非化学计量比CaCu_3Ti_4O_(12)陶瓷及掺杂特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CaCu3Ti4O12(CCTO)陶瓷材料由于其高介电常数、高温度稳定性在大容量电容器、动态随机存储器等领域有着广泛的应用前景。但目前CCTO陶瓷材料主要存在两方面的问题:一方面,CCTO陶瓷的介电常数随配方及工艺差别较大,甚至可达数量级的差异,可重复性差;另一方面,CCTO的介电损耗较大。因此,提高CCTO的介电常数和可重复性,同时降低其介电损耗非常必要。
     在提高CCTO的介电常数和可重复性方面,本文拟通过在固相球磨时改变Ca、Cu、Ti元素的不同配比,首先找出单一元素偏离化学计量比对CCTO介电性能的影响规律,进而找出Ca和Ti、Ca和Cu、Cu和Ti同时偏离化学计量比对CCTO介电性能的影响规律。研究表明,Ca、Cu和Ti偏离化学计量比对CCTO的介电性能影响规律不同,Cu不足以及Ti不足时都存在介电常数的反常现象。研究结果还表明,当Ca、Cu、Ti的原子摩尔比为1.08:3.00:4.44时,其相对介电常数在1KHz下达到4×105,介电常数比标准化学计量比的CCTO陶瓷提高了一个数量级。其高介电常数来源于大的颗粒尺度和薄的晶界层的贡献,支持IBLC(internal barrier layer capacitance )模型。
     在降低CCTO的介电损耗方面,本文通过在获得特高介电常数成分配方及烧成工艺的基础上,对非化学计量比的CCTO陶瓷的晶界及颗粒边界掺杂不同剂量的高绝缘LTCC玻璃以及纳米SiO2粉,研究其对降低介电损耗特别是漏导损耗的影响。研究表明,高绝缘玻璃掺杂不仅有助于加快固相反应,降低烧结温度,而且,明显有助于提高晶界和颗粒边界电阻,降低漏导损耗。研究结果还表明,当CCTO原料偏离化学计量比且CuO微过量时掺杂某一剂量的纳米SiO2粉,获得的CCTO陶瓷观察到负电容效应。研究表明,CCTO陶瓷中的负电容效应与Sandoval等在发光二极管中P-N结上观察到的负电容效应有本质不同。其负电容效应并不是来自于电流-电压的相位变化,而是来自于电容谐振。特别地,CCTO在低频段发现的负电容效应,为我们在特定频段利用电容代替电感提供了可能。
CCTO ceramic has broad application prospects in the large-capacity capacitors, dynamic random access memory and other fields, because of its high dielectric constant and temperature stability. But CCTO ceramic has mainly problems in two aspects: on the one hand, its dielectric constant varys greatly owing to different compositions and processes, even up to one magnitude differences, poor reproducibility; on the other hand, its dielectric loss is large. Therefore, it is necessary to improve its dielectric constant and reproducible, while reduce its dielectric loss.
     To improve its dielectric constant and repeatability, this paper was proposed to change Ca, Cu, Ti elements in different proportions by the solid state technique, and to find the regular pattern that the non-stoichiometry single element impacts on its dielectric properties, and then to find the regular pattern that the non-stoichiometry Ca and Ti, Ca and Cu, Cu and Ti impact on its dielectric properties. The results showed that the non-stoichiometry Ca, Cu, or Ti element impacted differently on its dielectric properties, and that the abnormal dielectric constant existed owing to the deficiency of Cu and Ti. The results also showed that when Ca, Cu, Ti atomic molar ratio was 1.08:3.00:4.44, its relative dielectric constant reached 4×105 at 1KHz , and its dielectric constant improved one magnitude than the standard stoichiometry CCTO ceramics. Its high dielectric constant derived from the larger particle size and the thinner boundary layer, and supported IBLC model.
     On the basis of ultra-high dielectric constant components in the formula and the firing process, the paper was proposed to doping the high insulation LTCC glass and nano-SiO2 powder at grain boundary of the non-stoichiometry CCTO ceramic in order to reduce its dielectric loss especially the leakage loss. The results showed that CCTO ceramics doped with the high insulation glass would not only speed up the reaction and lower sintering temperature, but also increase significantly the grain boundary resistance and reduce its leakage loss. The results also showed that the negative capacitance effect was firstly observed when the non-stoichiometry CCTO material excessed with a slight CuO and doped with nano-SiO2 powder. It was essentially different with the negative capacitance observed in the P-N junction in the light-emitting diode. The negative capacitance effect was not from the phase of the current - voltage change, but from the capacitor resonant. In particular, this found that the negative capacitance effect at some frequency provides us with the possibility to use capacitor instead of inductance in some frequency band.
