过滤阴极电弧制备铟掺杂氧化镉透明导电薄膜的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化镉(CdO)是一种非常重要的透明导电氧化物(TCO)材料。但CdO光学带隙较小,可见光透过率较低,这些不足严重限制了其应用范围。利用其它元素掺杂能有效地拓宽其光学带隙,并改善其导电和透光性能。然而目前对掺杂CdO薄膜的研究,还存在着基本性能争议较大、能带特性认识不清楚、光电耦合机制研究较缺乏等问题。
     针对上述问题,本文采用过滤阴极真空电弧(FCAD)制备了高质量的铟掺杂氧化镉(CdO:In)薄膜:(1)系统地研究了In掺杂浓度、衬底温度、氧气分压、衬底材料等与其成分、结构和光电等性能之间的内在联系;(2)利用不同气氛热处理改善CdO:In薄膜的光电性能;(3)利用不同理论研究了其能带特性和光电相互耦合机制等。
     FCAD制备的CdO:In薄膜呈现多晶立方CdO结构,无In2O3和CdIn2O4等相出现。CdO:In薄膜的晶体结构与其生长条件密切相关:(1) In掺杂浓度和氧气分压的变化导致薄膜择优取向改变;(2)升高衬底温度不仅能促进晶粒长大,同时还能改善晶粒排列有序度;(3)在玻璃衬底上,氧化镁(MgO)过渡层为CdO:In薄膜生长提供外延模板,使其出现多个生长方向;在蓝宝石衬底上,衬底中Al扩散到MgO层中形成MgAl2O4结构,有助于提高CdO:In薄膜的结晶质量。CdO:In薄膜中Cd和In原子主要以氧化态形式存在,存在一定量的氧空位。
     CdO:In薄膜具有较优异的光电性能。CdO:In薄膜的导电性能与其制备工艺条件密切相关:(1)随着In掺杂浓度的增加,薄膜电阻率先降低后增加,而电子迁移率先增加后降低;(2)氧气分压的增加使得氧空位减少,因此载流子浓度降低,电子迁移率增加;(3)升高衬底温度使得晶界散射减弱,电子迁移率增加;(4)在玻璃衬底上,MgO薄层能有效地降低CdO:In薄膜的电阻率并提高迁移率;在蓝宝石衬底上,MgO层使得CdO:In薄膜电阻率增大而电子迁移率降低。CdO:In薄膜具有较高的光学透过率和较宽的透光波段范围。230nm厚的CdO:In薄膜在500~1250nm波段的平均透过率超过80%。利用透过率衍生法可以较准确地获得CdO:In薄膜的光学带隙,其值为2.5~3.1eV。采用FCAD技术,在230℃、7mTorr和1.2at.%In掺杂条件下制备的CdO:In薄膜具有最佳的光电性能。
     退火处理有利于改善薄膜的导电性能。退火后,未掺杂CdO薄膜晶粒尺寸变大,光学透过率显著提高;而CdO:In薄膜晶格长度萎缩,吸收截止限蓝移。经空气退火后,低掺杂浓度薄膜电阻率降低;高掺杂浓度薄膜电阻率增加。经氮气退火后,CdO:In薄膜电阻率降低而电子迁移率增加。
     CdO:In薄膜的能带具有明显的非周期性特征。被广泛应用于获取TCO薄膜光学带隙的Tauc法建立在理想周期性能带假设之上。对于CdO:In薄膜,Tauc法高估了其光学带隙。CdO:In薄膜的能带填充效应约为0.5~1.2eV,而能带变窄效应约为0.1~0.3eV。微扰理论能较好地描述CdO:In薄膜导带色散以及费米能级;适当随机相位理论可较好地计算CdO:In薄膜的能带变窄效应;使用费米能级的电子有效质量计算CdO:In非周期性费米能级获得的结果偏低。
     FCAD制备的CdO:In薄膜具有较优异的导电性和透光性,且透光范围与太阳辐射光谱匹配较好,因此适合用作高效多结太阳能电池等新型光电器件的表面电极和窗口材料。
Cadmium oxide (CdO) is an important transparent conductive oxide (TCO)material. However, the optical bandgap of undoped CdO is relatively small inducingthe narrow transparent range, adding with the relatively low visible transparency,which strictly limits its wide applications as a TCO material. Doping cansignificantly widen the optical bandgap, and can also improve the conductivity andthe transparency effectively. Nevertheless, research on doped CdO films isinsufficient. Much controversy on its fundamental properties exists and systematicstudy on its optical and electrical interactions as well as conduction band dispersionsis seriously lack.
     To solve the aforementioned problems in CdO films, high quality indium dopedcadmium oxide (CdO:In) films were deposited by filtered cathodic arc deposition(FCAD) in this study.(1) The effects of indium doping concentration, substratetemperature, oxygen partial pressure, and substrate material on film structural,electrical, and optical properties were systematically studied.(2) Subsequently, theimprovements of electrical and optical properties of CdO:In films via annealing indifferent atmospheres were also investigated.(3) Finally, the electrical and opticalinteractions, as well as the conduction band dispersions, were studied by usingdifferent theoretical models.
     It is observed that all of the CdO:In films are phase-pure with featuresassignable to cubic CdO. No In2O3, CdIn2O4or other phases is observed. Thecrystalline structure of CdO:In films is dependent on the growth parameters:(1) Thevariation of In concentration and oxygen pressure induces the change of thepreferred growth orientations in CdO:In films.(2) Increasing substrate temperaturecan not only increase the grain size, but also can improve the alignment of grains.(3)The MgO buffer layers on glass substrates provide the template for CdO growth,which induces the diverse growth orientations of CdO. On sapphire substrates, theAl atoms in the substrates diffuse into the MgO buffer layers and new MgAl2O4structure forms, resulting in the improvement of crystal quality of CdO:In films. TheCd and In atoms in the films are oxidized and a small content of oxygen vacanciesexists in the CdO:In films.
