林麝Ⅱ类MHC基因分离与化脓性疾病的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
林麝是我国兽类中具有极高经济价值和社会价值的一种资源动物。雄性林麝的麝香囊腺分泌的麝香在医药和香水行业具有非常重要的作用。近几十年来,随着国际市场对麝香的需求量不断增加以及人为的乱捕乱猎和栖息地破坏,林麝的数量不断下降,已到了邻近灭绝的边缘。人工养殖林麝已有50多年,但圈养林麝的种群因疾病等多种限制因素的困扰而发展缓慢。因此,非常有必要对这一物种展开科学研究,进一步加大保护力度。
     主要组织相容性复合体(Major Histocompatibility Complex, MHC)是脊椎动物中多态性最高的一个超基因家族,其编码的细胞膜表面蛋白在识别、呈递外来抗原并引发下游免疫应答反应的过程中发挥着非常重要的作用,是脊椎动物适应性免疫系统的重要组成部分。一个有功能的MHCⅡ类分子是由一个α链和一个β链非共价结合形成的二聚体,其分别由MHCⅡ的A基因和B基因编码。MHCⅡ类A基因和B基因exon2编码的抗原结合区具有非常高的多态性,与物种抵抗病原体的能力及适应复杂的环境直接相关。本研究以四川养麝研究所的115只林麝个体为对象,通过对MHCⅡ类经典的DR和DQ座位的分离、遗传变异分析和化脓性疾病相关性的分析,揭示了林麝MHCⅡ基因多态性的维持机制及其与化脓性疾病的密切关系。主要的研究结果如下:
     1.利用通用引物获得Mobe-DR基因部分exon2序列的基础上,通过基因组步移法结合长程PCR法?成功地获取了DR基因exon2序列两侧的内含子序列,继而成功地设计了座位特异性引物,并通过群体调查结果证实了其有效性,最终获得一个DRA座位,一个DRB座位(DRB3)。
     2.利用通用引物获得Mobe-DQ基因部分exon2序列的基础上,通过长程PCR法,成功地获取了DQ基因完整的intron2序列。通过对长片段序列的比对分析,依据同源序列设计引物,成功地获取到部分intron1序列。所设DQ座位的特异性引物通过群体调查结果证实了其有效性。最终获得了两个DQA座位(DQA1&DQA2)和两个DQB座位(DQB1&DQB2),
     3.本研究一共获得6个MHCⅡ经典座位,利用座位特异性的PCR-SSCP基因分型和测序方法,最终分离到34条等位基因(DRA,4条;DRB3,10条;DQAl,4条;DQA2,7条;DQB1,4条;DQB2,5条)。林麝的6个MHCII经典座位均为多态,与其他濒危的哺乳动物相比较,林麝的适应性免疫系统(MHCⅡ类)保留了较丰富的基因多样性。
     4.林麝MHCⅡA基因经研究表明均经历了净化选择,B基因则均经历了正选择,尤其是在B基因的抗原结合位点经历了显著的正选择作用,表明不同的座位经历了不同的选择压力。此外,系统发育分析表明跨物种进化是维持林麝各个座位基因多态性的主要机制之一。
     5.通过对化脓性疾病易感个体和抗病个体MHCⅡ各个座位上基因型和等位基因数据的统计学分析,与林麝化脓性疾病相关的等位基因一共有9条,其中4条等位基因(Mobe-DQA1*01, Mobe-DQA1*02, Mobe-DQA2*03和Mobe-DQB2*04)与化脓性疾病的抗性显著相关,有5条等位基因(Mobe-DRB3*07, Mobe-DQA1*03(or Mobe-DQAl*04)和Mobe-DQA2*05(or Mobe-DQA2*06)与化脓性疾病的易感性显著相关。与化脓疾病相关的基因型一共有13个,其中与抗性相关的基因型有6个(DRB3*01/03, DQA1*01/01, DQA1*01/02, DQA2*01/03, DQA2*02/04与DQB2*03/04(P<0.05));与易感相关的基因型有7个(DRB3*07/07, DQA1*03/03, DQA2*01/01, DQA2*05/05, DQA2*05/06, DQB1*01/03与DQB2*01/02(P<0.05)).此外,利用各个座位上等位基因的抗原结合区形成的不同单倍型及其基因型数据,通过分析获得与化脓性疾病相关的超级单倍型一共有6条,单倍型H1(DRA*h1/DRB3*h1/DQA1*h1/DQA2*h2/DQB1*h1/DQB2*h2)与H2(DRA*h1/DRB3*h4/DQA1*h1/DQA2*h2/DQB1*h1/DQB2*h1)与化脓性疾病的抗性相关,单倍型H3(DRA*h1/DRB3*h1/DQA1*h3/DQA2*h3/DQB1*h3/DQB2*h2), H4(DRA*h1/DRB3*h5/DQA1*h3/DQA2*h3/DQB1*h1/DQB2*h1), H5(DRA*h1/DRB3*h7/DQA1*h3/DQA2*M/DQB1*h3/DQB2*h2)与H6(DRA*hl/DRB3*h7/DQA1*h3/DQA2*h3/DQB1*hl/DQB2*hl)则与化脓性疾病的易感性相关。推断Mobe-DRA*02及与其相关的基因型在抗病组具有极高的频率,因Mobe-DRA*02与大部分的超级单倍型连锁,尤其是抗病的超级单倍型连锁所致;同时,Mobe-DRA*03釉Mobe-DRA*04的抗原结合区虽然与Mobe-DRA*02完全一致,二者因与易感的超级单倍型连锁,致使其本身和与之相关的基因型在易感组的频率较高。Mobe-DQB2*02和Mobe-DQB2*03的抗原结合区完全一致,二者亦因分别与易感的和抗病的超级单倍型连锁而在易感组和抗病组中的等位基因频率较高。
     易感等位基因、基因型与超级单倍型数目均多于抗病的等位基因和基因型数目,暗示圈养林麝易患化脓性疾病确与群体中这些易感等位基因、基因型与超级单倍型有着密切的关系。建议适时地引入新的种源,防止近交引起的易感等位基因的纯合子和杂合子在群体中的数目继续增多,使种源衰退进一步恶化。
Forest musk deer are one of the most valuable game animals in China. The secretion from the preputial gland of the male deer, the musk, plays an important role in the medicine and the perfume industry. Over the past decades, the great demand in the world market, the extensive hunting and poaching and the lost of the habitats push this animal to the edge of extinction. The captive program has been executed for more than fifty years, but the captive population is still small for many reasons, especially the high susceptibility to many diseases. So, it is very necessary to study this animal and protect this species from extinction.
