高介电常数聚合物基复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高介电常数材料是一种应用前景非常广泛的绝缘材料,它有着很好的储存电能和均匀电场的性能,在电子、电机和电缆行业中都有非常重要的应用。因此,提高电介质材料的介电常数具有重大意义。具有轻质、易加工、低成本和良好机械性能等优点的高介电常数聚合物基复合材料正受到世界广泛地关注。在现有的高介电常数聚合物基复合材料体系中,与两相的陶瓷/聚合物复合材料及导体/聚合物复合材料相比,导体/陶瓷/聚合物复合材料三相复合材料具有更高的介电常数。因此,开展导体/陶瓷/聚合物三相复合材料的研究具有重大的现实意义。
     目前此类复合体系研究选用的导体材料多为金属、石墨及碳纳米管等无机材料,采用导电高分子聚苯胺(PANI)作为导体的研究较少。在复合体系的制备工艺方面,目前绝大多数研究采用的是传统的机械共混法及溶液共混法,而对于能将体系多相组分更好复合的原位聚合法制备工艺鲜见报道。
     本论文采用原位聚合工艺,制备出一类导体(PANI)/陶瓷(BaTiO_3)二元复合材料前驱体,进而以综合性能优异的环氧树脂(Epoxy)作为基体,制备出导体(PANI)/陶瓷(CCTO)/聚合物(Epoxy)三相复合材料。分别研究了两类复合材料体系的微观形貌、电学性能、介电性能及热性能,从而为这类新型聚合物基复合材料的应用提供理论及实验基础。
     通过原位聚合法制备了盐酸(HCl)及十二烷基苯磺酸酸(DBSA)掺杂体系的PANI(HCl)/BaTiO_3(K)及PANI(DBSA)/BaTiO_3(K)复合材料前驱体,二者均呈现PANI包覆BaTiO_3的核壳结构。对比研究了PANI(HCl)/BaTiO_3(K)及PANI(DBSA)/BaTiO_3(K)复合材料的热稳定性、电导率及介电性能。与PANI(HCl)/BaTiO_3(K)相比,PANI(DBSA)/BaTiO_3(K)复合材料的热稳定性明显提高,且具有更高的电导率和介电常数。
     通过原位聚合法制备了PANI/CCTO/Epoxy复合材料,研究了Epoxy树脂、CCTO/Epoxy和PANI/CCTO/Epoxy复合体系的固化反应性。凝胶时间及DSC分析表明,CCTO及PANI的加入均对Epoxy的固化产生了阻碍作用,降低了体系的固化速率。SEM研究表明,填料CCTO及PANI分散性良好,与Epoxy基体有较好的相容性。通过DMA及TG手段研究了复合材料的热性能。DMA研究表明,随着CCTO及PANI/CCTO混合填料的加入,复合材料的Tg逐渐下降。TG研究显示,CCTO(K) 20%/Epoxy复合材料的热稳定性最优,PANI 5%/CCTO(K) 20%/Epoxy次之,二者较树脂基体Epoxy的耐热性能均有提高。通过宽频介电谱仪研究了复合材料的电导率及介电性能。研究表明,PANI m/CCTO(K) 20%/Epoxy复合材料的渗流阈值在0.06左右,复合材料的电导率、介电常数和介电损耗在渗流阈值附近显著突变。当PANI的体积分数低于渗流阈值时,复合材料的介电常数随频率的变化很小;当PANI的体积分数接近渗流阈值时,复合材料的介电常数随PANI含量的增大迅速增大,且随频率的增大迅速降低。在室温1KHz条件下,PANI m/CCTO(K) 20%/Epoxy复合材料在PANI体积分数为10%(m=10%)时得到最大介电常数220,相对于基体树脂Epoxy提高了62倍。?
High dielectric constant material is an insulation material with very broad application prospects in many fields such as electrical and cable industries, so it is important to enhance its dielectric constant. High dielectric constant polymeric matrix composites with advantages of light weight, easy processing, low cost and good mechanical properties, have caught worldwide attention. In the existing systems of high dielectric constant polymeric matrix composites, comparing to the two-phase ceramic/polymer composites and conductor/polymer composites, the three-phase conductor/ceramic/polymer composites have higher dielectric constant. Therefore, the study in the three-phase conductor/ceramic/polymer composite is of great practical significance.
