废聚苯乙烯在中间相沥青形成中的改性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是以废聚苯乙烯(WPS)为添加剂,分别与煤焦油沥青和乙烯焦油共炭化制备改性中间相沥青,进而制备针状焦,以达到资源的充分利用。在此基础上研究中间相沥青的改性机理和共熔效应对中间相性能以及后续产品针状焦的影响,为中间相沥青的改性和针状焦的生产打下理论基础。
     分别以煤焦油沥青的喹啉可溶物和乙烯焦油与WPS共炭化,以红外(FTIR)、核磁共振(~1HNMR)、X射线衍射(XRD)、热分析(TG/DSC)、扫描电镜(SEM)、高温粘度仪和热膨胀系数(CTE)等现代物理分析作为表征手段,对中间相沥青及针状焦性能进行研究。
     在添加聚苯乙烯(WPS)共炭化反应过程中,由于共熔效应,生成的中间相沥青性能得到很大改善。在与煤焦油沥青的共炭化过程中,可溶性中间相的含量从10%提高到52%,光学结构从中间相含量为65%的粗镶嵌结构改善为中间相含量为100%的广域融并体;在与乙烯焦油的共炭化过程中,可溶性中间相的含量从5%提高到46%,中间相的光学结构从中间相含量为32%的未完全融并结构变为广域融并体结构。添加WPS和二者的共炭化反应中,中间相沥青从触变性变为非触变性,芳香平面分子取向排列变好。共炭化过程中发生交联反应,生成了较多的1-亚甲基结构和环烷结构。烷基结构的增多是共熔效应发生的主要原因。
     在共炭化过程中,WPS和沥青分子热裂解产生的自由基发生交联反应,生成了较多的环烷结构和1-亚甲基结构。环烷结构一方面起到增大可溶性中间相含量的作用,另外一方面在不破坏芳香层面分子堆积排列的情况下有利于分子间的滑动和运动,起到增加流动性的作用。除环烷外的1-亚甲基结构虽然一定程度上破坏中间相沥青分子的排列,但是能起到增大溶解性和流动性的作用,其作用整体表现为中间相性能的改善。共熔效应发生的原因来自于两个方面,一是分子之间在共炭化过程中发生的烷基交换和氢转移反应;二是分子在共存体系中的互溶作用。在添加WPS共炭化过程中,WPS在起始阶段起到引发分子之间交联和促进中间相生成、长大和融并的作用;在中后期阶段,由于氢转移反应缓解了炭化反应的剧烈程度,使体系长时间保持较低的粘度。
     共炭化中间相的改性可以用引入的新溶液理论模型来解释。中间相形成有两个基本的推动力,一是分子量大的分子在小分子溶液中弱的溶解能力促进中间相的形成,二是通过圆盘状分子的定向排列降低其自由能,定向差的小分子进入各向同性相。中间相的性质与中间相分子的缩合程度和烷基结构有关,共炭化过程中,WPS能够在不同的炭化阶段调节体系的分子量分布和结构,引起分子体积的增大和结构的不规则性。根据溶液理论模型分子缩合程度低、烷基结构多能有效降低中间相的化学势,有利于中间相的形成、发展和运动,进而改善中间相性能。
     煤焦油沥青和废聚苯乙烯共炭化制备的针状焦,光学结构单元中平行于热膨胀系数方向的轴向分矢量平均长度和矢量平均长度的值,分别从20.8μm增加到28.4μm和23.4μm增加到28.8μm,热膨胀系数从0.8×10~(-6) /℃降低到0.1×10~(-6) /℃。乙烯焦油和废聚苯乙烯共炭化制备的针状焦,光学结构单元中平行于热膨胀系数方向的轴向分矢量平均长度和矢量平均长度的值分别为10.8μm增加到28.4μm和12.6μm增加到28.8μm,热膨胀系数从接近普通石油焦的3.2×10~(-6) /℃降低到优质商品焦的0.3×10~-6) /℃。在上述二者添加WPS共炭化可以制备出热膨胀系数更低、光学各向异性排列更好的针状焦。中间相沥青中烷基结构的增加降低了体系粘度,有利于中间相的融并,同时在固化阶段产生足量的气体,使中间相的芳香平面分子沿轴向排列更为规整。中间相沥青从触变性变为非触变性。中间相沥青中生成了较多的烷基结构。
     单独炭化时,炭化行为差别很大的煤焦油沥青和乙烯焦油制备的中间相沥青和针状焦的性能差别很大,但是在添加WPS共炭化后所得到中间相沥青和针状焦的性能都得到较大提高,并且其性能比较接近,说明WPS是一种优异的共炭化改性剂。
The purpose of this research was to manufacture the modified mesophase pitch, as well as needle coke, by co-carbonization of toluene soluble of coal tar pitch (TS) and waste polystyrene (WPS), ethylene tar pitch (ETP) and WPS, respectively. The mechanism of co-carbonization and modification were investigated. The eutectic effect and its influence on the resultant product were also discussed.
     The properties of mesophase pitches were characterized using polarized light optical microscope, apparent viscometer, FT-IR, ~1H NMR and X-ray diffractometer. And the characteristics of needle cokes derived from co-carbonization were examined using polarized light optical microscope, FT-IR, X-ray diffractometer, co-efficient of thermal expansion (CTE), scanning electron microscope.
