双钙钛矿Sr_2FeMoO_6的制备、表征及电磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用溶胶-凝胶法及微波法,成功合成了双钙钛矿磁电阻材料Sr2FeMoO6以及A位取代系列化合物,并用X射线粉末衍射(XRD)、扫描电镜(SEM)、振动样品磁强计(VSM)等对合成产物进行了物相结构、粒度形貌、电磁性能进行了分析和表征。
     首先,采用廉价的活性炭粉作为还原剂,利用溶胶-凝胶法成功合成了双钙钛矿Sr2FeMoO6单相,研究了合成样品的工艺条件对产物结构及磁性能的影响,确定了最佳的工艺条件。所得样品Sr2FeMoO6属四方晶系,I4/mmm空间群,晶胞参数为:a = 5.580?,c = 7.882?;晶粒尺寸在100nm以下;样品的居里温度高于室温,1T磁场下,样品的室温饱和磁化强度为13.59A·m2/kg,室温磁电阻变化率为-10.02%;样品的导电机制属于小极化子变程跃迁导电机制。
     然后,分别以Li+、Na+、K+、Gd3+取代Sr2FeMoO6中的Sr2+,研究了A位取代对样品结构和磁性能的影响。结果表明:由于掺杂离子引起的空间效应和电子掺杂效应在不同体系中贡献有所差别,Li、Na、K取代样品的晶胞参数呈现减小的趋势,而Gd取代样品的晶胞参数较未掺杂样品的晶胞参数大;Li+、Na+、K+取代样品的饱和磁化强度均呈现随掺杂量的增加先增大后减小的趋势,而Gd3+取代的样品的饱和磁化强度则随着掺杂量的增加而减小。同时,以Sr1.9K0.1FeMoO6为例,提出了溶胶-凝胶法合成Sr1.9K0.1FeMoO6的反应机制。
     最后,探索了一条合成双钙钛矿Sr2FeMoO6的新工艺—微波烧结法,与传统的高温固相烧结法以及溶胶凝胶法相比,具有合成时间短,节能高效等优点。该法所得样品仍属四方晶系,空间群为I4/mmm,晶胞参数为:a = 5.571?,c = 7.872?。电磁性能研究表明:微波烧结法有利于提高样品的饱和磁化强度及磁电阻变化率,1T磁场下,样品的室温饱和磁化强度为17.949A·m2/kg,室温磁电阻变化率为-15.63%,均高于溶胶凝胶法所得样品;其导电机制属于绝热小极化子导电机制。此外,结合XRD及红外分析结果,推测反应历程为:在微波场下,SrCO3、Fe2O3、MoO3首先反应生成前驱物Sr2Fe2O5和SrMoO4;此前驱物经活性炭还原,促成Fe-O-Mo键的形成,从而生成最终产物Sr2FeMoO6。
The magnetoresistance materials Sr2FeMoO6 with double perovskite structure and series of A site doped compounds were successfully synthesized by Sol-Gel method and microwave method. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) were used to analyze and characterize the phase structure, the size and morphology of particles, magnetic and electric properties of the samples.
     First, with cheap activated carbon for reducing agent, the sol-gel method was used to prepare the giant magnetoresistance materials Sr2FeMoO6, which is the double perovskite oxide. The influence of process conditions on the structure and magnetic properties of the samples was investigated in detail and the appropriate conditions were determined. The as-synthesized sample is Sr2FeMoO6 with tetragonal crystal structure and I4/mmm space group, and unit cell parameter is a = 5.580?, c = 7.882?. The grain size is below 100nm. The Curie temperature is above room temperature and the saturation magnetization of the sample is 13.59A·m2/kg under 1T at room temperature. The room temperature magnetoresistance of the sample under 1T field is up to -10.02%. The sample exhibit typical semiconductor behavior and the conductive mechanism can be described by small polaron variable range hopping model.
     Then, the series of Sr2-xAxFeMoO6 (A = Li+, Na+, K+ or Gd3+) were synthesized by sol-gel method, in order to investigate the influence of A site substitution on structure and magnetic properties of the samples. Because the contribution of the steric effect and electron-doping effect are different in different systems, the unit cell parameters of Li-, Na-, K-doped samples are less than those of undoped sample, while the unit cell parameters of Gd-doped samples are more than those of undoped sample. With the increase of doping amount, the saturation magnetization of Li-, Na- or K-doped samples increases firstly and then decrease, while that of Gd-doped samples decreases with the increase of doping amount. Meanwhile, the primary mechanism of the synthesis of Sr1.9K0.1FeMoO6 by sol-gel method is proposed according to the analysis of TG-DTA, XRD, infra-red spectrum and X-ray energy disperse spectrum.