     At present the conductor of such complex systems are mostly inorganic materials such as metals, graphite and carbon nanotubes. It is rare to use conductive polymer as a conductor like conducting polyaniline (PANI). In aspects of preparing the composites, most of the studies took the traditional mechanical mixing and solution blending method, while the in-situ polymerization technique was rarely reported.
     In this thesis, by the technique of in-situ polymerization, a series of conductor (PANI)/ceramic (BaTiO_3) binary composites were prepared as intermediates, then a conductor (PANI)/ceramic (CCTO)/polymer (Epoxy resin) three-phase composite was prepared taking epoxy resin (Epoxy) as substrate. The morphology, electrical properties, dielectric properties and thermal properties of the two series of composites were studied to provide theoretical and experimental basis for application of these new polymer matrix composites.
     Two kinds of PANI/BaTiO_3 composites (coded as PANI(HCl)/BaTiO_3 and PANI(DBSA)/BaTiO_3) were synthesized by in-situ polymerization technique, in which PANI was doped with hydrochloride acid (HCl) or dodecylbenzene sulfonic acid (DBSA). The structure, morphology, thermal resistance, AC conductivity and dielectric ?properties of the composites were evaluated. Results show that the two kinds of composites have core-shell structure, in addition, comparing to PANI(HCl)/BaTiO_3, PANI(DBSA)/BaTiO_3 has better thermal stability, higher AC conductivity and dielectric constant.
     A series of PANI/CCTO/Epoxy composites were prepared by in-situ polymerization. The curing behaviors of epoxy resin, CCTO/Epoxy and PANI/CCTO/Epoxy composites were studied. Gel time and DSC analyses show that the addition of CCTO and PANI/CCTO into epoxy reduces the curing rate of epoxy. SEM studies show that the CCTO and PANI fillers have good dispersion and compatibility with epoxy matrix. The thermal properties of the composites were studied by DMA and TG analysis. DMA analyses shows that the addition of CCTO and PANI/CCTO into epoxy slightly decreases the glass transition temperature (Tg). TG studies show CCTO(K) 20%/Epoxy has better thermal stability than PANI5%/CCTO(K) 20%/epoxy, and both of them have better thermal resistance than epoxy resin. AC conductivity and dielectric properties of the composite were studied by broadband dielectric spectroscopy. The results show that the percolation threshold of PANIm/CCTO(K)20%/Epoxy composites was about 0.06, and a significant mutation of AC conductivity, dielectric constant and loss appears near the percolation threshold. When the content of PANI is lower than the percolation threshold, the dielectric constant of the composites changes little with the increase of the test frequency, however, when the content of PANI is more than the percolation threshold, the dielectric constant of the composite increases rapidly with the increase of PANI content and decreases quickly with the increase of the test frequency. Under the condition of 1KHz at room temperature, PANI10%/CCTO(K)20%/Epoxy composite has the highest dielectric constant of 220, which increased 62 times than epoxy resin.
引文
[1] Murugaraj P. Electron transport in semiconducting nanoparticle and nanocluster carbon–polymer composites. Solid State Communications, 2006, 137:422–426
    [2] Zhang QM, Bharti V, Zhao X. Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron-Irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer. Science, 1998, 280:2101-2103
    [3] Zhang QM, Li HF, Poh M, Feng X, Cheng ZY, Xu HS, et al. An all-organic composite actuator material with a high dielectric constant. Nature, 2002, 419(6904):284-287
    [4] Dang ZM, Xie D, Zhang YH, Tjong SC. Dielectric behavior and dependence of percolation threshold on the conductivity of fillers in polymer-semiconductor composites. Appl Phys Lett, 2004, 85(1):97-99
    [5] Xia F, Cheng ZY, Xu HS, Li HF, Zhang QM, Kavarnos GJ, et al. High Electromechanical Response in a Poly(vinylidene fluoride- trifluoroethylene- chlorofluoroethylene) Terpolymer. Adv Mater, 2002, 14(21):1574-1577
    [6] Moa TC. Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites. Ceramics International, 2008, 34:1767–1771
    [7] Li Q, Xue QZ. Large dielectric constant of the chemically purified carbon nanotube/polymer composites. Mater Lett, 2008, 62:4229–4231
    [8]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,2002, 88-314.