     The major histocompatibility complex (MHC) is the most polymorphic super-gene family in the vertebrates. The glycoproteins on the cell surface encoded by MHC genes play an important role in immune responses through recognizing and presenting the foreign peptides to T cells. Functional MHC class II molecules are heterodimers of alpha and beta chains encoded by corresponding A and B genes respectively. Exon2fragments of A and B genes, coding for the first domain of a functional MHC class II molecule and sites associated with the peptide binding are highly polymorphic, science the peptide binding region is considered to be related to the resistance to the parasites and the adaptability to the complex environments. A total of115individuals sampled from2005to2007in Sichuan Musk Deer Breeding Institution were studied here. After the identification of classical DR and DQ genes, the analysis of genetic variation and the correlation analysis with purulent disease, we found the mechanisms that maintain the MHC class II genes polymorphism and the relationship between MHC class II genes and purulent disease of forest musk deer. The main results are listed below:
     1. We obtained part of the exon2sequences using the universal primers, and then we used the genome-walking method and the long range PCR to obtain the flanking regions. After that, we designed the locus specific primers based on the obtained sequences. At last, we isolated one DRA and one DKB (DRB3) loci.
     2. Regarding the Mobe-DQ genes, we first used the universal primers to amplify the exon2sequences and then adopted the long range PCR to obtain the entire intron2sequences. The intron1fragments were isolated by the primers that were designed based on the homologous sequences. Finally, we obtained two DQA (DQA1&DQA2) and two DOB (DOB1&DQB2) loci.
     3. We obtained six classical MHC Ⅱ loci in this study. Thirty-four alleles were confirmed by the locus specific PCR-SSCP genotyping and sequencing methods (DRA,4; DRB3,10; DQA1,4; DOA2,7; DOB1,4; DQB2,5). The six loci of forest musk deer are all polymorphic and showed high numbers of alleles per locus comparing with the other endangered animals, implying that the captive forest musk deer still contain an abundant of genetic diversity.
     4. The different loci of forest musk deer experienced different selection pressures. All MHC Ⅱ A genes experienced purifying selection, while all the B genes experienced positive selection, especially the peptide binding region. The phylogenetic analysis showed the trans-species evolution was an important mechanism to maintain the polymorphism of the forest musk deer MHC Ⅱ genes.