     CdO:In films show excellent electrical conductivity and optical transparency.The conductivity is closely related to the growth parameters:(1) With increasing Inconcentration, the resistivity decreases at first and then increases slightly, and theelectron mobility increases at first and subsequently decreases.(2) Increasing oxygen pressure reduces the content of oxygen vacancies in the films, resulting inthe decrease of carrier concentration, which leads to the increase of electronmobility.(3) As the substrate temperature increases, the grain boundary scatteringweakens, which results in the increase of electron mobility.(4) The MgO bufferlayers on glass substrates reduce the resistivity of CdO:In films and improve themobility effectively. On the contrary, on sapphire substrates, the MgO buffer layersincrease the resistivity and cause the decrease of electron mobility. CdO:In filmsexhibit excellent optical transmittance and wide transparent wavelength range. Meantransmittance of230nm thick CdO:In films is over80%in500~1250nmwavelength range. By using the derivative of transmittance, the optical bandgaps ofCdO:In films are about2.5eV~3.1eV. It has been observed that optimized CdO:Infilms can be obtained at230℃and7mTorr with1.2at.%In doping by filteredcathodic arc deposition.
     The electrical properties of CdO:In films can be improved significantly byannealing. After annealing, the grains of undoped films grow up and its opticaltransmittance improves. For CdO:In films, the crystal length of films decreases andthe absorption edge blue shifts. After annealing in air, the resistivity in the lowdoping level films decreases, while in high doping level films it increases. Whenannealing in nitrogen, the resistivity of CdO:In films decreases and the Hall mobilityincreases.
     The valence and conduction bands of CdO:In show evident nonparabolicity.The extensively misused Tauc relation to obtain optical bandgap is based onassuming parabolic valence and conduction bands. For CdO:In films, of whichobvious nonparabolic valence and conduction bands are already observed, the Taucrelation overestimates the optical bandgaps. The band filling effect in these CdO:Infilms is about0.5~1.2eV, while the bandgap renormalization is about0.1~0.3eV.The dispersion of conduction bands and the Fermi energy in CdO:In films calculatedby using Kane’s two bands perturbation theory agree well with the experimentalresults. Appropriate random phase theory can describe the bandgap renormalizationeffectively in these arc-grown CdO:In films. Simply using the effective mass at theFermi level to calculate the nonparabolic Fermi energy would underestimate theresults for CdO:In films.
     These indium doped cadmium oxide films deposited by filtered cathodic arcdeposition show excellent electrical conductivity and optical transparency. It isimportant to note that the transparent wavelength region of these indium dopedcadmium oxide films agrees well with the solar spectra. Therefore, these highquality indium doped cadmium oxide films are potentially suitable for high effeciency multijunction solar cells and other photovoltaic devices.
引文
[1] ü. zgür, Y. I. Alivov, C. Liu, et al. A Comprehensive Review of ZnOMaterials and Devices. Journal of Applied Physics[J].2005,98(4):041301
    [2] S. Calnan, A. N. Tiwari. High Mobility Transparent Conducting Oxides forThin Film Solar Cells. Thin Solid Films[J].2010,518(7):1839-1849
    [3] G. Exarhos, X. Zhou. Discovery-Based Design of Transparent ConductingOxide Films. Thin Solid Films[J].2007,515(18):7025-7052
    [4] D. S. Ginley, J. D. Perkins. Handbook of Transparent Conductors[M]. Springer.2010:1-25
    [5] ü. zgür, D. Hofetetter, H. Morkoc. ZnO Devices and Applications: A Reviewof Current Status and Future Prospects. Proceedings of the IEEE[J].2010,98(7):1255-1268
    [6] A. Di Trolio, E. M. Bauer, G. Scavia, et al. Blueshift of Optical Band Gap inC-Axis Oriented and Conducting Al-Doped ZnO Thin Films. Journal ofApplied Physics[J].2009,105(11):113109
    [7] A. Anders, S. H. N. Lim, K. M. Yu, et al. High Quality ZnO:Al TransparentConducting Oxide Films Synthesized by Pulsed Filtered Cathodic ArcDeposition. Thin Solid Films[J].2010,518(12):3313-3319
    [8] A. Suzuki, M. Nakamura, R. Michihata, et al. Ultrathin Al-Doped TransparentConducting Zinc Oxide Films Fabricated by Pulsed Laser Deposition. ThinSolid Films[J].2008,517(4):1478-1481
    [9]贺凡.工艺参数对射频磁控溅射法制备的AZO薄膜性能的影响[J].先进技术研究通报.2011,5(8):14-16
    [10] T. Minami. Transparent Conducting Oxide Semiconductors for TransparentElectrodes. Semiconductor Science and Technology[J].2005,20(4): S35-S44
    [11]汪自然. ITO透明导电薄膜的制备方法及研究进展[J].材料开发与应用.2010,25(4):68-71
    [12] H. Hosono. Recent Progress in Transparent Oxide Semiconductors: Materialsand Device Application. Thin Solid Films[J].2007,515(15):6000-6014
    [13] Q. Huang, Y. Wang, S. Wang, et al. Transparent Conductive ZnO:B FilmsDeposited by Magnetron Sputtering. Thin Solid Films[J].2012,520(18):5960-5964