    [9]宝兴,胡明.电子器件导论.北京:北京理工大学出版社,1990,33-53.
    [10]何曼君,陈维,董西侠.高分子物理.上海:复旦大学出版社,1990,372-392.
    [11] Pelrine R, Kornbluh R, Pei Q, Joseph J. High speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287(5454):836-839
    [12] Xu H, Cheng ZY, Olson D, Mai T, Zhang QM, Kavamos G. Ferroelectric andelectromechanical properties of poly(vinylidene-fluoride-trifluoroethylene- cholorotrifluoroethylene) terpolymer. Appl Phys Lett, 2001, 78(16):2360-2362
    [13] Dang ZM, Shen Y, Fan LZ, Nan CW. Dielectric behavior of novel three-phase MWNTs/ BaTi03/PVDF composites. Materials Science and Engineering B, 2003, 103(2):140-144
    [14] Pant HC, Patra MK, Verma A, Vadera SR, Kumar N. Study of the dielectric properties of barium titanate–polymer composites. Acta Mater, 2006, 54: 3163-3169
    [15] Kuo DH, Chang CC, Wang WK, Lin BY. Dielectric behaviors of multi-doped BaTiO3/epoxy composites. J Eur Ceram Soc 2001, 21(9):1171-1177
    [16] Dang ZM, Yu YF. Study on microstructure and dielectric property of the BaTiO3/epoxy resin composites. Compos Sci Technol 2008, 68:171-177
    [17]晁芬,梁国正.双马来酰亚胺/钛酸钡复合材料介电性能的研究.功能材料,2007,增刊(38):654-657
    [18] Chao F, Liang GZ, Kong WF, Zhang X. Study of dielectric property on BaTiO3 /BADCy composite. Mater Chem Phys, 2008, 108:306–311
    [19]刘卫东,刘小芬,朱宝库.聚酰亚胺/钛酸钡复合膜介电性能及其影响因素的研究.功能材料,2007,7(38):1106-1109
    [20] Kobayashi Y, Tanase T, Tabata T, Miwa T, Konno M. Fabrication and dielectric properties of the BaTiO3–polymer nano-composite thin films. J Eur Ceram Soc, 2008, 28:117–122
    [22] Xiang F, Wang H. Preparation and dielectric properties of bismuth-based dielectric/PTFE microwave composites. J Eur Ceram Soc, 2006, 26:1999–2002
    [23] Xie SH, Zhu BK, Wei XZ, Xu ZK, Xu YY. Polyimide/BaTiO3 composites with controllable dielectric properties. Compos part A-Appl S 2005, 36:1152-1157
    [24] Nisa VS, Rajesh S, Murali KP, Priyadarsini V, Potty SN, Ratheesh R. Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications. Compos Sci Techno 2008, 68:106–112
    [25] Adikary SU, Chan HLW, Choy CL, Sundaravel B, Wilson IH. Characterisation of proton irradiated Ba0.65Sr0.35TiO3/P(VDF-TrFE) ceramic-polymer composites. Compos Sci Technol 2002, 62:2161-2167
    [26] Wanga CM, Kaob KS. Processing and properties of CaCu3Ti4O12 ceramics. Journal of Physics and Chemistry of Solids 2008, 69:608–610
    [27] Arbatti M, Shan XB. Ceramic-Polymer Composites with High Dielectric Constant. Adv Mater 2007, 19:1369–1372
    [28] Wu JB, Nan CW. Giant Dielectric Permittivity Observed in Li and Ti Doped NiO. Phys Rev Lett, 2002, 89(21): 217601
    [29] Xie SH, Zhu BK. Preparation and properties of polyimide/LTNO composite films with high dielectric constant. Mater Lett, 2005, 59: 2403– 2407
    [30] Dang ZM, Lin YH, Nan CW. Novel Ferroelectric Polymer Composites with High Dielectric Constants. Adv Mater 2003, 15(19):1625-1629 [31 ] Hao XY, Gai GS, Yang YF, Zhang YH, Nan CW. Development of the conductive polymer matrix composite with low concentration of the conductive filler. Mater Chem Phys, 2008, 109(1):15–19
    [32] Nan CW. Physics of inhomogeneous inorganic materials. Prog Mater Sci 1993, 37(1):1-116
    [33] Qi L, Lee BI, Chen S, Samuels WD, Exarhos GJ. High-Dielectric-Constant Silver-Epoxy Composites as Embedded Dielecrics. Adv Mater, 2005, 17(14):1777–1781
    [34] Xu JW, Wong CP. Characterization and properties of an organic-inorganic dielectric nanocomposite for embedded decoupling capacitor applications. Compos part A-Appl S, 2007, 38(1): 13–19
    [35] Xu JW and Wong CP. Low-loss percolative dielectric composite. Appl Phys Lett, 2005, 87(8):082907
    [36] Li Q, Xue QZ, Hao LZ, Gao XL, Zheng QB. Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Compos Sci Technol, 2008; 68(10-11):2290-2296.