     5. The relationship between the forest musk deer MHC class Ⅱ genetic variation and the purulent disease was analyzed by the statistical analysis. We found10alleles.13genotypes and6super haplotypes were related to the susceptibility/resistance to the purulent disease. Four alleles (Mobe-DQA1*01, Mobe-DQA2*03, Mobe-DOA2*04and Mobe-DQB2*03) were found to be resistant to the purulent disease significantly, and six alleles (Mobe-DRB3*07, Mobe-DQA1*03(or Mobe-DQA1*04), Mobe-DOA2*05(or Mobe-DOA2*06) and Mobe-DQB2*02) were found to be susceptible to the purulent disease significantly. Six genotypes were related to the resistance to the purulent disease [DRB3*01/DRB3*03, DOA1*01/DQA1*01, DOA1*01/DOA1*02, DQA2*01/DQA2*03, DQA2*02/DOA2*04and DQB2*03/DQB2*04(P<0.05)], and7genotypes related to the susceptibility to the purulent disease [DRB3*07/DRB3*07, DQA1*03/DOA1*03, DQA2*01/DQA2*01, DQA2*05/DOA2*05, DQA2*05/DQA2*06, DOB1*01/DOB1*03and DQB2*01/DOB2*02(P<0.05)]. The super haplotypes related to the resistance to the purulent disease were H1(DRA*hl/DRB3*hl/DOA1*h1/ DQA2*h2/DQB1*h1/DQB2*h2) and H2(DRA*h1/DRB3*h4/DQA1*h1/DQA2*h2/DQB1*h1/DQB2*hl). The haplotypes related to the susceptibility to the purulent disease were H3(DRA*h1/DRB3*h1/DQA1*h3/DQA2*h3/DQB1*h3/DQB2*h2), H4(DRA*h1/DRB3*h5/DQA1*h3/DQA2*h3/DQB1*h1/DQB2*h1), H5(DRA*h1/DRB3*h7/DQA1*h3/DQA2*h1/DQB1*h3/DQB2*h2) and H6(DRA*h1/DRB3*h7/DQA1*h3/DQA2*h3/DQB1*h1/DQB2*h1). The frequency of DRA*02and related genotypes were relatively high in the resistant group for which was linked to the most resistant super haplotyes. Meanwhile, the frequency of DRA*03(or DRA*04) and related genotypes were relatively high in the susceptible group for which was linked to the most susceptible super haplotyes. The peptide binding sites of Mobe-DQB2*02and Mobe-DQB2*03were completely same, but Mobe-DQB2*02had a higher frequency in the susceptible group and Mobe-DQB2*03had a higher frequency in the resistant group for they were linked to different super haplotypes.
     The number of the susceptible alleles, genotypes and super haplotypes exceeded that of the resistant ones, implying a correlation with the high susceptibility to the purulent disease of forest musk deer. So, it is necessary to introduce new individuals to timprove current genetic structure of captive populations and enhance ability to resist pathogen infection.
引文
安谈红.麝香药用价值研究.吉林农业,2010,8:169
    蔡桂全,冯祚建.喜马拉雅麝在我国的发现及麝属的分类探讨.动物分类学报,1981,6(1):106-110
    陈轩.林麝AFLP的多态性研究及产麝性能的标记分析.浙江大学,2007
    陈艺燕.大熊猫Ⅱ类MHC功能基因的分离及适应性进化研究.浙江大学,2009
    郜二虎,遇达袆,李琼.我国麝资源现状及保护对策.林业资源管理,2005(1):45-47
    古月,武飞,焦景全.投岩麝退香芬芳尽消散.中国国家地理, 2005(1):130-142.