    [14] D. W. Kang, S. H. Kuk, K. S. Ji, et al. Effects of ITO Precursor Thickness onTransparent Conductive Al Doped ZnO Film for Solar Cell Applications. SolarEnergy Materials and Solar Cells[J].2011,95(1):138-141
    [15] X. Wang, J. Shi. Multifunctional ZnO Nanostructures: From Material Growthto Novel Applications. Proceedings of SPIE[J].2011,7940:79400G
    [16]王树林,夏冬林. ITO薄膜的制备工艺及进展[J].玻璃与搪瓷.2004,32(5):51-54
    [17] S. Jin, Y. Yang, J. E. Medvedeva, et al. Dopant Ion Size and ElectronicStructure Effects on Transparent Conducting Oxides Sc-Doped CdO ThinFilms Grown by MOCVD. Journal of the American Chemical Society[J].2004,126:13787-13793
    [18] S. Jin, Y. Yang, J. E. Medvedeva, et al. Tuning the Properties of TransparentOxide Conductors Dopant Ion Size and Electronic Structure Effects onCdO-Based Transparent Conducting Oxides Ga-and In-Doped CdO ThinFilms Grown by MOCVD. Chemistry of Materials[J].2008,20:220-230
    [19] A. W. Metz, J. R. Ireland, J. G. Zheng, et al. Transparent Conducting Oxides:Texture and Microstructure Effects on Charge Carrier Mobility inMOCVD-Derived CdO Thin Films Grown with a Thermally Stable,Low-Melting Precursor. Journal of the American Chemical Society[J].2004,126(27):8477-8492
    [20] A. Hongsingthong, I. A. Yunaz, S. Miyajima, et al. Preparation of ZnO ThinFilms Using MOCVD Technique with D2O/H2O Gas Mixture for Use as TCOin Silicon-Based Thin Film Solar Cells. Solar Energy Materials and SolarCells[J].2011,95(1):171-174
    [21] M. Y. Zhang, Q. Nian, G. J. Cheng. Room Temperature Deposition ofAlumina-Doped Zinc Oxide on Flexible Substrates by Direct Pulsed LaserRecrystallization. Applied Physics Letters[J].2012,100(15):151902
    [22] R. Gupta, K. Ghosh, R. Patel, et al. Preparation and Characterization of HighlyConducting and Transparent Al Doped CdO Thin Films by Pulsed LaserDeposition. Current Applied Physics[J].2009,9(3):673-677
    [23] B. Z. Dong, G. J. Fang, J. F. Wang, et al. Effect of Thickness on Structural,Electrical, and Optical Properties of ZnO:Al Films Deposited by Pulsed LaserDeposition. Journal of Applied Physics[J].2007,101(3):033713
    [24] M. Yan, M. Lane, C. R. Kannewurf, et al. Highly Conductive Epitaxial CdOThin Films Prepared by Pulsed Laser Deposition. Applied Physics Letters[J].2001,78(16):2342-2344
    [25] R. J. Deokate, S. V. Salunkhe, G. L. Agawane, et al. Structural, Optical andElectrical Properties of Chemically Sprayed Nanosized Gallium Doped CdOThin Films. Journal of Alloys and Compounds[J].2010,496(1-2):357-363
    [26] M. Olvera, H. Gomez, A. Maldonado. Doping, Vacuum Annealing, andThickness Effect on the Physical Properties of Zinc Oxide Films Deposited bySpray Pyrolysis. Solar Energy Materials and Solar Cells[J].2007,91(15-16):1449-1453
    [27] M. Kul, A. S. Aybek, E. Turan, et al. Effects of Fluorine Doping on theStructural Properties of the CdO Films Deposited by Ultrasonic SprayPyrolysis. Solar Energy Materials and Solar Cells[J].2007,91(20):1927-1933
    [28] C. Agashe, M. G. Takwale, V. G. Bhide, et al. Effect of Sn Incorporation onthe Growth Mechanism of Sprayed SnO2Films. Journal of Applied Physics[J].1991,70(12):7382-7386
    [29] M. A. Flores, R. Castanedo, G. Torres, et al. Optical, Electrical and StructuralProperties of Indium-Doped Cadmium Oxide Films Obtained by the Sol-GelTechnique. Solar Energy Materials and Solar Cells[J].2009,93(1):28-32
    [30] J. Zhang, W. Que. Preparation and Characterization of Sol–Gel Al-Doped ZnOThin Films and ZnO Nanowire Arrays Grown on Al-Doped ZnO Seed Layerby Hydrothermal Method. Solar Energy Materials and Solar Cells[J].2010,94(12):2181-2186
    [31] R. Maity, K. K. Chattopadhyay. Synthesis and Characterization ofAluminum-Doped CdO Thin Films by Sol–Gel Process. Solar EnergyMaterials and Solar Cells[J].2006,90(5):597-606
    [32] J. Santoscruz, G. Torresdelgado, R. Castanedoperez, et al. Dependence ofElectrical and Optical Properties of Sol–Gel Prepared Undoped CadmiumOxide Thin Films on Annealing Temperature. Thin Solid Films[J].2005,493(1-2):83-87
    [33] A. Mahmood, N. Ahmed, Q. Raza, et al. Effect of Thermal Annealing on theStructural and Optical Properties of ZnO Thin Films Deposited by the ReactiveE-Beam Evaporation Technique. Physica Scripta[J].2010,82(6):065801
    [34] N. Barreau, A. Mokrani, F. Couzinié-Devy, et al. Bandgap Properties of theIndium Sulfide Thin-Films Grown by Co-Evaporation. Thin Solid Films[J].2009,517(7):2316-2319
    [35] I. Kim, S. Doh, C. Kim, et al. Effect of Evaporation on Surface Morphology ofEpitaxial ZnO Films During Postdeposition Annealing. Applied SurfaceScience[J].2005,241(1-2):179-182
    [36] R. J. Mendelsberg, S. H. N. Lim, Y. K. Zhu, et al. Achieving High MobilityZnO:Al at Very High Growth Rates by DC Filtered Cathodic Arc Deposition.Journal of Physics D: Applied Physics[J].2011,44(23):232003
