of NC-TiC/C Nanocomposite Filmsunder in Situ Argon Ion Bombardment. Thin Solid Films.2011,519(12):3982~3985
    83A. Czyzniewski. The Effect of Air Humidity on Tribological Behaviours ofW-C:H Coatings with Different Tungsten Contents Sliding against BearingSteel. Wear.2012,296(1~2):547~557
    84P. K. Ajikumar, M. Vijayakumar, M. Kamruddin, S. Kalavathi, N. Kumar, T. R.Ravindran, A. K. Tyagi. Effect of Reactive Gas Composition on theMicrostructure, Growth Mechanism and Friction Coefficient of TiCOverlayers. International Journal of Refractory Metals&Hard Materials.2012,31:62~70
    85P. Soucek, T. Schmidtova, L. Zabransky, V. Bursikova, P. Vasina, O. Caha, M.Jilek, A. El Mel, P. Y. Tessier, J. Schaefer, J. Bursik, V. Perina, R. Miksova.Evaluation of Composition, Mechanical Properties and Structure ofNC-TiC/a-C:H Coatings Prepared by Balanced Magnetron Sputtering. Surface&Coatings Technology.2012,211:111~116
    86M. Samuelsson, K. Sarakinos, H. Hogberg, E. Lewin, U. Jansson, B.Walivaara, H. Ljungcrantz, U. Helmersson. Growth of TiC NanocompositeFilms by Reactive High Power Impulse Magnetron Sputtering under IndustrialConditions. Surface&Coatings Technology.2012,206(8~9):2396~2402
    87L. Wang, G. Zhang, Y. Wang, Y. Wang, X. Sun, Q. Xue. TiC/a-C:HNanocomposite Coatings as Substitute for MoS2-Based Solid Lubrication inHelium Atmosphere. Journal of Non-Crystalline Solids.2012,358(1):65~71
    88Z. A. Umar, R. S. Rawat, K. S. Tan, A. K. Kumar, R. Ahmad, T. Hussain, C.Kloc, Z. Chen, L. Shen, Z. Zhang. Hard TiCx/SiC/a-C:H Nanocomposite ThinFilms Using Pulsed High Energy Density Plasma Focus Device. NuclearInstruments&Methods in Physics Research Section B-Beam Interactionswith Materials and Atoms.2013,301:53~61
    89Y. Wang, J. Li, A. V. Hamza, T. W. Barbee. Ductile Crystalline-MorphousNanolaminates. Proceedings of the National Academy of Sciences.2007,104(27):11155~11160
    90O. W. K ding, M. R sler, R. Zachai, H. J. Fü er, E. Matthias. Lateral ThermalDiffusivity of Epitaxial Diamond Films. Diamond and Related Materials.1994,3(9):1178~1182
    91J. E. Graebner, S. Jin, G. W. Kammlott, Y. H. Wong, J. A. Herb, C. F.Gardinier. Thermal Conductivity and the Microstructure of State-of-the-ArtChemical-Vapor-Deposited (CVD) Diamond. Diamond and Related Materials.1993,2(5~7):1059~1063
    92H. Verhoeven, A. Floter, H. Reiss, R. Zachai, D. Wittorf, W. Jager. Influenceof the Microstructure on the Thermal Properties of Thin PolycrystallineDiamond Films. Applied Physics Letters.1997,71(10):1329~1331
    93D. G. Cahill, K. Goodson, A. Majumdar. Thermometry and Thermal Transportin Micro/Nanoscale Solid-State Devices and Structures. Journal of HeatTransfer.2002,124(2):223~241
    94M. L. Huberman, A. W. Overhauser. Electronic Kapitza Conductance at aDiamond-Pb Interface. Physical Review B.1994,50(5):2865~2873
    95A. V. Sergeev. Electronic Kapitza Conductance Due to InelasticElectron-Boundary Scattering. Physical Review B.1998,58(16):R10199~R10202
    96I. M. Khalatnikov. Heat Exchange between a Solid Body and Helium Ii.Soviet Physics-Journal of Experimental and Theoretical Physics.1952,22:687~701