     The toluene soluble of coal tar pitch (TS) was co-carbonized with waste polystyrene (WPS). The contents of soluble mesophase were increased from 10% to 52% and the anisotropic contents of mesophase pitches were developed from 65% with coarse mosaic texture to 100% with flow domain texture by TS added with WPS. During the co-carbonization of ethylene tar pitch and waste polystyrene, the content of soluble mesophase was increased from 5% to 56%, the mesophase content was increased from 32% to 100% and the optical texture was developed from incomplete coalescence to flow domain after adding waste polystyrene into ethylene tar pitch. During the co-carbonization of WPS with TS and ETP, the mesophase pitch was changed from thixotropy to unthixotropy, suggesting a better rheological behavior. The increased alkyl groups, which were mainlyαmethylene, improved the molecule assembly of mesophase pitch and resulted in the eutectic effect. The properties of the mesophse pitch were greatly improved due to eutectic effect.
     During co-carbonization, crosslinking of radicals derived from WPS and the pitches brought someαmethylene group and naphthenic structure to polymerized aromatic hydrocarbons (PAH). The fluidity and solubility of the mesophase pitches were improved by increasing alkyl groups in the pitch molecule. The naphthenic structure availed the slipping of aromatic planar molecule without destroying the stacking of the crystal. Although the arrangement of the crystal was disturbed a little, the other alkyl groups were able to improve the fluidity and solubility of the mesophase pitch. As a whole these alkyl in the mesophase showed positive effect in mesophase formation. The eutectic effect consisted in two aspects: one was intermolecule hydrogen transfer and alkyl transfer, the other was interaction of intramolecule and intermolecule in the pitch matrix. The former was the inherent reason and the latter was extrinsic one. During the early stage of co-carbonization, WPS availed the crosslink of pitch molecule and the earlier formation of mesophase. In the middle and latter stage, methylene groups improved the coalescence of the mesophase and kept a lower viscosity for a longer time. The rigorous reaction was inhibited during the middle and latter co-carbonization stage due to hydrogen transfer.
     The mechanism of modification of the mesophase pitch derived from co-carbonization was able to be interpreted by a newly introduced solutions theory. The formation of mesophase was in response to two primary driving forces: one was poor solubility of high molecular weigh aromatic molecules in the lower molecular weight fractions, promoting liquid/liquid phase separation, the other was lowering of the system free energy by molecular orientation of the large, disc-like molecules and expulsion of some of the smaller, less orientated molecules to a separate (isotropic) phase. The characteristics of mesophase pitch were able to correlate with the degree of condensed structure and alkyl content of the mesophase pitch. The molecule weight distribution and structure were improved by co-carbonization during different stage of carbonization, leading to increasing molecule volume and irregular structure of molecule. Based on the model of solutions theory, the chemical potential of mesophase was depressed by the alkyl structure, availing the development of mesophase.
     Co-carbonization properties of toluene soluble of coal tar pitch and waste polystyrene were studied in a tube bomb to correlate the content of alkyl groups in the mesophase pitches with CTE and anisotropic orientation. The more alkyl contents improved the properties of resultant needle coke in terms of optical texture and CTE value. The anisotropic indices of average length of vectors parallel to the CTE axis and average length of anisotropic unit vectors increased from 20.8μm to 28.4μm and 23.4μm to 28.8μm, respectively, and CTE value decreased from 0.8×10~(-6) /℃to 0.1×10~(-6) /℃. Ethylene tar pitch was co-carbonized with waste polystyrene to prepare needle coke. The anisotropic indices (average length of vectors parallel to the CTE axis and average length of anisotropic unit vectors) increased from 10.8μm to 28.4μm and 12.6μm to 28.8μm, respectively. The anisotropic indices of average length of vectors parallel to the CTE axis and average length of anisotropic unit vectors increased from 20.8μm to 28.4μm and 23.4μm to 28.8μm, respectively. The CTE value was decreased from 3.2×10~(-6) /℃to 0.3×10~(-6) /℃and the optical texture of the coke was changed from coarse mosaic of incompleteness coalescence to flow domain with high uniaxial orientation after adding WPS into ETP. Due to the increasing alkyl groups, the lower viscosity of the carbonization system favored the development of flow texture and uniaxial orientation. And the sufficient gas evolution of good timing in co-carbonization forced the uniaxial arrangement of bulk mesophase molecules at the solidification stage.
     The enormous difference of carbonization behavior of CTP and ETP, when carbonized singly, was vanished when mesophase pitch and needle coke were manufactured through co-carbonizing. And the characteristics of the mesophase pitch and needle coke were greatly improved, suggesting WPS being an excellent additive of co-carbonization.
引文
[1]林起浪.炭材料用基体前驱体煤沥青的改性研究[D].西安:西北工业大学, 2002.
    [2] Mochida I. Carbonization of pitch: compatibility of components in carbonization [J]. Fuel, 1977, 56(1): 49-56.
    [3]大古杉郎,真田雄三.炭素化工学の基础[M].东京:オーㄥ,1980, 48.