    [37] V. Zhitomirsky, E. Cetinorgu, E. Adler, et al. Filtered Vacuum Arc Depositionof Transparent Conducting Al-Doped ZnO Films. Thin Solid Films[J].2006,515(3):885-890
    [38] S. Goldsmith. Filtered Vacuum Arc Deposition of Undoped and Doped ZnOThin Films: Electrical, Optical, and Structural Properties. Surface and CoatingsTechnology[J].2006,201(7):3993-3999
    [39] T. David, S. Goldsmith, R. L. Boxman. Dependence of Zinc Oxide Thin FilmProperties on Filtered Vacuum Arc Deposition Parameters. Journal of PhysicsD: Applied Physics[J].2005,38(14):2407-2416
    [40] B. Chen, X. Sun, B. Tay. Fabrication of ITO Thin Films by Filtered CathodicVacuum Arc Deposition. Materials Science and Engineering B[J].2004,106(3):300-304
    [41] Y. G. Wang, S. P. Lau, H. W. Lee, et al. Comprehensive Study of ZnO FilmsPrepared by Filtered Cathodic Vacuum Arc at Room Temperature. Journal ofApplied Physics[J].2003,94(3):1597-1604
    [42] K. J. Kumar, N. R. C. Raju, A. Subrahmanyam. Thickness Dependent Physicaland Photocatalytic Properties of ITO Thin Films Prepared by Reactive DCMagnetron Sputtering. Applied Surface Science[J].2011,257(7):3075-3080
    [43] R. Mientus, K. Ellmer. Structural, Electrical and Optical Properties ofSnO2-x:F-Layers Deposited by DC-Reactive Magnetron-Sputtering from aMetallic Target in Ar-O2/Cf4Mixtures. Surface and Coatings Technology[J].1998,98(1–3):1267-1271
    [44] H. Zhu, J. Hupkes, E. Bunte, et al. Novel Etching Method on High RateZnO:Al Thin Films Reactively Sputtered from Dual Tube Metallic Targets forSilicon-Based Solar Cells. Solar Energy Materials and Solar Cells[J].2011,95(3):964-968
    [45] C. E. Kim, P. Moon, S. Kim, et al. Effect of Carrier Concentration on OpticalBandgap Shift in ZnO:Ga Thin Films. Thin Solid Films[J].2010,518(22):6304-6307
    [46] I. Shtepliuk, G. Lashkarev, O. Khyzhun, et al. Enhancement of the UltravioletLuminescence Intensity from Cd-Doped ZnO Films Caused by ExcitonBinding. Acta Physica Polonica A[J].2011,120(5):914-917
    [47] P. M. Babu, G. V. Rao, S. Uthanna. Transparent Conductive Cadmium IndateThin Films Prepared by DC Magnetron Sputtering. Materials Chemistry andPhysics[J].2002,78:208-213
    [48] B. J. Zheng, J. S. Lian, L. Zhao, et al. Optical and Electrical Properties ofIn-Doped CdO Thin Films Fabricated by Pulse Laser Deposition. AppliedSurface Science[J].2010,256(9):2910-2914
    [49] A. Anders. Metal Plasmas for the Fabrication of Nanostructures. Journal ofPhysics D: Applied Physics[J].2007,40(8):2272-2284
    [50] R. Kumaravel, K. Ramamurthi, V. Krishnakumar. Effect of Indium Doping inCdO Thin Films Prepared by Spray Pyrolysis Technique. Journal of Physicsand Chemistry of Solids[J].2010,71(11):1545-1549
    [51] S. Kose, F. Atay, V. Bilgin, et al. In Doped CdO Films: Electrical, Optical,Structural and Surface Properties. International Journal of Hydrogen Energy[J].2009,34(12):5260-5266
    [52] F. Atay, I. Akyuz, S. Kose, et al. Optical, Structural and SurfaceCharacterization of CdO:Mg Films. Journal of Materials Science: Materials inElectronics[J].2010,22(5):492-498
    [53] I. I. Aksenov, V. A. Belous, V. G. Padalka, et al. Motion of Cathoded Spit of aVacuum Arc in Inhomogeneous Magnetic Field. Soviet Technical PhysicsLetters[J].1978,3:525-527
    [54] B. Tay, Z. Zhao, D. Chua. Review of Metal Oxide Films Deposited by FilteredCathodic Vacuum Arc Technique. Materials Science and Engineering: R:Reports[J].2006,52(1-3):1-48
    [55] X. L. Xu, S. P. Lau, J. S. Chen, et al. Polycrystalline ZnO Thin Films on Si(100) Deposited by Filtered Cathodic Vacuum Arc. Journal of CrystalGrowth[J].2001,223:201-205
    [56] F. Gao, K. M. Yu, R. J. Mendelsberg, et al. Preparation of High TransmittanceZnO:Al Film by Pulsed Filtered Cathodic Arc Technology and Rapid ThermalAnnealing. Applied Surface Science[J].2011,257(15):7019-7022
    [57] H. Lee. Internal Stress and Surface Morphology of Zinc Oxide Thin FilmsDeposited by Filtered Cathodic Vacuum Arc Technique. Thin Solid Films[J].2004,458(1-2):15-19
    [58] S. Tungasmita, P. O. A. Persson, L. Hultman, et al. Pulsed Low-EnergyIon-Assisted Growth of Epitaxial Aluminum Nitride Layer on6H-SiliconCarbide by Reactive Magnetron Sputtering. Journal of Applied Physics[J].2002,91(6):3551-3555
    [59] S. Yun, J. Lee, J. Chung, et al. Improvement of ZnO Nanorod-BasedDye-Sensitized Solar Cell Efficiency by Al-Doping. Journal of Physics andChemistry of Solids[J].2010,71(12):1724-1731
    [60] D. Wan, F. Huang, Y. Wang, et al. Highly Surface-Textured ZnO:Al FilmsFabricated by Controlling the Nucleation and Growth Separately for Solar CellApplications. ACS Applied Materials&Interfaces[J].2010,2(7):2147-2152
    [61] S. Calnan, H. M. Uphadhyaya, S. Buecheler, et al. Application of HighMobility Transparent Conductors to Enhance Long Wavelength Transparencyof the Intermediate Solar Cell in Multi-Junction Solar Cells. Thin SolidFilms[J].2009,517(7):2340-2343