    97E. T. Swartz, R. O. Pohl. Thermal Boundary Resistance. Reviews of ModernPhysics.1989,61(3):605~668
    98A. Majumdar. Microscale Heat Conduction in Dielectric Thin Films. Journalof Heat Transfer.1993,115(1):7~16
    99D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridgeuniversity press,2004:67~69
    100P. B. Allen, J. L. Feldman. Thermal Conductivity of Disordered HarmonicSolids. Physical Review B.1993,48(17):12581~12588
    101P. K. Schelling, S. R. Phillpot, P. Keblinski. Comparison of Atomic-LevelSimulation Methods for Computing Thermal Conductivity. Physical Review B.2002,65(14):144306
    102W. Liu, M. Asheghi. Thermal Conductivity Measurements of Ultra-ThinSingle Crystal Silicon Layers. Journal of Heat Transfer.2006,128(1):75~83
    103A. D. McConnell, S. Uma, K. E. Goodson. Thermal Conductivity of DopedPolysilicon Layers. Journal of Microelectromechanical Systems.2001,10(3):360~369
    104M. Asheghi, K. Kurabayashi, R. Kasnavi, K. E. Goodson. ThermalConduction in Doped Single-Crystal Silicon Films. Journal of AppliedPhysics.2002,91(8):5079~5088
    105S. M. Lee, D. G. Cahill. Heat Transport in Thin Dielectric Films. Journal ofApplied Physics.1997,81(6):2590~2595
    106S. M. Lee, G. C. David. Influence of Interface Conductance on the ApparentThermal Conductivity of Thin Films. Microscale Thermophysical Engineering.1997,1(1):47~52
    107M. V. Simkin, G. D. Mahan. Minimum Thermal Conductivity of Superlattices.Physical Review Letters.2000,84(5):927~930
    108B. Y. G. Chen. Lattice Dynamics Study of Anisotropic Heat Conduction inSuperlattices. Microscale Thermophysical Engineering.2001,5(2):107~116
    109S. Y. Ren, J. D. Dow. Thermal Conductivity of Superlattices. Physical ReviewB.1982,25(6):3750~3755
    110I. K. Senchenkov. Thermomechanical Model of Growing Cylindrical BodiesMade of Physically Nonlinear Materials. International Applied Mechanics.2005,41(9):1059~1065
    111G. A. Antonelli, B. Perrin, B. C. Daly, D. G. Cahill. Characterization ofMechanical and Thermal Properties Using Ultrafast Optical Metrology. MRSBulletin.2006,31(8):607~613
    112S. Biswas, S. Ram. Synthesis of Shape-Controlled Ferromagnetic CrO2Nanoparticles by Reaction in Micelles of Cr6+-PVA Polymer Chelates.Materials Chemistry And Physics.2006,100(1):6~9
    113F. H. Fabreguette, R. A. Wind, S. M. George. Ultrahigh X-Ray Reflectivityfrom W/Al2O3Multilayers Fabricated Using Atomic Layer Deposition.Applied Physics Letters.2006,88(1):013116
    114G. S. Fox-Rabinovich, K. Yamamoto, S. C. Veldhuis, A. I. Kovalev, L. S.Shuster, L. Ning. Self-Adaptive Wear Behavior of Nano-MultilayeredTiAlCrN/WN Coatings under Severe Machining Conditions. Surface&Coatings Technology.2006,201(3~4):1852~1860
    115Y. S. Ju, M. T. Hung, T. Usui. Nanoscale Heat Conduction acrossMetal-Dielectric Interfaces. Journal of Heat Transfer-Transactions of theAsme.2006,128(9):919~925
    116B. Krenzer, A. Janzen, P. Zhou, D. V. Linde, M. H. Hoegen. ThermalBoundary Conductance in Heterostructures Studied by Ultrafast ElectronDiffraction. New Journal of Physics.2006,8(190):1~8