     Finally, a new process named microwave sintering method is explored to prepare double perovskite Sr2FeMoO6 with MnO2 for microwave absorbent and activated carbon for reducing agent. Compared with the traditional solid state reaction and sol-gel technique, this method has many advantages of short reaction time, saving energy and high efficiency. The as-synthesized sample has tetragonal crystal structure and I4/mmm space group, and unit cell parameter is a = 5.571?, c = 7.872?. The investigation of magnetic and electric properties shows that microwave sintering method is favor to improve the saturation magnetization and room temperature magnetoresistance of the sample. The Curie temperature is above room temperature and the saturation magnetization of the sample is17.949 A·m2/kg under 1T at room temperature. The room temperature magnetoresistance of the sample under 1T field is up to -15.63%, which is larger than that of the sample prepared by sol-gel technique. The sample exhibit typical semiconductor behavior and the conductive mechanism can be described by adiabatic small polaron model. According to XRD and infra-red spectra analysis, the reaction mechanism is proposed, as follows: firstly, under the radiation of microwave, the reaction of SrCO3、Fe2O3 and MoO3 produces the precursor Sr2Fe2O5 and SrMoO4; then, the precursor is reduced by activated carbon in order to facilitate the formation of Fe-O-Mo bond, i.e., the generation of final product Sr2FeMoO6.
引文
[1] T R McGuire, R I Potter. Anisotropic magnetoresistance in ferromagnetic 3d alloys [J]. IEEE Transactions on Magnetics, 1975, 11(4): 1018-1038.
    [2] G Binasch, P Grunberg, F Saurenbach, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange [J]. Physical Review B, 1989, 39(7): 4828-4830.
    [3] M N Baibich, J M Broto, A Fert, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices [J]. Physical Review Letter, 1988, 61(21): 2472-2475.
    [4] C L Chien, F Y Yang, K Liu, et al. Very large magnetoresistance in electrodeposited single-crystal Bi thin films [J]. Journal of Applied Physics, 2000, 87(9): 4659-4715.
    [5] R Von Helmolt, J Wecker, B Holzapfel, et al. Gaint negative magnetoresistance in perovskite La2/3Ba1/3MnOx ferromagnetic films [J]. Physical Review Letters, 1993, 71(14): 2331-2333.
    [6] S Jin, T H Tiefel, M McCormack, et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films [J]. Science, 1994, 264(5157): 413-415.
    [7] K Sumiyama, T Hibara, S A Makhlouf, et al. Structural difference between Fe/Cu and Fe/Ag granular films produced by a cluster beam method [J]. Material Science and Engieering: A, 1996, 217-218: 340-343.
    [8] E D Anna, G Leggieri, A Luches, et al. Intermixing in the immiscible Co/Ag/Co trilayer under XeCl laser annealing [J]. Thin Solid Films, 1999, 343-344: 206-209.
    [9] X W Zhou, H N G Wadley, R A Johnson, et al. Atomic scale structure of sputtered metal multilayers [J]. Acta Materialia, 2001, 49(19): 4005-4015.
    [10] H Geng, J W Heckman, R Loloee, et al. The effect of indium contamination and Nb contact layers on the structure of Ag/NiFe GMR spin valves [J]. Material Science and Engieering: B, 2001, 86(3): 245-254.
    [11] F Bridges, C H Booth, M Anderson, et al. Mn K-edge XANES studies of La1-xAxMnO3 systems (A = Ca, Ba, Pb) [J]. Physical Review B, 2001, 63(21): 214405.
    [12] M Hecker, D Tietjen, H Wendrock, et al. Annealing effects and degradation mechanism of NiFe/Cu GMR multilayers [J]. Journal of Magnetism and Magnetic Materials, 2002, 247(1): 62-69.
    [13] D Wilgocka-Slezak, T Slezak, B Goodenough, et al. Experimental studies of the non-collinear magnetic states in epitaxial FeAu multilayers [J]. Journal of Magnetism and Magnetic Materials, 2002, 240(1-3): 536-538.