    [62] T. Minami. Present Status of Transparent Conducting Oxide Thin-FilmDevelopment for Indium-Tin-Oxide (ITO) Substitutes. Thin Solid Films[J].2008,516(17):5822-5828
    [63] P. H. Jefferson, S. A. Hatfield, T. D. Veal, et al. Bandgap and Effective Massof Epitaxial Cadmium Oxide. Applied Physics Letters[J].2008,92(2):022101
    [64] K. Tanaka, A. Kunioka, Y. Sakai. Electrical and Optical Properties ofSputtered CdO Films. Japanese Journal of Applied Physics[J].1969,8(6):681-691
    [65] F. P. Koffyberg. Diffusion of Donors in Semiconducting CdO. Solid StateCommunications[J].1971,9:2187-2189
    [66] F. P. Koffyberg. Electron Concentration and Mobility in Semimetallic CdO.Canadian Journal of Physics[J].1971,49:435-440
    [67] F. Koffyberg. Thermoreflectance Spectra of CdO: Band Gaps andBand-Population Effects. Physical Review B[J].1976,13(10):4470-4476
    [68] K. Gurumurugan, D. Mangalaraj, S. K. Narayandass. Correlations between theOptical and Electrical Properties of CdO Thin Films Deposited by SprayPyrolysis. Thin Solid Films[J].1994,25:7-9
    [69] K. Gurumurugan, D. Mangalaraj, S. K. Narayandass. An Approach toDetermine the Refractive Index of Cadmium Oxide Thin Films. MaterialsResearch Bulletin[J].1995,30(3):257-264
    [70] K. Gurumurugan, D. Mangalaraj, S. K. Narayandass, et al. DC ReactiveMagnetron Sputtered CdO Thin Films. Materials Letters[J].1996,28:307-312
    [71] T. K. Subramanyam, B. R. Krishna, S. Uthanna, et al. Influence of OxygenPressure on the Physical Properties of DC Magnetron Reactive SputteredCadmium Oxide Films. Pergamon[J].1997,48(6):565-569
    [72] T. K. Subramanyam, S. Uthanna, B. S. Naidu. Preparation andCharacterization of CdO Films Deposited by DC Magnetron ReactiveSputtering. Materials Letters[J].1998,35:214-220
    [73] T. K. Subramanyam, G. M. Rao, S. Uthanna. Process Parameter DependentProperty Studies on CdO Films Prepared by DC Reactive MagnetronSputtering. Materials Chemistry and Physics[J].2001,69:133-142
    [74] N. Ueda, H. Maeda, H. Hosono, et al. Band-Gap Widening of CdO Thin Films.Journal of Applied Physics[J].1998,84(11):6174-6177
    [75] Q. Zhou, Z. Ji, B. Hu, et al. Low Resistivity Transparent Conducting CdO ThinFilms Deposited by DC Reactive Magnetron Sputtering at Room Temperature.Materials Letters[J].2007,61(2):531-534
    [76] B. Saha, R. Thapa, K. K. Chattopadhyay. Wide Range Tuning of ElectricalConductivity of RF Sputtered CdO Thin Films through Oxygen PartialPressure Variation. Solar Energy Materials and Solar Cells[J].2008,92(9):1077-1080
    [77] X. Li, Y. Yan, A. Mason, et al. High Mobility CdO Films and TheirDependence on Structure. Electrochemical and Solid-State Letters[J].2001,4(9): C66-C68
    [78] X. Li, D. L. Young, H. Moutinho, et al. Properties of CdO Thin FilmsProduced by Chemical Vapor Deposition. Electrochemical and Solid-StateLetters[J].2001,4(6): C43-C46
    [79] L. Wang, Y. Yang, S. Jin, et al. MgO(100) Template Layer for CdO Thin FilmGrowth: Strategies to Enhance Microstructural Crystallinity and ChargeCarrier Mobility. Applied Physics Letters[J].2006,88(16):162115
    [80] J. Zunigaperez, C. Munuera, C. Ocal, et al. Structural Analysis of CdO LayersGrown on r-Plane Sapphire (0112)by Metalorganic Vapor-Phase Epitaxy.Journal of Crystal Growth[J].2004,271(1-2):223-228
    [81] M. C. Martínez-Tomás, J. Zú iga-Pérez, P. Vennéguès, et al. X-Ray andTransmission Electron Microscopy Characterization of Twinned CdO Thini w-Plane Sapphire by Metalorganic Vapour Phase Epitaxy.Applied Physics A[J].2007,88(1):61-64
    [82] D. Lamb, S. J. C. Irvine. Near Infrared Transparent Conducting CadmiumOxide Deposited by MOCVD. Thin Solid Films[J].2009,518(4):1222-1224
    [83] S. K. Vasheghani Farahani, T. D. Veal, P. D. C. King, et al. Electron Mobilityin CdO Films. Journal of Applied Physics[J].2011,109(7):073712
    [84] L. C. S. Murthy, K. S. R. K. Rao. Thickness Dependent Electrical Properties ofCdO Thin Films Prepared by Spray Pyrolysis Method. Bulletin of MaterialScience[J].1999,22(6):953-957
    [85] B. J. Lokhande, P. S. Patil, M. D. Uplane. Studies on Cadmium Oxide SprayedThin Films Deposited through Non-Aqueous Medium. Materials Chemistryand Physics[J].2004,84(2-3):238-242
    [86] D. M. Carballeda-Galicia, R. Castanedo-Perez, O. Jimenez-Sandoval, et al.High Transmittance CdO Thin Films Obtained by the Sol-Gel Method. ThinSolid Films[J].2000,371:105-108
    [87] B. Saha, R. Thapa, K. Chattopadhyay. Bandgap Widening in HighlyConducting CdO Thin Film by Ti Incorporation through Radio FrequencyMagnetron Sputtering Technique. Solid State Communications[J].2008,145(1-2):33-37
    [88] eg a, chez-y, a c a-Domene, et al. CurrentUnderestimation of the Optical Gap and Burstein-Moss Shift in CdO Thini: e e ce f x e ded i e f2-versus-hν iedPhysics Letters[J].2011,99(15):151907
    [89] R. Deokate, S. Pawar, A. Moholkar, et al. Spray Deposition of HighlyTransparent Fluorine Doped Cadmium Oxide Thin Films. Applied SurfaceScience[J].2008,254(7):2187-2195