    [37] Huang C, Zhang QM, Su J. High-dielectric-constant all-polymer percolative composites. Appl Phys Lett, 2003, 82(20):3502-3504
    [38] Lu JX, Moon KS, Kim BK, Wong CP. High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer, 2007, 48: 1510-1516
    [39] Tsotra P, Friedrich K. Electrical and dielectric properties of epoxy resin/polyaniline-DBSA blends. Journal of Materials Science, 2005, 40:4415-4417
    [40] Chwang CP, Liu CD, Huang SW, Chao DY, Lee SN. Synthesis and characterization of high dielectric constant polyaniline/polyurethane blends. Synthetic Met 2004, 142(1-3):275-281
    [41] Brosseau C, Beroual A. Computational electromagnetics and the rational design of new dielectric heterostructures. Progress in Materials Science, 2003, 48(5):373-456
    [42]薛庆忠.二元复合材料的介电理论.胜利油田师范专科学校学报. 1999,13(4):25-30
    [43] Wang JJ, Li ZY. Nonlinear response of granular composite medium. Commun Theor Phys, 1996, 25:35-38
    [44] Brosseau C, Queffelec P, Talbot P. Microwave characterization of filled polymers. Journal of Applied Physics 2001, 89(8): 4532-4540
    [45] DolyeW T, Jacobs IS. Effective cluster model of dielectric enhancement in metal-insulator composites. Phys Rev B,1990,45(15):9319-9327
    [46]江平开,徐传骧,刘辅宜,王寿泰.金属-绝缘体复合材料介电增强的研究.西安交通大学学报,1997,31(2):6-11
    [47] Kuo DH, Chang CC, Su TY, Wang WK, Lin BY. Dielectric behaviors of multi-doped BaTiO3/epoxy composites. J Eur Ceram Soc, 2001, 21(9):1171-1177
    [48] Adikary SU, Chan HLW, Choy CL, Sundaravel B, Wilson IH. Characterisation of proton irradiated Ba+0.65Sr+0.35TiO3/P(VDF-TrFE) ceramic-polymer composites. Comp Sci Tech, 2002, 62(16):2161-2167
    [49] Lam KH, Chan HLW, Luo HS, Yin QR, Yin ZW, Choy CL. Dielectric properties of 65PMN-35PT/P(VDF-TrFE)0-3 composites. Microelectronic Eng, 2003, 66(1-4):792-797
    [50]邵天奇,任天令,李春晓,朱钧.高介电常数材料在半导体存储器件中的运用.固体电子学研究与进展. 2002,22(3):312-317
    [51] S.K.Bhattacharya, R. R.Tummala, Integral passives for next generation of electronic packaging: application of epoxy/ceramic nanocomposites as intergral capacitor. Microelectronics Journal, 2001, 5(1): 11-19
    [52]李曹,刘孝波.聚合物/无机复合材料在介电材料领域的运用.材料导报. 2003,17(8):68-70
    [53]李杰,韦平,汪根林,江平开.高介电复合材料及其介电性能研究.绝缘材料,2003,36(5): 3-6
    [54]邢丽英.隐身材料.第一版.北京:化学工业出版社. 2004: 39-84
    [55] Sinha Dolly,Pillai P K C. Ceramic-polymer composites as potential capacitor material. Mater Science Letter, 1989, 8(3):673-674.
    [56]肖体鹏.高温有机电容器的设计.电子元件与材料,2003,22(6):45-47.
    [57]李晓和.聚丙烯高功率电容器[J].电子元件与材料,1995,10:26-30.