    [4]许斌,陶著.两种煤沥青炭化的自由基历程研究[J].炭素, 1987, (4): 1.
    [5]陶著,许斌.应用差热和热失重分析对煤沥青热解过程的研究[J].炭素, 1987, (1): 18-22.
    [6]王永年.煤系针状焦评述[J].炭素, 1985, (1): 16-20.
    [7] Mochida I, Fei Y. Q, Korai Y. A study of carbonization of ethylene tar pitch and needle coke formation [J]. Fuel, 1990, 69(6): 667-671.
    [8] Mochida I, Fei Y. Q, Korai Y et al. Co-carbonization of ethylene tar pitch and coal tar pitch to form needle coke [J]. Fuel, 1990, 69(6): 672-677.
    [9] Mochida I, Sone Y, Korai Y. Preparation and propoeties of carbonaceous mesophase-ⅡHighly soluble mesophase from ethylene tar modified using aluminum chloride as a catalyst [J]. Carbon, 1985, 23 (2): 175-178.
    [10] Toshiyuki O, Tetsuro Y, Kunio M et al. Carbonization behavior of hydrogenated ethylene tar pitch [J]. Carbon, 1981, 19(4): 263-267.
    [11] Brooks J. D, Taylor G. H. Chemistry and physics of Carbon [M]. New York: Marcel Dekker, 1968: 243-244.
    [12] Brooks J. D, Taylor G. H. The formation of graphitizing carbons from the liquid phase [J]. Carbon, 1965, 3(2): 185-186.
    [13]刘秀军,王成扬,李同起.硫存在下的中间相炭微球制备及形貌[J],天津大学学报, 2003, 36(3): 267-270.
    [14] JoséL. C, Ana A, JoséA. V. et al. A study of mesophase formation from a low temperature coal tar pitch using formaldehyde as a promoter for polymerization [J]. Carbon, 2004, 42(13): 2735-2777.
    [15] Chwastiak S, Lewis I. C. Solubility of mesophase [J]. Carbon, 1978, 16(2): 156-157.
    [16] Singer L. S. Carbon fibers from mesophas itch [J]. Fuel, 1981, 60(9): 839-847.
    [17] Chwastiak S. Process of producing carbonaceous pitch [P] British Patent: GB2005298A, 1979-01-12.
    [18] Diefendorf R. J, Riggs D. M. Forming optically anisotropic pitches [P].British Patent: GB2002024A ,1979-02-14.
    [19] Singer L. S. Process for producing high mesophase content pitch fibers [P]. USA Patent: US3919387, 1975-11-11.
    [20] Singer L. S. High modulus, high strength carbon fibers produced from mesophase pitch [P]. USA Patent: US4005183, 1977-01-25
    [21] Eser S, Jenkins R. G. Carbonization of petroleum feedstocks I: Relationships between chemical constitution of the feedstocks and mesophase development [J]. Carbon, 1989, 27(6): 877-887.
    [22] Qian S. A, Xiao Y. X, Gu Y. D. Study on chemical composition and formation mechanism of some typical pitch feedstocks using field desorption mass spectrometry [J]. Fuel, 1987, 66(2): 242-249.
    [23] Yamada Y., Matsumoto S., Fukuda K., et al. Optically anisotropic texture in tetrahydroquinoline soluble matter of carbonaceous mesophase. TANSO 1981, 107(1): 144-146.
    [24] Mochida I, Kudo K, Fukuda N et al. Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst [J]. Carbon 1975; 13(2): 135-139.
    [25] Zhang J. A, Guo S. F, Wang Y. G et al. Effect of electrolytic systems on electrochemical hydrogenation of mesophase coal tar pitch [J]. Fuel. Pro. Tec 2003; 80(1): 81-90.
    [26] Yamada Y, Matsumoto S, Fukuda K, et al Optically Anisotropic Texture in Tetrahydroquinoline Soluble Matter of Carbonaceous Mesophase [J]. Tanso, 1981, 107(1): 144-146.
    [27] Mochida I, Matsuoka H, Korai Y,et al. Carbonization properties of partially hydrogenated aromatic compounds-I: Carbonization of partially hydrogenated pyrene prepared by Birch reduction [J]. Carbon, 1981, 19(3): 213-216.
    [28] Oyabu M, Fukuda K, Carbon mesophase-substrate interactions [P]. Japan Pat.60-30365 1985.
    [29] Mochida I, Maeda K, Takeshita K. Modifying carbonization properties of pitchesШ. Carbonization of modified quinoline-insoluble matter from pitches [J]. Fuel, 1976, 55(1): 70-74.
    [30] Greinke R. A. Quantitative influence of dealkylation and polymerization reactions on mesophase formation [J]. Carbon, 1990, 28(5): 701-704.
    [31] Mochida I, Kudo K, Takeshita K, et al. Modifying carbonization properties of pitches. 1. Conversion of benzene-insoluble matter of coal-tar pitch into graphitizable carbon [J]. Fuel, 1974, 53(4): 253-257.
    [32] Mochida I, Tomari Y, Maeda K, Takeshita K. Modifying carbonization properties of pitches.п. Attempts to improve the yield of fusible material from the quinoline-insoluble fraction of a petroleum pitch [J]. Fuel, 1975, 54(4): 265-268.