    [14] F Spizzo, E Angeli, D Bisero, et al. SANS measurements with polarized neutrons on Fe/Ag magnetic granular samples: compositional andmagnetic morphology [J]. Journal of Magnetism and Magnetic Materials, 2003, 262(1): 124-127.
    [15] B Dieny, V S Speriosu, S S P Parkin, et al. Giant magnetoresistance in soft ferromagnetic multilayers [J]. Physical Review B, 1991, 43(1): 1297-1300.
    [16] J S Moodera, L R Kinder, T M Wong, et al. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions [J]. Physical Review Letters, 1995, 74(16): 3273-3276.
    [17] C Zener. Interaction between the d-shells in the transition metals: II. Ferromagnetic compounds of manganese with perovskite structure [J]. Physical Review, 1951, 82(3): 403-405.
    [18] J B Goodenough. Theory of the role of covalence in the perovskete type manganites [La,M(II)]MnO3 [J]. Physical Review, 1955, 100(2): 564-573.
    [19] A P Ramirez, M A Subramanian. Large enhancement of magnetoresistance in Tl2Mn2O7: pyrochlore versus perovskite [J]. Science, 1997, 277: 546-549.
    [20] Y Shimakawa, Y Kubo, T Manako. Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure [J]. Nature, 1996, 379: 53-55.
    [21] A P Ramirez, R J Cava, J Krajewski. Colossal magnetoresistance in Cr-based chalcogenide spinels [J]. Nature, 1997, 386: 156-159.
    [22] H Ohno. Making nonmagnetic semiconductors ferromagnetic [J]. Science, 1998, 281: 951-956.
    [23] Y Matsumoto, M Murakami, T Shono, et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide [J]. Science, 2001, 291: 854-856.
    [24] T Dietl, H Ohno, F Matsukura, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J]. Science, 2000, 287: 1019-1022.
    [25] T Dietl, H Ohno, F Matsukura. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors [J]. Physical Review B, 2001, 63(19): 195205.
    [26] G A Prinz. Magnetoelectronics applications [J]. Journal of Magnetism and Magnetic Materials, 1999, 200(1): 57-68.
    [27] J M Daughton. GMR applications [J]. Journal of Magnetism and Magnetic Materials, 1999, 192(2): 334-342
    [28] G A Prinz. Magnetoelectronics [J]. Science, 1999, 282(5394): 1660-1663.
    [29] J L Simonds. Magnetoelectronics today and tomorrow [J]. Physics Today, 1995, 48(4): 26-28.
    [30]梁敬魁,相图与相结构[M],科学出版社,北京, 1993.
    [31]近角聪信.磁性体手册(中册) [M],冶金工业出版社,北京, 1984.
    [32] F S Galasso, F C Douglas, R J Kasper. Relationship between magnetic Curie points and cell sizes of solid solutions with the ordered perovskite structure [J]. Journal of Chemical Physics, 1966, 44(4): 1672-1674.
    [33] K -I Kobayashi, T Kimura, Y Tomioka, et al. Intergrain tunneling magnetoresistance in polycrystals of the ordered double perovskite Sr2FeReO6 [J]. Physical Review B, 1999, 59(17): 11159-11162.
    [34] T Nakagawa. Magnetic and electrical properties of ordered perovskite Sr2(FeMo)O6 and its related compounds [J]. Journal of the Physical Society of Japan, 1968, 24: 806-811.
    [35] A W Sleight, J F Weither. Magnetic and electrical properties of Ba2MReO6 ordered perovskites [J]. Journal of Physics and Chemistry of Solids, 1972, 33(3): 679-687.
    [36] F K Patterson, C W Moeller, R Ward. Magnetic oxides of molybdenum (V) and tungsten (V) with the ordered perovskite structure [J]. Inorganic Chemistry, 1963, 2(1): 196-198.
    [37] A W Sleight, J Longo, R Ward. Compounds of osmium and rhenium with the ordered perovskite structure [J]. Inorganic Chemistry, 1962, 1(2): 245-250.
    [38] W E Pickett. Spin-density-functional-based search for half-metallic antiferromagnets [J]. Physical Review B, 1998, 57(17): 10613-10619.
    [39] K -I Kobayashi, T Kimura, H Sawada, et al. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure [J]. Nature, 1998, 395(15): 677-680.
    [40] Y Tomioka, T Okuda, Y Okimoto, et al. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6 [J]. Physical Review B, 2000, 61(1): 422-427.