    117L. Wang, B. W. Li. Reduction of Thermal Conductivity of AnharmonicLattices. Physical Review B.2006,74(13):134204
    118J. Bodzenta. Thermal Properties of Thin Films and Problems with TheirDetermination. Annales De Chimie-Science Des Materiaux.2007,32(4):401~420
    119L. Braginsky, V. Shklover, G. Witz, H. P. Bossmann. Thermal Conductivity ofPorous Structures. Physical Review B.2007,75(9):094301
    120F. H. Fabreguette, S. M. George. X-Ray Mirrors on Flexible PolymerSubstrates Fabricated by Atomic Layer Deposition. Thin Solid Films.2007,515(18):7177~7180
    121X. J. Hu, R. Prasher, K. Lofgreen. Ultralow Thermal Conductivity ofNanoparticle Packed Bed. Applied Physics Letters.2007,91(20):203113
    122M. Knez, K. Niesch, L. Niinisto. Synthesis and Surface Engineering ofComplex Nanostructures by Atomic Layer Deposition. Advanced Materials.2007,19(21):3425~3438
    123J. J. Urban, D. V. Talapin, E. V. Shevchenko, C. R. Kagan, C. B. Murray.Synergismin Binary Nanocrystal Superlattices Leads to Enhanced P-TypeConductivity in Self-Assembled PbTe/Ag2Te Thin Films. Nature Materials.2007,6(2):115~121
    124A. Hanisch, B. Krenzer, T. Pelka, S. Mollenbeck, M. H. Hoegen. ThermalResponse of Epitaxial Thin Bi Films on Si(001) Upon Femtosecond LaserExcitation Studied by Ultrafast Electron Diffraction. Physical Review B.2008,77(12):125410
    125王照亮.微纳米尺度材料热物性表征与热输运机理研究.中国科学院研究生院博士论文.2007:2~12
    126W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott. Flash Method ofDetermining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity.Journal of Applied Physics.1961,32(9):1679~1684
    127唐祯安,黄正兴,顾毓沁,朱德忠. MEMS中薄膜热物性测试方法研究.仪表技术与传感器.2003,1841(2):6~11
    128张建生,杨君友,朱文,肖承京,张辉,彭江英.薄膜热导率测试方法研究进展.材料导报.2010,24(4):103~107
    129黄正兴.薄膜热导率的测试与分子动力学模拟研究.大连理工大学博士论文.2006:20~21
    130D. G. Cahill, R. O. Pohl. Thermal Conductivity of Amorphous Solids abovethe Plateau. Physical Review B.1987,35(8):4067~4073
    131D. G. Cahill. Thermal Conductivity Measurement from30k to750k:The3ωMethod. Review of Scientific Instruments.1990,61(2):802~808
    132D. G. Cahill, R. O. Pohl. Thermal Properties of a Tetrahedrally BondedAmorphous Solid: CdGeAs2. Physical Review B.1988,37(15):8773~8780
    133王伟伟,张敏,李凌智,柳清菊.薄膜导热系数的测量方法及技术.功能材料.2010,5(41):870~873
    134丰平,王太宏.3ω方法及其在纳米材料器件表征中的应用.物理学报.2003,52(9):2249~2253
    135J. Huang, Y. Zhang, T. S. Pan, B. Zeng, G. H. Hu, Y. Lin. Enhancing theThermal Conductivity of Polymer-Assisted Deposited Al2O3Film by NitrogenDoping. Chinese Physics B.2012,21(12):126501
    136T. Jeong, M. T. Moneck, J. G. Zhu. Giant Magneto-Thermal Conductivity inMagnetic Multilayers. IEEE Transactions on Magnetics.2012,48(11):3031~3034
    137J. Kimling, K. Nielsch, K. Rott, G. Reiss. Field-Dependent ThermalConductivity and Lorenz Number in Co/Cu Multilayers. Physical Review B.2013,87(13):134406
    138A. Sikora, H. Ftouni, J. Richard, C. Hebert, D. Eon, F. Omnes, O. Bourgeois.Highly Sensitive Thermal Conductivity Measurements of SuspendedMembranes (SiN and Diamond) Using a3Omega-Volklein Method. Reviewof Scientific Instruments.2013,84(2):029901