    [33] Miyake M, Ida T, Yoshida H et al. Effects of reductively introduced alkyl groups and hydrogen to mesophase pitch on carbonization properties [J]. Carbon, 1993, 31(5): 705-714.
    [34]河井隆伸,横内敦,江角帮男等,四氢萘改性煤沥青的研究[J].燃料协会志, 1982, 61(6): 746-751
    [35] Mochida I, Zeng S, Kori M et, al. Recent developments in the Dubinin equation [J]. Carbon, 1989, 27(1): 125-128.
    [36] Mochida I, Zeng S, Korai M et al, The introduction of a skin-core structure in mesophase pitch fibers by oxidative stabilization [J]. Carbon, 1990, 28(1): 193-198.
    [37] Isihara A, Wang X, Shono H et al. Hydrogenation of coal tar pitch with tritiated hydrogen catalyzed by metal carbonyl complexes: Estimation of hydrogen mobility of coal tar pitch in catalytic system [J]. Energy & Fuels 1993, 7(2): 334-336.
    [38] Wang X, Matsumoto M, Shono H et al. Hydrogenation mechanism of coal tar pitch for carbon fiber (Part3) [J]石油学会志, 1991, 34: 314-321.
    [39] Okuyama S, Shono H, Ishihara A et al, Hydrogenation mechanism of coal tar pitch for carbon fiber(Part1) [J].石油学会志, 1990, 33(3): 181-188.
    [40] Wang X, Ishihara A, Satou T, et al. Effects of organometallic complexes on hydrogenation of coal tar pitch for high pefermance carbon fiber [J].石油学会志, 1992, 35(6): 451-459.
    [41] Korai Y, Mochida I. Preparation and properties of carbonaceous mesophase-ⅠSolublemesophase produced from A240 and coal tar pitch [J]. Carbon, 1985, 23(1): 97-103.
    [42] R.A.Greinke. Quantitative influence of dealkylation and polymerization reactions on mesophase formation [J]. Carbon, 1990, 28(5): 701-704.
    [43] Korai Y, Mochida I. Molecular assembly of mesophase and isotropic pitches at their fused states [J]. Carbon, 1992, 30(7): 1019-1024.
    [44] Kwang E Y, Euy S. L. Comparision of mesophase pitches derived from C8 and C9 aromatic hydrocarbons [J]. Carbon, 1994, 32(3): 453-459.
    [45] Matsumoto M, Higuchi N, Tomioka T et al. Modification of precursor coal tar pitch with alcohols mesophase pitch [J]. Fuel, 1994, 73(2): 237-242.
    [46] Marsh H, Menendez R. In Introduction to carbon science [M]. London: Buyyerworth, 1989: 37-73.
    [47] Marsh H, Walker P. L. In Chemistry and Physics of Carbon [M] New York: Marcel Dekker, 1979: 230-286.
    [48] Mochida I, Kudo K, Fukida N, et al. Carbonization of pitches—IV: Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst [J]. Carbon, 1975, 13(2): 135-139.
    [49] Mochida I, Inoue S, Takeshita K. Carbonization of aromatic hydrocarbons—IV: Reaction path of carbonization catalyzed by alkali metals [J]. Carbon, 1976, 14(2): 123-129.
    [50] Mochida I, Sone Y, Korai Y. Preparation and properties of carbonaceous mesophase-II highly soluble mesophase from ethylene tar modified using aluminum chloride as a catalyst[J]. Carbon, 1985, 23(2): 175-178.
    [51] Park Y. D., Lim Y. S., Yoon B. I. Microstructure of matrix derived from coal tar-phenolic resin mixtures in carbon/carbon composites [J]. Carbon, 1993, 31(2): 391-392.
    [52] Mochida I, Korai Y, Takeshita K. Cocarbonization properties of coal based pitches [J]. Carbon, 1982, 20 (2): 144.
    [53] Yokono T, Marsh H. 1H-NMR study of the co-carbonization of hydrogenated anthracene oil with coal-tar pitch and coal [J] Fuel, 1980, 59(5): 362-364.
    [54] Yokono T, Marsh H, Yokono M. Hydrogen donor and acceptor abilities of pitch: 1H-NMR study of hydrogen transfer to anthracene [J]. Fuel, 1981, 60(7): 607-611.
    [55] Mochida I, Amamoto K, Maeda K et al. Co-carbonization of solvent fractions ofhydrogenated and alkylated SRC pitches in studies of formation of needle-cokes[J]. Fuel, 1979, 58(7): 482-488.
    [56] Mochida I, Korai Y. Carbonization in the tube bomb leading to needle coke: I. Cocarbonization of a petroleum vacuum residue and a FCC-decant oil into better needle coke [J]. Carbon, 1989, 27(3): 359-365.
    [57]宋怀河,刘朗,王茂章.煤焦油沥青不同改性产物炭化性质的比较研究[J].燃料化学学报, 1995, 23(1): 69-74.
    [57]宋怀河,刘朗,查庆芳,等.沥青—重油共炭化反应机理的研究Ⅰ.原料沥青和共炭化沥青的结构[J].燃料化学学报, 1994, 22(2): 157-163.