    [90] A. A. Dakhel. Structural, Optical and Electrical Measurements onBoron-Doped CdO Thin Films. Journal of Materials Science[J].2011,46(21):6925-6931
    [91] Y. Yang, S. Jin, J. E. Medvedeva, et al. CdO as the Archetypical TransparentConducting Oxide Systematic of Dopant Ionic Radius and Electronic StructureEffects on Charge Transport and Band Structure. Journal of the AmericanChemical Society[J].2005,127:8796-8804
    [92] R. Gupta, K. Ghosh, R. Patel, et al. Wide Band Gap Cd0.83Mg0.15Al0.02O ThinFilms by Pulsed Laser Deposition. Applied Surface Science[J].2009,255(8):4466-4469
    [93] A. A. Dakhel. Bandgap Narrowing in CdO Doped with Europium. OpticalMaterials[J].2009,31(4):691-695
    [94] R. K. Gupta, K. Ghosh, R. Patel, et al. Low Temperature Processed HighlyConducting, Transparent, and Wide Bandgap Gd Doped CdO Thin Films forTransparent Electronics. Journal of Alloys and Compounds[J].2011,509(10):4146-4149
    [95] N. Miyata, K. Miyake, Y. Yamaguchi. Cadmium-Tin-Oxide Films Depositedby DC Reactive Sputtering from a Cd-Sn Alloy Target. Applied PhysicsLetters[J].1980,37(2):180-182
    [96] T. Pisarkiewicz, K. Zakrewska, E. Leja. Preparation Electrical Properties andOptical Characterization of Cd2SnO4and CdIn2O4Thin Films as Transparentand Conductive Coatings. Thin Solid Films[J].1987,153:479-486
    [97] T. J. Coutts, X. Wu, W. P. Mulligan, et al. High-Performance, TransparentConducting Oxides Based on Cadmium Stannate. Journal of ElectronicMaterials[J].1996,25(6):935-943
    [98] T. J. Coutts, D. L. Young, X. Li. Search for Improved Transparent ConductingOxides: A Fundamental Investigation of CdO, Cd2SnO4, and Zn2SnO4. Journalof Vacuum Science&Technology A[J].2000,18(6):2646-2660
    [99] T. J. Coutts, D. L. Young, X. Li. Characterization of Transparent ConductingOxides. MRS Bulletin[J].2000,25:58-65
    [100]T. J. Coutts, D. L. Young, X. N. Li. Fundamental Advances in TransparentConducting Oxides. Materials Research Society Symposium Proceedings[J].2000,623:199-209
    [101]X. Wu, T. J. Coutts, W. P. Mulligan. Properties of Transparent ConductingOxides Formed from CdO and ZnO Alloyed with SnO2and In2O3. Journal ofVacuum Science&Technology A[J].1997,15(3):1057-1062
    [102]Z. Zhao, D. L. Morel, C. S. Ferekides. Electrical and Optical Properties ofTin-Doped CdO Films Deposited by Atmospheric Metalorganic ChemicalVapor Deposition. Thin Solid Films[J].2002,413:203-211
    [103]E. Martin, M. Yan, M. Lane, et al. Properties of Multilayer TransparentConducting Oxide Films. Thin Solid Films[J].2004,461(2):309-315
    [104]H. M. Ali, H. A. Mohamed, M. M. Wakkad, et al. Optical and ElectricalProperties of Tin-Doped Cadmium Oxide Films Prepared by Electron BeamTechnique. Japanese Journal of Applied Physics[J].2009,48(4):041101
    [105]B. Saha, S. Das, K. K. Chattopadhyay. Electrical and Optical Properties of AlDoped Cadmium Oxide Thin Films Deposited by Radio Frequency MagnetronSputtering. Solar Energy Materials and Solar Cells[J].2007,91(18):1692-1697
    [106]R. K. Gupta, K. Ghosh, R. Patel, et al. Highly Conducting and TransparentTi-Doped CdO Films by Pulsed Laser Deposition. Applied Surface Science[J].2009,255(12):6252-6255
    [107]R. Gupta, K. Ghosh, R. Patel, et al. Effect of Oxygen Partial Pressure onStructural, Optical and Electrical Properties of Titanium-Doped CdO ThinFilms. Applied Surface Science[J].2008,255(5):2414-2418
    [108]A. A. Dakhel. Correlated Transport and Optical Phenomena in Ga-Doped CdOFilms. Solar Energy[J].2008,82(6):513-519
    [109]A. V. Moholkar, G. L. Agawane, K. U. Sim, et al. Influence of DepositionTemperature on Morphological, Optical, Electrical and Opto-ElectricalProperties of Highly Textured Nano-Crystalline Spray Deposited CdO:Ga ThinFilms. Applied Surface Science[J].2010,257(1):93-101
    [110]H. Kawazoe, K. Ueda. Transparent Conducting Oxides Based on the SpinelStructure. Journal of the American Ceramic Society[J].1999,82(12):3330-3336
    [111]D. R. Kammler, T. O. Mason, D. L. Young, et al. Comparison of Thin Filmand Bulk Forms of the Transparent Conducting Oxide SolutionCd1+xInxSnxO4. Journal of Applied Physics[J].2001,90(12):5979-5985
    [112]T. J. Coutts, X. Wu, W. P. Mulligan. High Performance TransparentConducting Films of Cadmium Indate Prepared by RF Sputtering. MaterialsResearch Society Symposium Proceedings[J].1996,426:479-489
    [113]A. Wang. Indium-Cadmium-Oxide Films Having Exceptional ElectricalConductivity and Optical Transparency: Clues for Optimizing TransparentConductors. Proceedings of the National Academy of Sciences[J].2001,98(13):7113-7116
    [114]A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, et al. Chemical andThin-Film Strategies for New Transparent Conducting Oxides. MRSBulletin[J].2000,25:45-51