    139W. Xu, J. Li, G. Zhang, X. Chen, R. Galos, H. Hadim, M. Lu, Y. Shi. ALow-Cost MEMS Tester for Measuring Single Nanostructure's ThermalConductivity. Sensors and Actuators A-Physical.2013,191:89~98
    140B. Shen, Z. Zeng, C. Lin, Z. Hu. Thermal Conductivity Measurement ofAmorphous Si/SiGe Multilayer Films by3Omega Method. InternationalJournal of Thermal Sciences.2013,66:19~23
    141N. Vogel-Schaeuble, T. Jaeger, Y. E. Romanyuk, S. Populoh, C. Mix, G. Jakob,A. Weidenkaff. Thermal Conductivity of Thermoelectric Al-Substituted ZnOThin Films. Physica Status Solidi-Rapid Research Letters.2013,7(5):364~367
    142A. Holtzman, E. Shapira, Y. Selzer. Bismuth Nanowires with Very LowLattice Thermal Conductivity as Revealed by the3Omega Method.Nanotechnology.2012,23(49):495711
    143M. Munoz Rojo, S. Grauby, J. M. Rampnoux, O. Caballero-Calero, M.Martin-Gonzalez, S. Dilhaire. Fabrication of Bi2Te3Nanowire Arrays andThermal Conductivity Measurement by3Omega-Scanning ThermalMicroscopy. Journal of Applied Physics.2013,113(5):054308
    144S. Grauby, E. Puyoo, J. M. Rampnoux, E. Rouviere, S. Dilhaire. Si and SiGeNanowires: Fabrication Process and Thermal Conductivity Measurement by3Omega-Scanning Thermal Microscopy. Journal of Physical Chemistry C.2013,117(17):9025~9034
    145S. Y. Lee, G. S. Kim, M. R. Lee, H. Lim, W. D. Kim, S. K. Lee. ThermalConductivity Measurements of Single-Crystalline Bismuth Nanowires by theFour-Point-Probe3-Omega Technique at Low Temperatures. Nanotechnology.2013,24(18):185401~185401
    146S. Vollebregt, S. Banerjee, K. Beenakker, R. Ishihara. Thermal Conductivityof Low Temperature Grown Vertical Carbon Nanotube Bundles MeasuredUsing the Three-Omega Method. Applied Physics Letters.2013,102(19):191909
    147S. M. Lee, S. I. Kwun. Digital Frequency Tripling Circuit for Third HarmonicDetection by Lock-in Amplifiers. Review of Scientific Instruments.1994,65(4):971~973
    148D. A. Borca-Tasciuc, G. Chen. Anisotropic Thermal Properties ofNanochanneled Alumina Templates. Journal of Applied Physics.2005,97(8):084303
    149T. B. Yue, Y. C. Chi, F. K. Lung. Anisotropic Thermal Conductivity ofNanoporous Silica Film. IEEE Transactions on Electron Devices.2004,51(1):20~27
    150D. G. Cahill, S. M. Lee, T. I. Selinder. Thermal Conductivity of Kappa-Al2O3and Alpha-Al2O3Wear-Resistant Coatings. Journal of Applied Physics.1998,83(11):5783~5786
    151O. W. Kading, H. Skurk, K. E. Goodson. Thermal Conduction in MetallizedSilicon-Dioxide Layers on Silicon. Applied Physics Letters.1994,65(13):1629~1631
    152P. Rodriguez, B. Caussat, X. Iltis, C. Ablitzer, M. Brothier. Alumina Coatingson Silica Powders by Fluidized Bed Chemical Vapor Deposition fromAluminium Acetylacetonate. Chemical Engineering Journal.2012,211:68~76
    153R. Funk, H. Schachner, C. Triquet, M. Kornmann, B. Lux. Coating ofCemented Carbide Cutting Tools with Alumina by Chemical Vapor Deposition.Journal of the Electrochemical Society.1976,123(2):285~289