    [59]宋怀河,刘朗,查庆芳等.沥青—重油共炭化反应机理的研究Ⅱ.共炭化反应前后重油的结构[J].燃料化学学报, 1994, 22(2): 164-169.
    [60] Marsh H, Hermon G, Cornford C. Carbonization and liquid-crystal (mesophase) development. 5 importantance of eutectic zones formed from nematic liquid crystals [J]. Fuel, 1974, 53(3): 168-171.
    [61] Cheng X. L, Zha Q.F, Li X. J et al. Modified characteristics of mesophase pitch prepared from coal tar pitch by adding waste polystyrene [J]. Fuel Processing Technology, 2008, 89(12): 1436-1441.
    [62] Lin Q. L, Li T. H, Ji Y. B, et al. Study of the modification of coal-tar pitch with p-methyl benzaldehyde [J]. Fuel, 2005, 84 (2-3): 177-182.
    [63] Machnikowski J. Kinetics and mechanism of carbonization of QI-free products from gas-coking coal hydrogenation-II. Carbonization of solvent fractions separated from coal hydrogenation pitches [J]. Carbon, 1993, 31(2): 373-381.
    [64] Machnikowski J, Petryniak J, E. Rusin et al. Kinetics and mechanism of carbonization of QI free products from gas-coking coal hydrogenation—I: The structure and carbonization behavior of pitches produced by the coal hydrogenation at 420°C and 455°C [J]. Carbon, 1991, 29(3): 371-378.
    [65] Wamker T. P. A selected bibliography of analytical pyrolysis applications [J]. J. Anal. Appl. Pyrolysis, 1989, 16(4): 291-322.
    [66] Morelli J. J. Thermal analysis using mass spectrometry: A review [J]. J. Anal. Appl. Pyrolysis, 1990, 18(1): 1-18.
    [67] Dubey V, S. Pandey K, Rao N. B. S. N. Research trends in the degradation of butyl rubber [J]. J. Anal. Appl. Pyrolysis, 1995, 34 (2): 111-125.
    [68] Kannan P, Biernacki J. J, Visco Jr. D. P. A review of physical and kinetic models of thermal degradation of expanded polystyrene foam and their application to the lost foam casting process [J]. J. Anal. Appl. Pyrolysis, 2007, 78(1): 162-171.
    [69] BlazsóM. Review: Recent trends in analytical and applied pyrolysis of polymers [J]. J. Anal. Appl. Pyrolysis, 1997, 39(1): 1-25.
    [70] Bockhorn H, Hornung A, Hornung U. Stepwise pyrolysis for raw material recovery from plastic waste [J]. J. Anal. Appl. Pyrolysis, 1998, 46(1): 1-13.
    [71] Pinto F, Costa P, Gulyurtlu I, Cabrita I. Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield [J]. J. Anal. Appl. Pyrolysis, 1999, 51(1): 39-55.
    [72] Faravelli T, Pinciroli M, Pisano F et al. Thermal degradation of polystyrene [J]. J.Anal. Appl. Pyrolysis, 2001, 60(2): 103-121.
    [73] Karaduman A, Simsek E. H, Cicek B et al. Thermal degradation of polystyrene wastes invarious solvents [J]. J. Anal. Appl. Pyrolysis, 2002, 62(2): 273-280.
    [74] Ali M.F, Mohammad S.N. Thermal and catalytic decomposition behavior of PVC mixed plastic waste with petroleum residue [J]. J. Anal. Appl. Pyrolysis, 2005, 74(2): 282-289.
    [75] Kaminsky W, Kim J. S. Pyrolysis of mixed plastics into aromatics [J]. J.Anal. Appl.Pyrolysis, 1999, 51(1-2): 127-134.
    [76] Collin G, Bujnowska B, Polaczek J. Co-coking of coal with pitches and waste plastics [J]. Fuel Process. Tech., 1997, 50(1): 179-184.
    [77] Brzozowska J, Zieliński B, Pacewska T et al. Studies on thermo decomposition of Pitch-polymer Compositions [J]. J. Them. Anal. Cal., 2000, 60(2): 293-297.
    [78] Machnikowski J, Machnikowska H, Brzozowska T et al. Mesophase development in coal tar pitch modified with various polymers [J]. J.Anal.Appl.Pyrolysis, 2002, 65(2): 147-160.
    [79] Brzozowska T, Zieliňski J, Machnikowski J. Effect polymeric additives to coal tar pitch on carbonization behaviour and optical texture of resultant cokes [J]. J. Anal. Appl. Pyrolysis, 1998, 48(1): 45-48.
    [80] Rocha V.G, Granda M, Santamaría R et al. Pyrolysis behavior of pitches modified with different additives [J]. J. Anal. Appl. Pyrolysis, 2005, 73(3): 276-283.
    [81] Mochida I, Fei Y. Q, Kobai Y.Carbonization in the tube bomb leading to needle coke:Шcarbonization properties of several coal tar pitches [J]. Carbon, 1989, 27(3): 375-380.
    [82] David H. Process for the production of premium grade needle coke from a hydrotreated SRC material [P].USA Patent: US4737261, 1988-04-12.