    郝吉福,程怡.麝香的药理学研究概况.时珍国医国药,2004,15(4):248-249
    高耀亭.中国麝的分类.动物学报, 1963,15(3):479-488
    韩红星.主要组织相容性复合体进化机理研究.国外医学:输血及血液学分册,2000,23(5):305-307
    胡忠军,王清,薛文杰,等.紫柏山自然保护区林麝冬季生境选择.河南大学学报:自然科学版,2006736(1):70-74
    姜海瑞,王清,薛文杰,等.麝的通讯行为.生物学通报,2006,41(10):13-14
    姜海瑞,徐宏发,王晓黎,等.麝的生物学研究现状分析.生物学通报,2007,42(6):4--6
    赖彬,徐柳,岳碧松,等.林麝IL-2细胞因子的克隆,表达和纯化.四川动物,2007, 25(4):713-717
    郎冬梅,胡德夫,邹青,等.发情周期圈养雌性林麝粪样孕酮的变化.特产研究,2012,33(4):40-—2
    刘春燕.林麝(Moschus berezovskii)养殖种群死亡原因及其生命生理特征研究.华东师范大学,2008
    刘洪义.林麝常见化脓性疾病的诊治.西南科技大学学报,2004,19(1):99-101
    李明,李元广,盛和林,等.原麝安徽亚种分类地位的再研究.科学通报.1999,44(2):188-192
    李明,盛和林.中国麝科动物分类的研究现状.动物学杂志,1996,31(2):56-58
    李明,盛和林.玉手英利,等.麝、 獐、 麂和鹿间线粒体DNA的差异及其系统进化研究.兽类学报,1998,18(3):184-191
    李明,王小明,黄步军,等.麝科动物干皮标本中的DNA扩增.华东师范大学学报:自然科学版,1998(1):110-111
    李秋波,彦其贵,康继平,等.麝化脓病细菌性病原诊断鉴定.野生动物,2012,33(4):211-213
    刘肇邦.林麝化脓性疾病相关的防治.特种经济动植物,2006,4:43-44
    刘志霄,盛和林.我国麝的生态研究与保护问题概述.动物学杂志,2000,35(3):54-57
    吕树臣,王春清,山宇.林麝的人工繁殖技术.黑龙江畜牧兽医,2011,(10):160-161
    李天培.麝的保护与利用.特种经济动植物,2004,7(7):5-7
    刘文华,佟建明.中国的麝资源及其保护与利用现状分析.中国农业科技导报,2005,7(4):28-32
    吕向辉,乔继英,吴晓民,等.主要危害麝类的化脓性、呼吸系统疾病及寄生虫病研究.经济动物学报,2009,13(2):104-107
    李亚红,赵玲爱.林麝疾病预防与治疗.现代农业科技.2011,17:307-308
    罗燕,程建国,李秋波,等.麝大肠扦菌性化臆病的病原分离鉴定.黑龙江畜牧兽医,2006,11:81-83
    罗燕,程建国,王建明,等.林麝肺炎及化脓性疾病的病理组织学观察.动物医学进展,2009,30(11):122-123
    李致祥.中国麝一新种的记述.动物学研究,1981,2(2):157-161
    林忠,徐宏发,盛和林.林康妊娠期和哺乳期的能量代谢特征.兽类学报,199515(2):98-105
    宋承嗣,易庭宗,王宗瑞.林麝化脓症防治初探.特产研究,1987,3:015
    盛和林.我国麝资源现状及救护措施.野生动物,1996,91(3):10-12
    盛和林,大泰司纪之,陆厚基.中国野生哺乳动物.中国林业出版社,1999
    盛和林,刘志霄.中国麝科动物.上海科学技术出版社,2007
    盛和林,徐宏发,陆厚基.林麝家域和生境选择.华东师范大学学报(哺乳动物生态学专集),1990:14-19
    孙蓉,王任卿,于晓,等.麝香的化学与药理研究进展.齐鲁药事,2005,24(5):296-297
    吴民耀,王念,惠董娜,等.林麝保护的现状及研究进展.重庆理工大学学报:自然科学,2011(1):34-9
    王清,姜海瑞,薛文杰,等.林麝(Moschus berezovskii)研究概况和进展.四川动物,2006,25(1):195-200
    薛程.崇明圈养林麝(Moschus berezovskii)的行为学研究.华东师范大学,2008
    薛程,孟秀祥,徐宏发,等.圈养林麝春季活动节律及时间分配.兽类学报,2008,28(2):194-200
    徐正强,徐宏发.饲养林麝的种群特征和幼麝的存活研究.兽类学报,2003,23(1):17-20
    严昌国,金龙勋.中国麝的生态.延边大学农学学报,1990,(1):79-83
    尹淑媛,戴卫国.雄麝自然泌香期的血象及体温生理特征.成都科技大学学报,1990(4):103-104
    杨营,冯达永,王承旭,等.四川围栏养殖林麝采食植物种类调查.四川动物,2011, 30(3):445--449
    童敬旗,周友兵,徐伟霞,等.几种麝分类地位的探讨.西华师范大学学报(自然科学版),2004,25(3):251-255
    邹方东,张义正,杨楠,等.林麝,马麝及梅花鹿活化素基因pA亚基成熟肽序列的克隆和分析.动物学杂志,2004,39(3):22-27
    张亮,邹方东,陈三,等.林麝及马麝SRY基因片段克隆及其在系统进化分析中的应用.动物学研究,2004,25(、4):334-340
    张培.麋鹿Ⅰ类,Ⅱ类MHC位点的分离及其适应性进化潜力评估.浙江大学,2011
    赵克雷,李旭鑫,帕哈尔定·帕拉哈提,等.圈养林麝脓肿病病原菌分离鉴定及药敏分析.四川动物.2011,30(4):522-526
    Ahn R., Ding Y C, Murray J, et al. Association analysis of the extended MHC region in celiac disease implicates multiple independent susceptibility loci. PLoS One, 2012,7(5):e36926
    Alfonso C,& Karlsson L. Nonclassical MHC class Ⅱ molecules. Annual review of immunology,2000,18(1):113-14
    Anisimova M., Nielsen R., Yang Z. Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics. 2003,164(3):1229-1236
    Ballingall K T, Rocchi M S, McKeever D J, et al. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep. PloS one,2010, 5(6):e11402
    Ballingall K T, MacHugh N D, Taracha E L, et al. Transcription of the unique ruminant class II major histocompatibility complex DYA and DIB genes in dendritic cells. European journal of immunology,2001,31(1):82-86