    [41] C Ritter, M R. Ibarra, L Morellon, et al. Structural and magnetic properties of double perovskites AA'FeMoO6 (AA' = Ba2, BaSr, Sr2 and Ca2) [J]. Journal of Physics: Condensed Matter, 2000, 12(38): 8295-8305.
    [42] O Charmissem, P Kruk, B Dabrawski, et al. Structural phase transition and the electronic and magnetic properties of Sr2FeMoO6 [J]. Physical Review B, 2000, 62(21): 14197-14206.
    [43] D Sánchez, T A Alonso, M Garcia-Hernandez, et al. Origin of neutron magnetic scattering in antisite-disordered Sr2FeMoO6 double perovskites [J]. Physical Review B, 2002, 65(10): 104426.
    [44] J M Greneche, M Venkatesan, R Suryanarayanan, et al. M?ssbauer spectrometry of A2FeMoO6 (A = Ca, Sr, Ba): Search for antiphase domains [J]. Physical. Review B, 2001, 63(17): 174403.
    [45] J Navarro, C Frontera, Ll Balcells,et al. Raising the Curie temperature in Sr2FeMoO6 double perovskites by electron doping [J]. Physical Review B, 2001, 64(9): 092411.
    [46] Ll Balcells, J Navarro, M Bibes, et al. Cationic ordering control of magnetization in SrFeMoO double perovskite [J]. Applied Physics Letters, 2001, 78(6): 781-783.
    [47] C L Yuan, S G Wang, W H Song, et al. Enhanced intergrain tunneling magnetoresistance in double perovskite Sr2FeMoO6 polycrystals with nanometer-scale particles [J]. Applied Physics Letters, 1999, 75(24): 3853-3855.
    [48] J P Zhou, R Dass, H Q Yin, et al. Enhancement of room temperature magnetoresistance in double perovskite ferrimagnets [J]. Journal of Applied Physics, 2000, 87(9): 5037-5039.
    [49] K -I Kobayashi, T Okuda, Y Tomioka, et al. Possible percolation and magnetoresistance in ordered double perovskite alloys Sr2Fe(W1-xMox)O6 [J]. Journal of Magnetism and Magnetic Materials, 2000, 218(1): 17-24.
    [50] X M Feng, G Y Liu, Q Z Huang, et al. Influence of annealing treatment on structural and magnetic properties of double perovskite Sr2FeMoO6 [J].Transactions of Nonferrous Metals Society of China, 2006, 16(1): 122-126
    [51] Q Zhang, G H Rao, Y G Xiao, et al. Crystal structure, magnetic and electrical-transport properties of rare-earth-doped Sr2FeMoO6 [J]. Physica B: Condensed Matter, 2006, 381(1-2): 233-238
    [52] G Narsinga Rao, Saibal Roy, Chung-Yuan Mou, et al. Effect of La doping on magnetotransport andmagnetic properties of double perovskite Sr2FeMoO6 system [J]. Journal of Magnetism and Magnetic Materials, 2006, 299(2): 348-355.
    [53] G Aldica, C Plapcianu, P Badica, et al. Synthesis by oxalic (citric) route and electrical and magnetic characterization of Sr2FeMoO6 perovskite [J]. Journal of Magnetism and Magnetic Materials, 2007, 311(2): 665-670.
    [54] J Raittila, T Salminen, T Suominen, et al. Nanocrystalline Sr2FeMoO6 prepared by citrate-gel method [J]. Journal of Physics and Chemistry of Solids, 2006, 67(8): 1712-1718.
    [55]武丽艳,郑文君.双钙钛矿型Ba2YSbO6的水热合成和结构表征[J].南开大学学报(自然科学版), 2005, 38(3): 6-9.
    [56] A Di Trolio, R Larciprete, A M Testa, et al. Double perovskite Sr2FeMoO6 films: Growth, structure, and magnetic behavior [J]. Journal of Applied Physics, 2006, 100: 013907.
    [57] X B Zhu, J M Dai, X H Li, et al. Chemical solution deposition preparation of double perovskite Sr2FeMoO6 film on LaAlO3 (001) substrate [J]. Materials Letters, 2005, 59(18): 2366-2369.
    [58] T Yamaguchi, H Suwaki, K Kikuta, et al. Properties of Sr2FeMoO6 thin films fabricated by the chemical solution deposition method [J]. Solid State Communications, 2005, 133(2): 71-75.