    [83]村上惟司,中庭斡雄,中山顺夫.超级针形焦的制备方法[P].中国专利: CN 85107292, 1987-04-15.
    [84] Murakami H. Process for the preparation of super needle coke [P]. USA Patent: US 4814063, 1989-03-21.
    [85] Murakami D. A method of producing super needle coke from the hydrogenation product of coal tar [P]. USA Patent: US4855037, 1989-08-08.
    [86]张怀平.针状焦的结构和原料[J].煤炭转化, 2001, 24(2): 22-26.
    [87] Mochida I, Oyama T, Korai Y. Formation scheme of needle coke from FCC-decant Oil [J]. Carbon, 1988, 26(1): 49-55.
    [88]丁宗禹,申海平.石油针状焦生产技术[J].炼油设计, 1997, 27(1): 10-13.
    [89]高风萍.国外针状焦的质量现状分析[J].炭素技术, 2003, 26(1): 27-31.
    [90] Mochida I, Korai Y. Semi-quantitative correlation between optical anisotropy and CTE of needlelike coke grains [J]. Carbon, 1987, 25(2): 273-278.
    [91] Goval K. Process for producing needle coke [P]. USA Patent: US5286371, 1994-02-05.
    [92] Equchi S. Process for producing petroleum needle coke [P]. USA Patent: US5695631, 1997-11-09.
    [93] Mochida I, Fujimoto K, Oyama T. In chemistry and physics of carbon [M]. New York: Marcel Dekker, 1994: 111-115.
    [94] Rodeiguez—Reinoso F, Santana P, Palazon E, et al. Delayed coking: industerial and laboratory aspects [J].Carbon, 1998, 36(1): 105-116.
    [95] Kelley M. Pulp insulated telecommunications conductor [P]. USA Patent: US4545858, 1985-10-08.
    [96]John W, Patrick. Albeet E. S. The strength of industrial cokes. 6. Further studies of the influence of coke breeze in a coal charge on tensile strength of coke [J]. Fuel, 1975, 54(4): 256-264.
    [97] Yoshimuba B. Process for preparation of high quality Coke [P]. USA Patent: US4100265,1978-07-11.
    [98] Kakuta M, Tanaka H. A new calcining technology for manufacturing of coke with lower thermal expansion coefficient [J].Carbon, 1981, 19(5): 347-352.
    [99] Mochida I, Oyama T, Korai Y et al. Study of carbonization using a tube bomb:evaluation of lump needle coke,carbonization mechanism and optimization [J]. Fuel, 1988, 67(9): 1171-1181.
    [100] Eester S, Jenkins R. G, Derbyshire F. J. Carbonization of coker feedstocks and their fractions [J]. Carbon, 1986, 24(1): 77-82.
    [101] White J. L, Price R. J. The formation of mesophase microstructures during the pyrolysis of selected coker feedstocks [J]. Carbon, 1974, 12(3): 321-333.
    [102]稻垣道夫.炭材料炭纤维工学[M].赖耿阳译.台南:复汉出版社, 1986: 116-118.
    [103]张怀平.沥青成焦光学结构的研究[J].新型炭材料, 2002, 17(2): 45-50.
    [104]张怀平.石油渣油空气氧化与氮气热缩聚的比较研究[J].石油炼制与化工, 2002, 33(1): 42-46.
    [105] Mochida I, Oyama T, Korai Y.Improvements to needle-coke quality by pressure reducing from a tube reactor [J]. Carbon, 1988, 26(1): 57-60.
    [106]赖耿阳.炭材料化学与工学[M].台南:复汉出版社, 1991: 163-164.
    [107] Mochida I, Oyama T, Korai Y. Improvements to needle-coke quality by pressure reducing from a tube reactor [J]. Carbon, 1988, 26(1): 57-60.
    [108] Mochida I, Y. Korai. Carbonization in the tube bomb leading to nedle coke: I cocarbonization of a petroleum vacuum residue and a FCC—decant oil into better needle coke [J]. Carbon, 1989, 27(3): 359-365.
    [109] Mochida I, Amamoto K, Maeda K et al. Carbonization of pitch: compatibility of components in carbonization [J]. Fuel, 1977, 56(1): 49-56.
    [110] Mochida I, Amamoto K, Maeda K et al. Quantitative description and modification of cocarbonization compatibility of pitch fractions [J]. Fuel, 1978, 57(4): 225-230.
    [111] Korai Y, Mochida I. Co-carbonization processes of a petroleum asphalt and coal- derived liqued: an approach to co-carbonization compatibility [J]. Fuel, 1983, 62(8): 893-899.
    [112] Nesumi Y, Todo Y, Oyama T. Carbonization in the tube bomb leading to needle coke:Ⅱmechanism of cocarbonization of a petroleum vacuum residue and a FCC-decant oil [J].Carbon, 1989, 27(3): 367-373.
    [113] Mochida I, Fei Y. Q,Korai Y et al. Co-carbonization of ethylene tar pitch andcoal pitch to form needle coke [J]. Fuel, 1990, 69(6): 672-677.
    [114] Eser S, Jenkins R. G., Derbyshire F. J et al. Carbonization of coker feedstocks and their fractions [J]. Carbon, 1986, 24(1): 77-82.