    Bernatchez L & Landry C. MHC studies in nonmodel vertebrates:what have we learned about natural selection in 15 years?. Journal of evolutionary biology, 2003,16(3):363-377
    Bouille M & Bousquet J. Trans-species shared polymorphisms at orthologous nuclear gene loci among distant species in the conifer Picea (Pinaceae):implications for the long-term maintenance of genetic diversity in trees. American Journal of Botany,2005,92(1):63-73
    Brown J H, Jardetzky T S, Gorga J C, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature London,1993,364:33-33.
    Bryja J, Galan M., Charbonnel N, et al. Duplication, balancing selection and trans-species evolution explain the high levels of polymorphism of the DQA MHC class II gene in voles (Arvicolinae). Immunogenetics,2006, 58(23):191-202
    Cardoso CB, Uthida-Tanaka A M, Magalhaes R F, et al. Association between psoriasis vulgaris and MHC-DRB,-DQB genes as a contribution to disease diagnosis. European Journal of Dermatology.2005,3(15):159-63
    Cariappa A, Sands B, Forcione D, et al. Analysis of MHC class II DP, DQ and DR alleles in Crohn's disease. Gut,1998,43(2):210-215
    Carroll M C, Campbell R D, Bentley D R, et al. A molecular map of the human major histocompatibility complex class III region linking complement genes C4, C2 and factor B. Nature,1984,307(5948):237
    Chen Y Y, Zhang Y Y, Zhang H M, et al. Natural selection coupled with intragenic recombination shapes diversity patterns in the major histocompatibility complex class II genes of the giant panda. Journal of Experimental Zoology Part B.Molecular and Developmental Evolution,2010,314(3):208-223
    Du M, Chen S L, Liu Y H, et al. MHC polymorphism and disease resistance to vibrio anguillarum in 8 families of half-smooth tongue sole (Cynoglossus semilaevis). BMC genetics,2011,12(1):78
    Flores-Villanueva P O, Hendel H, Caillat-Zucman S. et al. Associations of MHC ancestral haplotypes with resistance/susceptibility to AIDS disease development. The Journal of Immunology,2003,170(4):1925-1929
    Gelhaus A, Forster B, Horstmann R D. Evidence for an additional cattle DQB locus. Immunogenetics,1999,49(10):879-885
    Grimholt U, Larsen S, Nordmo R, et al. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class Ⅱ loci. Immunogenetics,2003,55(4):210-219
    Groves C P, Wang Y X, Grubb P. Taxonomy of musk-deer, genus Moschus (Moschidae, Mammalia). Acta Theriologica Sinica,1995,15(3):] 81-197
    Guan T L, Zeng B., Peng Q K, et al. Microsatellite analysis of the genetic structure of captive forest musk deer populations and its implication for conservation. Biochemical Systematics and Ecology,2009,37(3):166-173
    Guha S, Goyal S P, Kashyap V K. Molecular phylogeny of musk deer:A genomic view with mitochondrial 16S rRNA and cytochrome b gene. Molecular phylogenetics and evolution,2007,42(3):585-597
    Guindon S, Dufayard J F, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogeniesassessing the performance of PhyML 3.0. Systematic biology,2010,59(3):307-321
    Hedrick P W. Balancing selection and MHC. Genetica,1998,104(3),207-214
