大麻素诱导的VTA DA神经元的LTD
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大麻是世界上最易于滥用的精神药物,其活性成分大麻素(THC)可以对包括人类在内灵长类产生奖赏效应。但是到目前为止,还没有有效的治疗大麻素成瘾的手段,很大程度上是因为对大麻素成瘾的确切机制还不明了。近年来,相当多的证据表明,成瘾效应导致的中枢神经系统适应性变化与学习记忆功能有共同的谷氨酸依赖的细胞分子机制,这使得突触传递的长时程增强(LTP)和长时程减弱(LTD)成为研究成瘾效应的细胞分子机制的焦点。而且,大多数具有强化效应或奖赏效应并易于滥用的精神依赖性药物都可以升高伏隔核(NAc)内的多巴胺水平,表明成瘾药物使得中脑多巴胺系统的多巴胺神经元活性增强。人们进一步发现,许多成瘾药物包括尼古丁、可卡因、安非他命、吗啡和酒精等,都可以使得腹侧背盖区(VTA)多巴胺神经元产生LTP效应,说明VTA多巴胺神经通路的LTP在药物成瘾效应的发生过程中有至关重要的作用。但是,到目前为止,还不清楚大麻素能否在VTA诱导出LTP或LTD,更重要的是如果大麻素可以引起VTA的突触可塑性改变,那么这种改变是否与大麻素成瘾行为表现密切相关还没有答案。
     本研究采取对大鼠脑片场电位记录(年幼和成年鼠)和DA与GABA神经元全细胞膜片钳记录(年幼鼠)的手段,并结合分子生物学技术、生物化学技术和免疫组化技术,研究大麻素慢性作用对VTA突触可塑性的影响。目的是获得大麻素成瘾过程中VTA DA神经元的谷氨酸能传入突触强度长时程变化的特征和可能的细胞分子机制,并为大麻素成瘾问题的治疗措施提供新思路。本研究首先观察到大麻素(THC和HU210)慢性作用易化了VTA LTD的诱导。接着,发现大麻素通过激活星形胶质细胞上的CB1R以及通过DA神经元AMPARI的内吞作用诱导VTA DA神经元在体产生LTD。具体结果如下:
     1大麻素通过激活VTA CB1R易化DA神经元LTD的诱导
     空白对照组和安慰剂组在不阻断抑制性GABA中间神经元下,无论是LFS还是HFS都不能诱导出VTA脑片的LTP或LTD。相反,大麻素慢性作用5天的24小时后,HFS依然不能诱导出LTP,而LFS则可以诱导出LTD。大麻素慢性作用易化VTA LFS诱导LTD的现象可以被CBIR的特异性阻断剂AM281阻断。通过全细胞膜片钳记录表明大麻素易化LTD的诱导现象产生于DA神经元,而非GABA神经元。
     2大麻素是通过活化VTA DA神经元突触后NMDAR易化LTD的诱导,并需要APMAR的内吞过程
     PPR记录发现HU210作用并不改变突触前谷氨酸递质的释放概率,表明突触后机制介导了大麻素易化VTA LTD的诱导。这种突触后依赖的LTD可以被NMDAR的阻滞剂所阻断,而mGluR阻滞剂却没有作用,说明大麻素易化VTA LTD的诱导效应是突触后NMDAR依赖的。
     干扰GluR2内吞过程的TAT-GluR2干扰肽可以消除HU210易化VTA LTD的诱导效应。免疫荧光双标记实验表明,GluR2阳性神经元与TH标记的DA神经元可以共染色,而与GABA神经元无共染色,提示GluR2内吞过程可能主要发生在DA神经元而非GABA神经元。免疫荧光的结果,进一步证明大麻素易化VTA LTD的诱导效应是发生于DA神经元。
     3大麻素可能诱导VTA DA神经元产生在体LTD
     与上述的HU210慢性作用,最后一次注射24小时后的大鼠脑片相比,最后一次注射30分钟后的脑片LFS不能诱导出LTD,提示LTD的诱导可能被阻滞(occlusion);且30分钟后的细胞膜表面的GluR2表达量较24小时明显降低;30分钟后VTA DA神经元的AMPAR/NMDAR电流比率较24小时后组和空白对照组明显下降;HU210慢性作用后DA神经元的NR2B/NR2A电流比率较空白对照组明显升高。所有这些证据表明大麻素可能诱导VTA DA神经元产生在体LTD。
     4星形胶质细胞在大麻素诱导的VTA DA神经元生成LTD中的作用
     星形胶质细胞可以表达CB1R,本研究接下来观察特异性下调星形胶质细胞CB1R的表达量对大麻素诱导的在体LTD的影响。通过免疫印迹手段,我们首先确定了双侧颅内VTA定位微量注射构建的CB1R-shRNA腺病毒能明显抑制VTA CB1R的表达,并观察到CB1R-shRNA腺病毒主要转染VTA的星形胶质细胞,说明腺病毒能较特异地下调星形胶质细胞CB1R的表达量。接下来发现,腺病毒注射能明显抑制HU210慢性作用易化LFS诱导的LTD。另外,VTA定位注射能抑制突触前谷氨酸释放和增强星形胶质细胞对谷氨酸清除的的药物riluzole,可以抑制HU210作用后LFS对LTD的诱导。
     众所周知,含NR2B亚基的NMDAR可以诱导GluR2的内吞,进而产生LTD效应。我们发现大麻素慢性作用,最后一次注射24小时后NR2B/NR2A电流比率明显增强;免疫荧光标记结果表明,VTA中包含NR2B亚基的NMDAR主要位于旁突触,而包含NR2A亚基的NMDAR主要位于突触,提示由突触附近星形胶质细胞释放的谷氨酸作用到位于旁突触的NR2B,从而介导大麻素对LTD的诱导。
     5大麻素和尼古丁的中和作用
     以上所有结果表明,大麻素可以诱导VTA DA神经环路产生在体LTD效应。与此不同的是,大多数成瘾药物包括尼古丁、可卡因、吗啡、安非他命和酒精等均可以诱导DA神经元的LTP。这就产生一个疑问,对突触可塑性作用相反的成瘾药物是否可以产生中和作用。
     本研究提供两条证据以回答以上问题,一是慢性尼古丁作用后,HFS能诱导出VTALTP,而LFS不能诱导LTD。其次,尼古丁和大麻素联合作用后,HFS不能诱导出LTP,而LFS也不能诱导LTD。说明尼古丁和大麻素对VTA DA神经元的突触可塑性的影响产生了中和作用。
     根据以上结果,得出如下结论:
     大麻素注射可以诱导VTA产生在体LTD,且该效应的维持少于24小时。停止大麻素注射24小时后,易化了LFS诱导VTA的DA神经元LTD的生成。大麻素诱导的LTD是NMDAR和AMPAR依赖的,其途径是首先激活VTA星形胶质细胞的CBIR,使其分泌谷氨酸,谷氨酸活化旁突触的NR2B亚基,进而引起GluR2的内吞效应。大麻素诱导的LTD和尼古丁诱导的LTP可以产生中和作用。
Cannabis is the most commonly abused illegal drug in the world and its main psychoactive ingredient, delta-9-tetrahydrocannabinol (THC), produces rewarding effects in humans and non-human primates. However, there is no effective treatment for cannabis addiction in humans, largely due to our poor understanding of its underlying mechanisms. Recently, considerable evidence suggests that neuroadaptations leading to addiction involve the same glutamate-dependent cellular mechanisms that enable learning and memory. Long-term potentiation (LTP) and long-term depression (LTD) have therefore become