引文
[1]李翰如.电介质物理导论.成都:科技大学出版社,1990,182-216
    [2]余洪滔. CaCu3Ti4O12基陶瓷的制备、结构与介电性能研究: [博士学位论文].武汉:武汉理工大学,2008
    [3]肖长江,马秋花.钛酸钡陶瓷铁电临界尺寸的研究进展.佛山陶瓷,2007,11:37-39
    [4]杨静. CaCu3Ti4O12陶瓷高介电常数产生机理研究: [硕士学位论文].苏州:苏州大学,2006
    [5]王振平,赵俊斌,李勇,等.表面层型半导体陶瓷电容器的开发与产业化.材料导报, 2000, 14:66-68
    [6]章士瀛,王守士,李言,等.一次性烧成晶界层半导体陶瓷电容器.电子元件与材料, 2005, 24:43-46
    [7]邓湘云,李建保. MLCC发展趋势及军用电子设备中应用.电子元件与材料, 2006,25:1-6
    [8]齐晓敏,腾元成. BaTiO3基多层陶瓷电容器抗还原介质材料的研究进展.陶瓷学报, 2007, 28:334-337
    [9] Guoling Li, Zhen Yin,Mingsheng Zhang, et al. First-principles study of the electronic and magnetic structures of CaCu3Ti4O12. Physics Letters A, 2005, 344: 238–246
    [10] Lunkenheimer P, Bobnar V, A. V. Pronin, et al. Origin of apparent colossal dielectric constants, Phys Rev B, 2002,66:052105
    [11]杨静,沈明荣,方亮.电极对CaCu3Ti4O12陶瓷介电性能影响.功能材料,2006,2:234-237
    [12] Kang-Min Kim, Sun-Jung Kim, Jongheun Lee, et al. Micro-structural evolution and dielectric properties of SiO2-doped CaCu3Ti4O12 ceramics. Journal of the European Ceramic Society, 2007, 27: 3991–3995
    [13]李旺,巩会玲,刘宇,等. SiO2添加物对CaCu3Ti4O12陶瓷的微观结构与介电性能的影响.人工晶体学报, 2009,38:1366-1369
    [14] F. Amaral, M.A. Valente, L.C. Costa. Dielectric properties of CaCu3Ti4O12 (CCTO) doped with GeO2. Journal of Non-Crystalline Solids,2010
    [15] Lixin Feng, Xiaoming Tang, Yueyue Yan, et al. Decrease of dielectric loss in CaCu3Ti4O12 ceramics by La doping. phys. stat. sol. (a) 2006, 203:R22–R24
    [16]赵彦立,焦正宽. CaCu3Ti4O12块材和薄膜的巨介电常数.物理学报, 2003,52:1500-1503
    [17]罗绍华,武聪,田勇.非铁电巨介电压敏材料CCTO.化学进展, 2009,21:1603-1610
    [18]杨雁,李盛涛. CaCu3Ti4O12陶瓷的微观结构及直流导电特性.物理学报, 2009, 58:6376-6379
    [19] M. A. Subramanian, Dong Li, N.Duan, et al. High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases. Journal of Solid State Chemistry, 2000, 151:323-325
    [20] Wang Li, Shen-Yu Qiu, Nan Chen, et al. Enhanced dielectric properties and sinterability of CaCu3Ti4O12 ceramics by Sr2+ doping. Physica B, 2010, 405: 1193–1196
    [21]巩会玲,李旺,杜国平,等. Mg2+和Sr2+掺杂对CaCu3Ti4O12陶瓷微观结构与介电性能的影响.中国陶瓷, 2009, 45: No.7
    [22] Ming Li, Antonio Feteira. Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics. APPLIED PHYSICS LETTERS, 2006, 88:232903
    [23] W. Makcharoen, J. Tontrakoon, P. Thavornyutikarn, et al. Dielectric Properties of CaCu3Ti4-xMnxO12 Ceramics. Advanced Materials and Nanotechnology, 2009
    [24] B. Shri Prakash, K.B.R. Varma. Dielectric behavior of CCTO epoxy and Al-CCTO epoxy composites. Composites Science and Technology, 2007, 67: 2363–2368
    [25] Sung-Woo Choi, Seong-Hyeon Hong. Effect of Al Doping on the Electric and Dielectric Properties of CaCu3Ti4O12 . J. Am. Ceram. Soc., 2007, 90: 4009–4011
    [26] Seunghwa Kwon, Chien-Chih Huang, Eric A. Patterson, et al. The effect of Cr2O3, Nb2O5 and ZrO2 doping on the dielectric properties of CaCu3Ti4O12 Materials Letters, 2008, 62: 633–636
    [27] Muhammad Azwadi Sulaiman, Sabar D. Hutagalung, Mohd Fadzil Ain, et al. Dielectric properties of Nb-doped CaCu3Ti4O12 electroceramics measured at high frequencies. Journal of Alloys and Compounds, 2010, 493:486–492
    [28]刘鹏,贺颖,李俊,等.添加Nb对CaCu3Ti4O12陶瓷介电性能的影响.物理学报, 2007,56:5489-5492