    [115] Mochida I, Korai Y. Carbonization in the tube bomb leading to needle coke: I. Cocarbonization of a petroleum vacuum residue and a FCC-decant oil into better needle coke [J]. Carbon, 1989, 27(3): 359-365.
    [116] Mochida I, Fei Y Q, Korai Y et al. Co-carbonization of ethylene tar pitch and coal tar pitch to form needle coke [J]. Fuel, 1990, 69(6): 672-677.
    [117] Shishida M, Yamada S, Arai K et al. Modification of the carbonization properties of coal-tar pitch by supercritical fluid extraction [J]. Fuel, 1990, 69(12): 1490-1491.
    [118] Amestica L. A, Wolf E. E. Supercritical toluene and ethanol extraction of an Illinois No. 6 coal [J]. Fuel, 1984, 63(2): 227-230.
    [119] Celyan R, Olcay A. Supercritical-gas extraction of Turkish coking coal [J]. Fuel, 1981, 60(3): 197-200.
    [120] Shishida M, Yamada S, Arai K et al. Modification of the carbonization properties of coal-tar pitch by supercritical fluid extraction [J]. Fuel, 1990, 69(12): 1493-1495.
    [121] Anzai M., Yamada Y., Hagiwara S., et al. Effect of Surface Structure of Carbon fiber on Bending Strength of C/C Composite [J].Tanso, 1988, 135(2): 239-243.
    [122] Hagiwara S., Ohkura A., Honda H., et al.Interaction between Carbon Fiber Surface and Phenol Resin or Mesophase Coal Tar Pitch [J]. Tanso, 1988, 134(1): 155-158.
    [123] Bolanos G, Hochgeschurtz T, Thies M. C. 20th Bienn. Conf. on Carbon, Extend abstracts, 1991,164-167.
    [124]宋怀河,刘朗.煤焦油沥青不同改性产物炭化性质的比较研究[J].燃料化学学报, 1995, 23(1): 69-74.
    [125]谢建明.煤焦油沥青中喹啉不溶物的分离.江苏化工, 1998, 26(1): 38-41.
    [126]刘春林,凌立成.大港常压渣油超临界萃取馏分制备中间相沥青的研究[J].石油学报(石油加工), 2002, 18(2). 54-58.
    [127]张家埭.炭材料工程基础[M ].北京:冶金工业出版社, 1992: 187-125.
    [128]李太平,王成扬.针状焦技术的研究进展[J].炭素, 2004, 119(3): 11-16.
    [129]丁宗禹,申海平.石油针状焦生产技术[J].炼油设计, 1997, 27(1): 10-13.
    [130] Lefrank P.A, Hoff S. L, Stefanelli J. J. Correlation of SEM data of cokes with graphite eletctrode performance. Carbon, 1989, 27(6), 945-949.
    [131] JSPS (Japan Society for Promotion of Science). The mesurement method of crystal size of manufactured carbon [J]. Tanso, 1963, 36(1): 25-28.
    [132] Bacon. Q. Chemistry and physics of carbon [M]. New York: Marcel Dekker, 1985: 176-178.
    [133] Mochida I, Korai Y. Semi-quantative correlation between optical anisotropic and CTE of needle-like coke grains [J]. Carbon, 1987, 25(2): 273-278.
    [134] Grint A, Marsh H. Carbonization and liquid-crystal (mesophase) development. 20. Co-carbonization of a high-volatile caking coal with several petroleum pitches [J]. Fuel, 1981, 60(6): 513-518.
    [135] Qia Z. F, Marsh H. The co-carbonization of oxidized coals with pitches and decacyclene [J]. Fuel, 1984, 63(11): 1588-1593.
    [136] Diefendorf R. J, Riggs D. M. Forming optically anisotropic pitches [P]. British Patent GB2002024A, 1979-02-14.
    [137] Otani S. Lantently anisotropic pitch [P]. JPN: JP57100186, 1982-06-29.
    [138] Chwastiak S. Low molecular weight mesophase pitch [P]. British Patent GB2005298A, 1979-03-18.
    [139] Yamada Y, Honda H. Preparation of carbon fiber [P]. JPN: JP58-18421, 1983-02-29.
    [140] Tsuchitani M, Hase Y, Ito Y, et al. Relations between characteristics of various petroleum residues and those of meso-carbon microbeads obtained [J]. Tanso, 1975, 82(2): 107-108.
    [141] Mochida I, Shimizu K, Korai Y, et al. Mesophase pitch catalytically prepared from anthracene with HF/BF3 [J]. Carbon, 1992, 30(1): 55-61.
    [142] Guillén M. D, Iglesias M. J. Dominguez A, Blanco CG. Semi-quantitative FTIR analysis of a coal tar pitch and its extracts and residues in several organic solvents [J]. Energy & Fuels, 1992, 6(4): 518-525.
    [143] Sakanishi A, Korai Y, Mochida I. Comparative study of isotropic and mesophasepitches derived from C9 alkylbenzenes [J]. Carbon, 1992, 30(3): 459-466.
    [144] Dumont M, Chollon G, Dourges M et al. Chemical microstructural and thermal analyses of a naphthalene-derived mesophase pitch [J]. Carbon, 2002, 40(9): 1475-1486.