    [115]R. K. Gupta, K. Ghosh, R. Patel, et al. Structural, Optical and ElectricalProperties of In Doped CdO Thin Films for Optoelectronic Applications.Materials Letters[J].2008,62(19):3373-3375
    [116]H. Ali, H. Mohamed, M. Wakkad, et al. Properties of Transparent ConductingOxides Formed from CdO Alloyed with In2O3. Thin Solid Films[J].2007,515(5):3024-3029
    [117]M. A. Flores Mendoza, R. Castanedo Pérez, G. Torres Delgado, et al.Cadmium Indate Thin Films, as Transparent Conducting Oxides, Obtained bythe Sol–Gel Technique. Solar Energy Materials and Solar Cells[J].2010,94(1):80-84
    [118]W. Can, B. L. Cheng, S. Y. Wang, et al. Effects of Oxygen Pressure on LatticeParameter, Orientation, Surface Morphology and Deposition Rate of(Ba0.02Sr0.98)TiO3Thin Films Grown on MgO Substrate by Pulsed LaserDeposition. Thin Solid Films[J].2005,485(1-2):82-89
    [119]I. Petrov, P. B. Barna, L. Hultman, et al. Microstructural Evolution DuringFilm Growth. Journal of Vacuum Science&Technology A[J].2003,21(5):S117-S128
    [120]K. S. Park, J. K. Park. Effect of Thin Film Stress on the Elastic Strain Energyof Cr Thin Film on Substrate. Acta Materialia[J].1999,47(7):2177-2184
    [121]S. B. Qadri, E. F. Skelton, D. Hsu, et al. Size-Induced Transition-TemperatureReduction in Nanoparticles of ZnS. Physical Review B[J].1999,60(13):9191-9193
    [122]C. G. Choi, K. No, W. J. Lee, et al. Effects of Oxygen Partial Pressure on theMicrostructure and Electrical Properties of Indium Tin Oxide Film Prepared byDC Magnetron Sputtering. Thin Solid Films[J].1995,258:274-278
    [123]A. Gulino, F. Castelli, P. Dapporto, et al. Synthesis and Characterization ofThin Films of Cadmium Oxide. Chemistry of Materials[J].2002,14:704-709
    [124]Y. Dou, R. G. Egdell, T. Walker, et al. N-Type Doping in CdO Ceramics aStudy by EELS and Photoemission Spectroscopy. Surface Science[J].1998,398:241-258
    [125]H. Kato, S. Takemura, Y. Nakajima. X-Ray Photoemission SpectroscopyStudies of Conducting Polymer-Substrate Interfaces: InterfacialElectrochemical Diffusion. Journal of Applied Physics[J].1997,81(11):7313-7316
    [126]Y. Dou, T. Fishlock, R. G. Egdell. Band-Gap Shrinkage in N-Type-DopedCdO Probed by Photoemission Spectroscopy. Physical Review B[J].1997,55(20): R13381-R13384
    [127]A. Anders, G. Y. Yushkov. Ion Flux from Vacuum Arc Cathode Spots in theAbsence and Presence of a Magnetic Field. Journal of Applied Physics[J].2002,91(8):4824-4832
    [128]E. Byon, A. Anders. Ion Energy Distribution Functions of Vacuum ArcPlasmas. Journal of Applied Physics[J].2003,93(4):1899-1906
    [129]T. Miyata, Y. Minamino, S. Ida, et al. Highly Transparent and ConductiveZnO:Al Thin Films Prepared by Vacuum Arc Plasma Evaporation. Journal ofVacuum Science&Technology A[J].2004,22(4):1711-1715
    [130]H. Lee. Structural, Electrical and Optical Properties of Al-Doped ZnO ThinFilms Prepared by Filtered Cathodic Vacuum Arc Technique. Journal ofCrystal Growth[J].2004,268(3-4):596-601
    [131]C. Braganza, L. C. Chien, M. R. Fisch, et al. Spectrographic EllipsometryStudy of a Liquid Crystal Display Substrate Consisting of Thin Films of SiO2,Polyimide and Indium Tin Oxide on Glass. Thin Solid Films[J].2011,519(13):4384-4389
    [132]T. Yamada, H. Makino, N. Yamamoto, et al. Ingrain and Grain BoundaryScattering Effects on Electron Mobility of Transparent ConductingPolycrystalline Ga-Doped ZnO Films. Journal of Applied Physics[J].2010,107(12):123534
    [133]K. Siraj, M. Khaleeq-ur-Rahman, S. I. Hussain, et al. Effect of DepositionTemperature on Structural, Surface, Optical and Magnetic Properties of PulsedLaser Deposited Al-Doped CdO Thin Films. Journal of Alloys andCompounds[J].2011,509(24):6756-6762
    [134]T. J. Coutts, D. L. Young, T. A. Gessert. Handbook of TransparentConductors[M]. Springer.2010:51-110
    [135]C. Ghezzi, R. Magnanini, A. Parisini, et al. Optical Absorption near theFundamental Absorption Edge in GaSb. Physical Review B[J].1995,52(3):1463-1466
    [136]C. Terrier, J. P. Chatelon, J. A. Roger. Electrical and Optical Properties ofSb:SnO2Thin Films Obtained by the Sol-Gel Method. Thin Solid Films[J].1997,295(1–2):95-100
    [137]G. Haacke. New Figure of Merit for Transparent Conductors. Journal ofApplied Physics[J].1976,47(9):4086-4089
    [138]J. Tauc, R. Grigorovici, A. Vancu. Optical Properties and Electronic Structureof Amorphous Germanium. Physica Status Solidi[J].1966,15:627-637
    [139]M. Burbano, D. O. Scanlon, G. W. Watson. Sources of Conductivity andDoping Limits in CdO from Hybrid Density Functional Theory. Journal of theAmerican Chemical Society[J].2011,133(38):15065-15072
    [140]D. T. Speaks, M. A. Mayer, K. M. Yu, et al. Fermi Level Stabilization Energyin Cadmium Oxide. Journal of Applied Physics[J].2010,107(11):113706
    [141]A. Ferreira da Silva, N. Veissid, C. Y. An, et al. Optical Determination of theDirect Bandgap Energy of Lead Iodide Crystals. Applied Physics Letters[J].1996,69(13):1930-1932