    [29] Chunhong Mua, HuaiwuZhang, Ying He, et al. Influence of temperature on dielectric properties of Fe-doped CaCu3Ti4O12 ceramics. Physica B, 2010, 405:386–389
    [30]慕春红,刘鹏,贺颖,等. Fe掺杂CaCu3Ti4O12陶瓷的介电性能与弛豫特性研究.物理学报, 2008,57:2432-2437
    [31] Sabar D. Hutagalung, Li Ying Ooi, Zainal A. Ahmad. Improvement in dielectric properties of Zn-doped CaCu3Ti4O12 electroceramics prepared by modified mechanical alloying technique. Journal of Alloys and Compounds, 2009, 476: 477–481
    [32]杨昌辉,周小莉,徐刚,等.溶胶—凝胶法制备巨介电常数材料CaCu3Ti4O12.硅酸盐学报, 2006, 34:753-756
    [33]倪维庆,俞建长,郑兴华,等.预烧温度对CaCu3Ti4O12陶瓷结构和介电性能的影响.稀有金属材料与工程, 2007,36:505-508
    [34]俞建长,俞建长,郑兴华,等.烧成工艺对CaCu3Ti4O12陶瓷介电性能影响.电子元件与材料, 2006,25:26-29
    [35]周小莉,杜丕一.烧结温度对CaCu3Ti4O12巨介电性能的影响研究.真空科学与技术学报, 2006,26:40-47
    [36]何邕.高介电氧化物CaCu3Ti4O12陶瓷的阻抗谱分析:[硕士学位论文].北京:华北电力大学,2008.
    [37] Seunghwa Kwona, Chien-Chih Huang, M.A. Subramanian, et al. Effects of cation stoichiometry on the dielectric properties of CaCu3Ti4O12 . Journal of Alloys and Compounds, 2009, 473: 433-436
    [38] Kang-Min Kim , Jong-Heun Lee , Kyung-Min Lee,et al. Microstructural evolution and dielectric properties of Cu-deficient and Cu-excess CaCu3Ti4O12 ceramics. Materials Research Bulletin, 2008, 43:284–291
    [39] S.F. Shao, J.L. Zhang, P. Zheng, et al. Effect of Cu-stoichiometry on the dielectric and electric properties in CaCu3Ti4O12 ceramics. Solid State Communications, 2007, 142:281–286
    [40] Tsang-Tse Fang, Li-Then Mei, Hei-Fong Ho. Effects of Cu stoichiometry on the microstructures, barrier-layer structures, electrical conduction, dielectric responses and stability of CaCu3Ti4O12. Acta Materialia, 2006, 54:2867-2875
    [41] K. Chen, Y.F. Liu, F. Gao, et al. Ti deficiency effect on the dielectric response of CaCu3Ti4O12 ceramics. Solid State Communications, 2007, 141:440–444
    [42]薛昊,熊兆贤. CaCu3Ti4+xO12+2x陶瓷的电学性能.人工晶体学报, 2009,38:133-136
    [43] Yuan-Hua Lin, Jingnan Cai, Ming Li, et al. Grain boundary behavior in varistor-capacitor TiO2-rich CaCu3Ti4O12 ceramics. Journal of Applied Physics, 2008, 103:074111
    [44] Hongtao Yu, Hanxing Liu, Hua Hao, et al. Dielectric properties of CaCu3Ti4O12 ceramics modified by SrTiO3. Materials Letters, 2008, 62:1353-1355
    [45]邵守福,郑鹏,张家良,等. CaCu3Ti4O12陶瓷的微观结构和电学性能.物理学报, 2006, 55:6661-6665
    [46]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社, 2004,76-82
    [47] Julie J.Mohamed, Sabar D.Hutagalung, M. Fadzil Ain. Microstructure and electrical properties of CaCu3Ti4O12 ceramics.Materials Letters, 2007, 61: 1835–1838
    [48] Chung S.Y, Kim J.L, Kang S.J. Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nature Materials, 2004, 3:774-778.
    [49]梁桃华,胡永达,杨仕清,等.非化学计量比巨介电CaCu3Ti4O12陶瓷研究.功能材料, 2010,41:211-213
    [50]陈兴宇,张为军,堵永国,等.硼硅酸盐玻璃/Al2O3低温共烧陶瓷介电性能研究.硅酸盐通报, 2008,27:1146-1150
    [50] Yongda Hu, Taohua Liang, Yuanxun Li, et al. Research on Self-constrained Sintering Low-temperature Cofired Ceramic. ICEPT-HDP, 2009, 872-873
    [51] Sandoval F, Lopez C, Munoz E. Forward-bias impedance of GaAs1-xPx LEDs. Solid-State Electronics, 1982, 25(5):355-357
    [52] A. G. U. Perera, W. Z. Shen, M. Ershov, et al. Negative capacitance of GaAs homojunction farinfrared detectors. APPLIED PHYSICS LETTERS, 1999, 74:3167-316