    [145]谢克昌.煤的结构及反应性[M].北京:科学出版社, 1996: 69-73.
    [146] Snape C. E. Estimation of aliphatic H/C ratios for coal liquefaction products by spin-eco 13C NMR [J]. Fuel, 1983, 62(5): 621-624.
    [147]梁文杰.石油化学.东营:中国石油大学出版社, 1993: 153-155.
    [148] Marsh H, Walker P.L. In chemistry and physics of carbon [M]. New York: Marcel Dekker, 1979: 230-286.
    [149] Marsh H and Menendez R. In introduction to carbon science [M]. London: Butter worth, 1989, 37-73.
    [150] Hamaguchi H, Suzuki T, Nishizawa T et al. The solubility of hexabenzene in the mesophase 1. interaction with mesophase[R]. Tsukuba: Int. Symp. Carbon, 1990.
    [151] Sawa M, Suzuki T, Nishizawa T. The solubility of hexabenzene in the mesophase 2. influence on mesophase formation[R]. Tsukuba: Int. Symp. Carbon, 1990.
    [152] Shishido M, Inomata H, Arai K, Saito S. Application of liquid crystal theory to the estimation of mesophase pitch phase-transition behavior [J]. Carbon, 1997, 35(6): 797-799.
    [153] Hurt R. H, Hu Y. Thermodynamics of carbonaceous mesophase [J]. Carbon, 1999, 37 (2): 281-292.
    [154] Mochida I, Korai Y, The solubility of different components from the petroleum pitches [J]. J. Fuel Soc Jpn. 1965, 64: 796-800.
    [155] Greinke R. A, Singer L. S. Constitution of coexisting phases in mesophase pitch during heat treatment: Mechanism of mesophase formation [J]. Carbon, 1988, 65(5): 665-670.
    [156] Hu Y, Hurt R. H. Thermodynamics of carbonaceous mesophase: II. General theory for nonideal solutions [J]. Carbon, 2001, 39(6): 887-896.
    [157] Azami K, Yamamoto S, Sanada Y. Kinetics of mesophase formation of petroleum pitch [J]. Carbon, 1994, 32(5): 947-951.
    [158] Bates M. A, Luckhurst G. R. Computer simulation studies of anisotropic systems XXVI. Monte Carlo investigations of a Gay–Berne discotic at constant pressure [J]. J. Chem. Phys. 1996, 104 (17): 6696-6709.
    [159] Gay J. G, Berne B. J, Modification of the overlap potential to mimic a linear site–site potential [J]. J. Chem. Phys. 1981, 74(6): 3316-3319.
    [160] Greinke R. A. Chemistry and physics of carbon [M]. New York: Marcel Dekker, 1996: 15-25.
    [161] Chen S. H, Diefendorf R. J. The structure of mesopase pitch. Extended Abstracts, 16th Biennial Conf. on carbon. 1983: 28.
    [162] Lewis I. C. Thermal polymerization of aromatic hydrocarbons [J].Carbon, 1980, 18(3): 191-196.
    [163] Barrall E. M, In Saeva, editor. Liquid Crystals: The Fourth State of Matter [M], chap9, New York: Marcel Dekker, 1979.
    [164] De Gennes P. G, Prost J. The Physics of Liquid Crystals [M]. Oxford: Clarendon Press, 1993.
    [165] Marsh H, Walker P. L. In Chemistry and Physics of Carbon [M].Chap.3, New York: Marcel Dekker, 1979: 15。
    [166] Lafdi K, Bonnamy S, Oberlin A. Mechanism of anisotropy occurrence in a pitch precursor of carbon fibres: Part III—Hot stage microscopy of pitch B and C [J].Carbon, 1991, 29(7): 857-864.
    [167] Zhuang M. S, Thies M. C. Extraction of Petroleum Pitch with Supercritical Toluene: Experiment and Prediction [J] Energy & Fuel, 2000, 14(1): 70-75.
    [168] Venner J. G, Diefendorf R. J, In Arthur Jr. Jc, editor Polymers for fibers and elastomers. ACS symposium series, 1984, 260.
    [169] Sandler S. I. Chemical and engineering thermodynamics [M]. 2nd Ed. New York: Wiley, 1989:123-165.
    [170] Flory P. Principles of polymer chemistry [M]. Ithaca, NY: Cornell University Press, 1953: 125-127.
    [171] Mochida I, Y. Korai, Oyama T, Nesumi Y, Todo Y. Carbonization in the tube bomb leading to needle coke: I. Cocarbonization of a petroleum vacuum residue and a FCC-decant oil into better needle coke [J]. Carbon, 1989, 27(3): 359-365.
    [172] Nesumi Y, Todo Y, Oyama T, Mochida I et al. Carbonization in the tube bomb leading to needle coke: II. Mechanism of cocarbonization of a petroleum vacuum residue and aFCC-decant oil [J]. Carbon, 1989, 27(3): 367-373.
    [173] Liang Y. H, Chen H. P. Estimation of octanol-water partition coefficient of chloride hydrocarbon by group contribution method [J]. Chin. J. Chem. Eng., 2007, 15(5): 715-719.