    [59] H Suwaki, T Yamaguchi, W Sakamoto, et al. Chemical solution processing and properties of Sr2FeMoO6 thin films [J]. Journal of Magnetism and Magnetic Materials, 2005, 295(3): 230-234.
    [60]王卫民,赵鸣,赵丽丽,等.溶胶-凝胶低温自蔓延工艺合成Co0.5Ni0.5Mn2O4纳米粉体的过程稳定性研究[J].人工晶体学报, 2006, 35(2): 294-298.
    [61]王健,郁黎明,袁淑娟,等.不同条件锰锌铁氧体纳米晶形成机理及物性研究[J].功能材料, 2008, 39(1): 119-122.
    [62]张海军,姚熹,张良莹,等. BaFe12O19的溶胶-凝胶合成及其微波性能研究.功能材料[J], 2002, 33(4): 376-378.
    [63] D Niebiekikwiat, A Caneiro, R D S Sanchez. Oxygen-induced grain boundary effects on magnetotransport properties of Sr2FeMoO6+δ[J]. Physics Review B, 2001, 64 (18): 18046.
    [64] D Niebiekikwiat, A Caneiro, R D S Sanchez, et al. Enhancement of the low field magnetoresistance by grain boundary modification in Sr2FeMoO6+δ[J]. Physica B: Condensed Matter, 2002, 320(1-4): 107-110.
    [65] J M D Coey, M Viret, L Ranno, et al. Electron localization in mixed-valence manganites [J]. Physical Review Letter, 1995, 75(21): 3910-3913.
    [66] G H Jonker, J H VanSanten. Ferromagnetic compounds of manganese with perovskite structure [J]. Physica, 1950, 16(3): 337-349.
    [67] M Jaime, M B Salamon, M Rubinstein, et al. High-temperature thermopower in La2/3Ca1/3MnO3 films: Evidence of polaronic transport [J]. Physical Review B, 1996, 54(17): 11914-11917.
    [68] M Jaime, M B Salamon, K Pettit. Magnetothermopower in La0.67Ca0.33MnO3 thin films [J]. Applied Physics Letters, 1996, 68(11): 1576-1580.
    [69] E K Hemery, G V M Williams, H J Trodahl. Isoelectronic and electronic doping in Sr2FeMoO6 [J]. Journal of Magnetism and Magnetic Materials, 2006, 310(2): 1958-1960.
    [70] A H Habib, C V Tomy, A K Nigam, et al. Structural, transport and magnetic properties of Sr2-xNdxFeMoO6 (0≤x≤1) [J]. Physica B: Condensed Matter, 2005, 362(1-4): 108-117.
    [71] X M Feng, G H Rao, G Y Liu, et al. Enhancement of Curie temperature and room-temperature magnetoresistance in double perovskite (Sr1.6Ba0.4)FeMoO6 [J]. Solid State Communications, 2004, 129(11): 753-755.
    [72] J Guo, C Dong, L H Yang, et al. A green route for microwave synthesis of sodium tungsten bronzes NaxWO3 (0    [73] O P Thakur, C Prakash, D K Agrawal. Microwave synthesis and sintering of Ba0.95Sr0.05TiO3 [J]. Materials Letters, 2002, 56(6): 970-973.
    [74] H T Yu, H X Liu, D B Luo, et al. Microwave synthesis of high dielectric constant CaCu3Ti4O12 [J]. Journal of Materials Processing Technology, 2008, 208(1-3): 145-148.
    [75]陈永红,童悦,魏亦军,等. Pr0.6Sr0.4FeO3-δ钙钛矿结构材料的制备与表征[J].稀有金属, 2007, 31(1): 57-62.
    [76]彭文世,刘高魁.矿物红外光谱图集[M].科学出版社,北京, 1982.
    [77] Seguin L, Figlarz M, Cavagnat R, et al. Infrared and Raman Spectra of MoO3 Molybdenum Trioxides and MoO3·xH2O Molybdenum Trioxide Hydrates [J]. Spectochimica Acta A, 1995, 51:1323-1344.
    [78] Liu Yang, Yu Ping, Xiao Dingquan, et al. Characterization and Photoluminescence Properties of SrMoO4 Film via Chemical Solution Processing [J]. Rare Metal Materials and Engineering, 37(Supper 2): 177-180.
    [79]陈永红,魏亦军,刘杏芹,等. La1-xSrxFeO3-δ系钙钛矿材料的表征和性能[J].无机化学学报, 2006, 22(1): 31-36.