    [142]N. Veissid, C. Y. An, A. Ferreira da Silva, et al. Gap Energy Studied byica a i a ce i ead dide c y a w by idg a’Method. Materials Research[J].1999,2(4):279-281
    [143]R. J. Mendelsberg, Y. K. Zhu, A. Anders. Determining the NonparabolicityFactor of the CdO Conduction Band Using Indium Doping and the DrudeTheory. Journal of Physics D: Applied Physics[J].2012,45(42):425302
    [144]S. K. Oleary, S. R. Johnson, P. K. Lim. The Relationship between theDistribution of Electronic States and the Optical Absorption Spectrum of anAmorphous Semiconductor: an Empirical Analysis. Journal of AppliedPhysics[J].1997,82(7):3334-3340
    [145]R. J. Mendelsberg, G. Garcia, D. J. Milliron. Extracting Reliable ElectronicProperties from Transmission Spectra of Indium Tin Oxide Thin Films andNanocrystal Films by Careful Application of the Drude Theory. Journal ofApplied Physics[J].2012,111(6):063515
    [146]I. Hamberg, C. G. Granqvist. Evaporated Sn-Doped In2O3Films: Basic OpticalProperties and Applications to Energy-Efficient Windows. Journal of AppliedPhysics[J].1986,60(11): R123-R159
    [147]A. Pflug, V. Sittinger, F. Ruske, et al. Optical Characterization ofAluminum-Doped Zinc Oxide Films by Advanced Dispersion Theories. ThinSolid Films[J].2004,455–456(0):201-206
    [148]D. Mergel, Z. Qiao. Dielectric Modelling of Optical Spectra of Thin In2O3:SnFilms. Journal of Physics D: Applied Physics[J].2002,35(8):794-801
    [149]T. Pisarkiewicz, A. Kolodziej. Nonparabolicity of the Conduction BandStructure in Degenerate Tin Dioxide. Physica Status Solidi (B)[J].1990,158(1): K5-K8
    [150]T. Pisarkiewicz, K. Zakrewska, E. Leja. Scattering of Charge Carriers inTransparent and Conducting Thin Oxide Films with a Non-ParabolicConduction Band. Thin Solid Films[J].1989,174:217-223
    [151]C. Skierbiszewski, P. Perlin, P. Wisniewski, et al. Large, Nitrogen-InducedIncrease of the Electron Effective Mass in InyGayNxAsx. Applied PhysicsLetters[J].2000,76(17):2409-2411
    [152]F. Ruske, A. Pflug, V. Sittinger, et al. Optical Modeling of Free ElectronBehavior in Highly Doped ZnO Films. Thin Solid Films[J].2009,518(4):1289-1293
    [153]E. O. Kane. Band Structure of Indium Antimonide. Journal of Physics andChemistry of Solids[J].1957,1:249-261
    [154]E. O. Kane. Energy Band Structure in P-Type Germanium and Silicon. Journalof Physics and Chemistry of Solids[J].1956,1(1–2):82-99
    [155]J. Wu, W. Walukiewicz, W. Shan, et al. Effects of the Narrow Band Gap onthe Properties of InN. Physical Review B[J].2002,66(20):201403
    [156]S. Shokhovets, O. Ambacher, B. Meyer, et al. Anisotropy of the MomentumMatrix Element, Dichroism, and Conduction-Band Dispersion Relation ofWurtzite Semiconductors. Physical Review B[J].2008,78(3):035207
    [157]J. S. Im, A. Moritz, F. Steuber, et al. Radiative Carrier Lifetime, MomentumMatrix Element, and Hole Effective Mass in GaN. Applied Physics Letters[J].1997,70(5):631-633
    [158]K. Berggren, B. Sernelius. Band-Gap Narrowing in Heavily DopedMany-Valley Semiconductors. Physical Review B[J].1981,24(4):1971-1986
    [159]I. Hamberg, C. G. Granqvist, K. F. Berggren, et al. Band-Gap Widening inHeavily Sn-Doped In2O3. Physical Review B[J].1984,30(6):3240-3249
    [160]B. E. Sernelius, K. F. Berggren, Z. C. Jin, et al. Band-Gap Tailoring of ZnO byMeans of Heavy Al Doping. Physical Review B[J].1988,37(17):10244-10248
    [161]J. G. Lu, S. Fujita, T. Kawaharamura, et al. Carrier Concentration Dependenceof Band Gap Shift in N-Type ZnO:Al Films. Journal of Applied Physics[J].2007,101(8):083705
    [162]S. C. Jain, J. M. McGregor, D. J. Roulston. Band-Gap Narrowing in NovelⅢ-V Semiconductors. Journal of Applied Physics[J].1990,68(7):3747-3749
    [163]S. C. Jain, D. J. Roulston. A Simple Expression for Band Gap Narrowing(BGN) in Heavily Doped Si, Ge, GaAs and GexSixStrained Layers.Solid-State Electronics[J].1991,34(5):453-465
    [164]S. P. Fu, T. T. Chen, Y. F. Chen. Photoluminescent Properties of InN Epifilms.Semiconductor Science and Technology[J].2006,21(3):244-249
    [165]G. D. Mahan. Energy Gap in Si and Ge: Impurity Dependence. Journal ofApplied Physics[J].1980,51(5):2634-2646
    [166]E. Burstein. Anomalous Optical Absorption Limit in InSb. Physical Review[J].1954,93(3):632-633
    [167]F. Ou, D. B. Buchholz, F. Yi, et al. Ohmic Contact of Cadmium Oxide, aTransparent Conducting Oxide, to N-Type Indium Phosphide. ACS AppliedMaterials&Interfaces[J].2011,3(4):1341-1345
    [168] a hegha i a aha i, z-a, iga-ez, et al.Temperature Dependence of the Direct Bandgap and Transport Properties ofCdO. Applied Physics Letters[J].2013,102(2):022102
    [169]J. G. Lu, S. Fujita, T. Kawaharamura, et al. Carrier Concentration InducedBand-Gap Shift in Al-Doped ZnxMgxO Thin Films. Applied PhysicsLetters[J].2006,89(26):262107
    [170]J. D. Ye, S. L. Gu, S. M. Zhu, et al. Fermi-Level Band Filling and Band-GapRenormalization in Ga-Doped ZnO. Applied Physics Letters[J].2005,86(19):192111