    Hedrick P W, Parker K M, Miller E L. et al. Major histocompatibility complex variation in the endangered Przewalski's horse. Genetics,1999, 152(4):1701-1710
    Hess M, Goldammer T, Gelhaus A, et al. Physical assignment of the bovine MHC class Ⅱa and class Ⅱb genes. Cytogenetic and Genome Research,1999, 85(34):244-247
    Horin P & Matiasovic J. A second locus and new alleles in the major histocompatibility complex class II (ELA-DOB) region in the horse. Animal genetics,2002,33(3):196-200
    Hughes A L& Yeager M. Natural selection at major histocompatibility complex loci of vertebrates. Annual review of genetics,1998,32(1):415-435
    Hwang I T, Kim Y J, Kim S H, et al. Annealing control primer system for improving specificity of PCR amplification. Biotechniques,2003,35(6):1180-1191
    Kaufman J, Salomonsen J, Flajnik M. Evolutionary conservation of MHC class Ⅰ and class Ⅱ molecules-different yet the same. Seminars in immunology. Academic Press,1994,6(6):411-424
    Welsh K I. Natural History of the Major Histocompatibility Complex. Immunology, 1987,60(4):621
    Klein J. Origin of major histocompatibility complex polymorphism:the trans-species hypothesis. Human immunology,1987,19(3):155
    Klein J, Bontrop R E, Dawkins R L, et al. Nomenclature for the major histocompatibility complexes of different species:a proposal. The HLA System in Clinical Transplantation. Springer Berlin Heidelberg,1993:407-411
    Kumanovics A, Takada T, Lindahl K F. Genomic organization of the mammalian MHC. Annual Review of Immunology,2003,21(1):629-657
    Lalitha S. Primer premier 5. Biotech Software & Internet Report.The Computer Software Journal for Scient,2000, 1(6):270-272
    Li Z, Zhang Z, He Z, et al. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers:update of the SHEsis (http://analysis. bio-x.cn). Cell research,2009,19(4):519-523
    Liu Y G & Whittier R F. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics,1995,25(3):674-681
    Madden D R, Gorga J C, Strominger J L, et al. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature,1991, 353(6342):321-325
    Mankowski J L, Queen S E, Fernandez C S, et al. Natural host genetic resistance to lentiviral CNS disease:a neuroprotective MHC class Ⅰ allele in SIV-infected macaques. PloS one,2008,3(11):e3603
    Martin D & Rybicki E. RDP:detection of recombination amongst aligned sequences. Bioinformatics,2000,16(6):562-563
    McClelland E E, Penn D J, Potts W K. Major histocompatibility complex heterozygote superiority during coinfection. Infection and Immunity,2003, 71(4):2079-2086
    Mikko S & Anderson L. Extensive MHC class Ⅱ DRB3 diversity in African and European cattle. Immunogenetics,1995,42(5):408-403
    Mona S, Crestanello B, Bankhead-dronnet S, et al. Disentangling the effects of recombination, selection, and demography on the genetic variation at a major histocompatibility complex class Ⅱ gene in the alpine chamois. Molecular Ecology,2008,17(18):4053-4067
    Murrell B, Moola S, Mabona A. et al. FUBAR:A Fast, Unconstrained Bayesian AppRoximation for inferring selection. Molecular biology and evolution,2013.