    [58]党智敏,景伟文,南策文,不同介电性能的聚合物基复合材料的研究进展.稀有金属材料与工程,2003,32(S1):518-521.
    [57] Lam K H, Chen H L W. Dielectric properties of 65PMN-35PT/P(VDF-TrFE)0-3 composites. Microelectronic Engineering, 2003, 66:792-797.
    [58]董丽杰,熊传溪. PbTiO3/PVDF复合材料介电性能及压电性能研究.武汉理工大学学报,2003,25(11):12-14.
    [59] Kuo Dong-Hau, Changa Chien-Chih, Su Te-Yeu. Dielectric behaviours of multi-doped BaTiO3/epoxy composites. The European Ceramin Society, 2001, 21(9),1171-1177.
    [60] Atsushi Nishino. Capacitors: operating principles, current market and technical trends. Power Sources, 1996, 60:137-147.
    [61]吴金坤. PVDF的特性及其生产现状.化工新型材料,1998,12(26):10-13.
    [62]王玉,王德生,严萍等.高储能密度复合绝缘材料的研究.电工定能新技术,2005,24(2):24-27.
    [63]石智强,王智权,牟立等.丙烯酸树脂/钛酸钡纳米复合材料的研究[J].电子元件与材料,2004,23(5),1-2.
    [64]王庭慰,陈逸范,范福康等.苯乙烯-钛酸钡复合材料介电性能研究.功能高分子学,1996,9(2):31-38.
    [65] Cho Sung-Dong, Lee Joo-Yeon, Hyun Jin-Gul, et al. Study on epoxy/BaTiO3 embedded capacitor films(ECFs)for organic substrate applications. Materials Science andEngineering B,2004,110(3):233-239.
    [66] Dai LM, Mua AWH. Controlled synthesis and modification of carbon nanoutbes and C60:carbon nanostructures for advanced polymeric composites materials. Adv Mater, 2001, 13(12-13), 899-913
    [67]李永明,万梅香.乳液聚合-萃取法制备掺杂态聚苯胺溶液.功能高分子学报,1998,11 (3) :337
    [68]王艳,井新利,王杨勇,等. 4,4’-双(2-磺基苯乙烯基)联苯二酸掺杂聚苯胺的研究.功能材料,2004,35(6) :702
    [69] Thomas Steen Hansen, Keld West, Ole Hassager, t al. Integration of conducting polymer network in non-conductive polymer substrates. Synth Met, 2006, 156 (18220) :1203
    [70] MacDiarmid A G, Huang W S , et al. Polyaniline : A new concept in conducting polymers. Synth Met ,1987 ,18 (123) :285
    [71] Hino T, Namiki T, Kuramoto N. Synthesis and Characterization of Novel Conducting Composites of Polyaniline Prepared in the Presence of Sodium Dodecylsulfonate and Several Water Soluble Polymers. Synthetic Metals, 2006, 156(21-24): 1327-1332.
    [72] Shreepathi S, Holze R. Spectroelectrochemical Investigations of Soluble Polyaniline Synthesized via New Inverse Emulsion Pathway. Chemistry of Materials, 2005, 17(16):4078-4085.
    [73] Palaniappan S, Narayana B H. Conducting Polyaniline Salts-Thermogravimetric and Differential Thermal-Analysis. Thermochimica Acta, 1994, 237(1):91-97.
    [74] Jeevananda T, Siddaramaiah, Seetharamu S, Saravanan S, D'Souza L. Synthesis and Characterization of Poly(aniline-co-acrylonitrile) Using Organic benzoyl peroxide by Inverted Emulsion Method. Synthetic Metals, 2004, 140(2-3):247-260.
    [75]孙曼灵,环氧树脂应用原理与技术(The Principle and Technique in the Application of Epoxy Resins).机械工业出版社,2002
    [76]胡玉明,吴良义.固化剂.北京:化学工业出版社,2004:268-272.
    [77]韩丽洁,宋爱红.咪唑环氧树脂体系固化反应的研究.化学与粘合,1998(2):63-66.
    [78]何崇军,崔英德.环氧树脂固化体系研究进展.广州化工,2002,30(4):109-111.
    [79] Goertzen WK, Kessler MR. Dynamic mechanical analysis of fumed silica/cyanate ester nanocomposites. Composites Part A: Applied Science and Manufacturing, 2008, 39(5):761-768