    154M. Ohring. Materials Science of Thin Films. Academic press,2001:222~233
    155U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, J. T.Gudmundsson. Ionized Physical Vapor Deposition (IPVD): a Review ofTechnology and Applications. Thin Solid Films.2006,513(1~2):1~24
    156W. D. Sproul, D. J. Christie, D. C. Carter. Control of Reactive SputteringProcesses. Thin Solid Films.2005,491(1):1~17
    157S. Berg, T. Nyberg. Fundamental Understanding and Modeling of ReactiveSputtering Processes. Thin Solid Films.2005,476(2):215~230
    158R. Swanepoel. Determination of the Thickness and Optical Constants ofAmorphous Silicon. Journal of Physics E: Scientific Instruments.1983,16(12):1214~1222
    159J. Wang, Y. H. Yu, S. Lee, Y. W. Chung. Tribological and Optical Properties ofCrystalline and Amorphous Alumina Thin Films Grown by Low-TemperatureReactive Magnetron Sputter-Deposition. Surface and Coatings Technology.2001,146:189~194
    160田民波.薄膜技术与薄膜材料.清华大学出版社,2006:444~445
    161M. Rohde. Photoacoustic Characterization of Thermal Transport Properties inThin Films and Microstructures. Thin Solid Films.1994,238(2):199~206
    162G. Langer, J. Hartmann, M. Reichling. Thermal Conductivity of Thin MetallicFilms Measured by Photothermal Profile Analysis. Review of ScientificInstruments.1997,68(3):1510~1513
    163P. Nath, K. L. Chopra. Experimental Determination of the ThermalConductivity of Thin Films. Thin Solid Films.1973,18(1):29~37
    164B. T. Boiko, A. T. Pugachev, V. M. Bratsychin. Method for the Determinationof the Thermophysical Properties of Evaporated Thin Films. Thin Solid Films.1973,17(2):157~161
    165C. Kittel. Introduction to Solid State Physics. John Wiley and Sons,1956:162~163
    166R. Berman. Thermal Conduction in Solids. Clarendon Press,1976:78~79
    167J. E. Graebner, M. E. Reiss, L. Seibles, T. M. Hartnett, R. P. Miller, C. J.Robinson. Phonon Scattering in Chemical-Vapor-Deposited Diamond.Physical Review B.1994,50(6):3702~3713
    168R. P. Joshi, P. G. Neudeck, C. Fazi. Analysis of the Temperature DependentThermal Conductivity of Silicon Carbide for High Temperature Applications.Journal Of Applied Physics.2000,88(1):265~269
    169J. Callaway. Model for Lattice Thermal Conductivity at Low Temperatures.Physical Review.1959,113(4):1046~1051
    170M. G. Holland. Analysis of Lattice Thermal Conductivity. Physical Review.1963,132(6):2461~2471
    171M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. P. Zhernov, A. V.Inyushkin, A. Taldenkov, V. I. Ozhogin, K. M. Itoh, E. E. Haller. ThermalConductivity of Germanium Crystals with Different Isotopic Compositions.Physical Review B.1997,56(15):9431~9447
    172A. Einstein. Elementare Betrachtungen ber Die ThermischeMolekularbewegung in Festen K rpern. Annalen der Physik.1911,340(9):679~694
    173D. G. Cahill, R. O. Pohl. Heat Flow and Lattice Vibrations in Glasses. SolidState Communications.1989,70(10):927~930
    174D. G. Cahill, S. K. Watson, R. O. Pohl. Lower Limit to the ThermalConductivity of Disordered Crystals. Physical Review B.1992,46(10):6131~6140