    Nagaoka Y, Kabeya H, Onuma M, et al. Ovine MHC class Ⅱ DRB1 alleles associated with resistance or susceptibility to development of bovine leukemia virus-induced ovine lymphoma. Cancer research,1999,59(4):975-981
    Naruse T K, Kawata H, Anzai T, et al. Limited polymorphism in the HLA-DOA gene. Tissue antigens,1999,53(4):359-365
    Naruse T K, Kawata H, Inoko H. et al. The HLA-DOB gene displays limited polymorphism with only one amino acid substitution. Tissue antigens,2002. 59(6):512-519
    Nei M & Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular biology and evolution,1986, 3(5):418-426
    Nowak R M & Paradiso J L. Walker's Mammals of the World. Baltimore,1991
    Nylander J A A. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University,2004,2
    Oliver M K, Telfer S, Piertney S B. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proceedings of the Royal Society B:Biological Sciences, 2009,276(1659):1119-1128
    Paterson S. Evidence for balancing selection at the major histocompatibility complex in a free-living ruminant. Journal of Heredity,1998,89(4):289-294
    Peng H, Liu S, Zeng B, et al. The complete mitochondrial genome and phylogenetic analysis of forest musk deer(Moschus berezovskii). Journal of Natural History, 2009,43(19-20):1219-1227
    Peng H, Liu S, Zou F, et al. Genetic diversity of captive forest musk deer(Moschus berezovskii) inferred from the mitochondrial DNA control region. Animal genetics,2009,40(1):65-72
    Posada D & Crandall K A. Modeltestrtesting the model of DNA substitution. Bioinformatics,1998,14(9):817-818
    Quinnell R J, Kennedy L J, Barnes A, et al. Susceptibility to visceral leishmaniasis in the domestic dog is associated with MHC class II polymorphism. Immunogenetics,2003,55(1):23-28
    Raymond M & Rousset F. GENEPOP (version 1.2):population genetics software for exact tests and ecumenicism. Journal of heredity,1995,86(3):248-249
    Reddy P S, Mahanty S, Kaul T, et al. A high-throughput genome-walking method and its use for cloning unknown flanking sequences. Analytical biochemistry,2008, 381(2):248-253
    Richman A D, Herrera L G, Nash D. MHC class II beta sequence diversity in the deer mouse (Peromyscus maniculantus):implications for models of balancing selection. Molecular Ecology,2001,10(12):2765-2773
    Rishi A S, Nelson N D, Goyal A. Genome walking of large fragments:an improved method. Journal of biotechnology,2004,111(1):9-15
    Ronquist F & Huelsenbeck J P. MrBayes 3:Bayesian phylogenetic inference under mixed models. Bioinformatics,2003,19(12):1572-1574
    Rousset F. genepop'007:a complete re-implementation of the genepop software for Windows and Linux. Molecular ecology resources,2008,8(1):103-106
    Sawyer S A. GENECONV:A computer package for the statistical detection of gene conversion. Distributed by the author, Department of Mathematics, Washington University in St. Louis,1999
    Schaschl H, Goodman S J, Suchentrunk F. Sequence analysis of the MHC class II DRB alleles in Alpine chamois(Rupicapra r. rupicapra). Developmental & Comparative Immunology,2004,28(3):265-277
    Schaschl H, Wandeler P, Suchentrunk F, et al. Selection and recombination drive the evolution of MHC class Ⅱ DRB diversity in ungulates. Heredity,2006, 97(6):427-437
    Seddon J M & Ellegren H. MHC class Ⅱ genes in European wolves:a comparison with dogs. Immunogenetics,2002,54(7):490-500
    Sena L, Schneider M P C, Brenig B, et al. Polymorphisms in MHC-DRA and-DRB alleles of water buffalo(Bubalus bubalis) reveal different features from cattle DR alleles. Animal Genetics,2003,34(1):1-10
    She J X, Boehme S A, Wang T W, et al. Amplification of major histocompatibility complex class Ⅱ gene diversity by intraexonic recombination. Proceedings of the National Academy of Sciences,1991,88(2):453-457
    Singh V K, Mangalam A K, Dwivedi S, et al. Primer premier:program for design of degenerate primers from a protein sequence. Biotechniques,1998,24(2):318-319
    Snell G D, Higgins G F. Alleles at the histocompatibility-2 locus in the mouse as determined by tumor transplantation. Genetics,1951,36(3):306
    Solberg O D, Mack S J, Lancaster A K, et al. Balancing selection and heterogeneity across the classical human leukocyte antigen loci:a meta-analytic review of 497 population studies. Human immunology,2008,69(7):443^64
    Soll S J, Stewart B S, Lehman N. Conservation of MHC class Ⅱ DOA sequences among carnivores. Tissue antigens,2005,65(3):283-286
    Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool,2005,2(1):16
    Su B, Wang Y X. Wang Q S. Mitochondrial DNA sequences imply Anhui musk deer a valid species in genus Moschus. Zoological Research,2001,22(3):169-173
    Sutton J T, Nakagawa S, Robertson B C, et al. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Molecular Ecology,2011,20(21):4408-4420
    Swarbrick P A, Schwaiger F W, Epplen J T, et al. Cloning and sequencing of expressed DRB genes of the red deer (Cervus elaphus) MHC. Immunogenetics, 1995,42(1):1-9
    Takahata N, Satta Y, Klein J. Polymorphism and balancing selection at major histocompatibility complex loci. Genetics,1992,130(4):925-938
    Takeshima S, Sarai Y, Saitou N, et al. MHC class Ⅱ DR classification based on antigen-binding groove natural selection. Biochemical and biophysical research communications.2009,385(2):137-142
    Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution,2011,28(10):2731-2739.
    Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids research,1997,25(24):4876-4882
    Trowsdale J. Genetic and functional relationships between MHC and NK receptor genes. Immunity,2001,15(3):363-374
    Trowsdale J. The MHC, disease and selection. Immunology letters,2011,137(1):1-8
    Van der Poel J J, Groenen M A M, Dijkhof R J M, et al. The nucleotide sequence of the bovine MHC class Ⅱ alpha genes:DRA, DQA and DYA. Immunogenetics, 1990,31(1):29-36
    Wan Q H, Zeng C J, Ni X W, et al. Giant panda genomic data provide insight into the birth-and-death process of mammalian major histocompatibility complex class Ⅱ genes. PLoS One,2009,4(1):e4147
    Wan Q H, Zhang P, Ni X W, et al. A novel HURRAH protocol reveals high numbers of monomorphic MHC class Ⅱ loci and two asymmetric multi-locus haplotypes in the Pere David's deer. PloS one,2011,6(1):e14518
    Weber D S, Stewart B S, Schienman J, et al. Major histocompatibility complex variation at three class Ⅱ loci in the northern elephant seal. Molecular Ecology, 2004,13(3):711-718
    Wegner K M, Kalbe M, Schaschl H, et al. Parasites and individual major histocompatibility complex diversity-an optimal choice?. Microbes and Infection,2004,6(12):1110-1116
    Wei H, Wang H, Hou S, et al. DRB genotyping in cynomolgus monkeys from china using polymerase chain reaction-sequence-specific primers. Human immunology, 2007,68(2):135-144
    Westerdahl H. Passerine MHC:genetic variation and disease resistance in the wild. Journal of Ornithology,2007,148(2):469-477
    Wucherpfennig K W & Strominger J L. Selective binding of self peptides to disease-associated major histocompatibility complex (MHC) molecules:a mechanism for MHC-linked susceptibility to human autoimmune diseases.1995, 181(5):1597-1601
    Xia S, Zou F, Yue B. Six microsatellite loci in forest musk deer, Moschus berezovskii. Molecular Ecology Notes,2006,6(1):113-115
    Yang Z. PAML 4:phylogenetic analysis by maximum likelihood. Molecular biology and evolution,2007,24(8):1586-1591
    Yeager M & Hughes A L. Evolution of the mammalian MHC:natural selection, recombination, and convergent evolution. Immunological reviews,1999, 167(1):45-58
    Yong Y & Lin H E. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell research,2005,15(2):97-98
    York I A & Rock K L. Antigen processing and presentation by the class I major histocompatibility complex. Annual review of Immunology,1996,14(1):369-396
    Yu J, Liang W, Zhu F, et al. Maintenance of polymorphism of Chinese muntjac (Muntiacus reevesi) MHC-DRB gene. Acta Theriol Sin,2010,30:52-57
    Yuhki N, Beck T, Stephens R M, et al. Comparative genome organization of human, murine, and feline MHC class Ⅱ region. Genome Research,2003, 13(6a):1169-1179
    Zhang S C, Yue. B S, Zou F D. Isolation and characterization of microsatellite DNA markers from forest musk deer (Moschus berezovskii)." Zoological Research, 2007,28(1):24-27
    Zhao S S, Chen X, Fang S G, et al. Development and characterization of 15 novel microsatellite markers from forest musk deer (Moschus berezovskii). Conservation Genetics,2008,9(3):723-725
    Zhou J, Huang H, Meng K, et al. Cloning of a new xylanase gene from Streptomyces sp. TN119 using a modified thermal asymmetric interlaced-PCR specific for GC-rich genes and biochemical characterization. Applied biochemistry and biotechnology,2010,160(5):1277-1292
    Zou F. Yue B. Xu L, et al. Isolation and characterization of microsatellite loci from forest musk deer (Moschus berezovskii). Zoological Science,2005; 22(5):593-598