an important focus of addiction research. In addition, most psychoactive drugs that have reinforcing or rewarding effects in experimental animals and are abused by humans increase dopamine levels in the nucleus accumbens shell, indicating VTA DA neurons are activated during drug exposure. LTP induction in VTA dopamine neurons following exposure to most drug (nicotine, cocaine, amphetamine, morphine and ethanol), indicated an essential contribution of LTP induction in the VTA dopamine circuitry to the development of drug addiction. It is entirely unknown, however, whether cannabinoids are able to induce LTP or LTD in the VTA.More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed.
     In present study, we employed a combination of field potential recordings from both young and adult rats, whole cell recordings of the EPSCs from both dopamine and GABA neurons in the young rat VTA, and molecular biological, biochemical, immunohistochemica to exhibit the changes of VTA synaptic plasticity following chronic cannabinoid exposure. The purposes of this study are to describe the change of synaptic plasticity in VTA following cannobinoid exposure and underlying molecular and cellular mechanisms, and to provide candidate therapeutic strategies for treating cannabis addiction. We first observed that chronic cannabinoid (THC and HU210) exposure in vivo facilitated LTD induction in the VTA. Then, we provide the first evidence suggesting that cannabinoids induce in vivo LTD in VTA dopamine neurons via cannabinoid CB1 receptors (CB1R) probably on VTA astrocytes and AMPAR on VTA dopamine neurons. The results are as followings:
     1 Cannabinoids act on VTA CB1R to facilitate LTD induction in the DA neuron
     Without blocking inhibitory GABA neurons, neither HFS nor LFS of excitatory afferents induced LTP or LTD in the field EPSPs recording in the VTA of both naive rats and vehicle-treated rats. In contrast, LFS induced LTD, but HFS still failed to induce LTP, from in midbrain slices prepared at 24 hours after 5 days chronic cannabinoid exposure. The selective CB1R antagonist AM281 prevented cannabinoid-facilitated LTD induction. Whole cell recording identified that this LTD was expressed in VTA dopamine neurons but not GABA neurons.
     2 Cannabinoid facilitates LTD induction in the VTA via post-synaptic NMDAR and requiring AMPAR endocytosis
     The paired pulse ratio (PPR) recording shows that the in vivo HU210 exposure did not cause a change in probability of glutamate transmitter release, indicating a postsynaptic mechanism for the induction of cannabinoid-facilitated LTD in the VTA. This postsynaptic LTD was blocked by the NMDAR antagonist, but not mGluR antagonists, suggesting that cannabinoid facilitates LTD induction in the VTA via post-synaptic NMDAR.
     TAT-GluR2 peptide, the blocker of GluR2 endocytosis procedure, abolished LTD induction in HU210-treated rats. GluR2 endocytosis likely occurs in the post-synaptic membrane of VTA dopamine neurons, but not VTA GABA neurons, because GluR2-positive neurons were doubly stained with the dopamine-synthesizing enzyme tyrosine hydroxylase (TH), but not with the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD) 65/67. These results further strongly support the idea that the expression of cannabinoid-facilitated LTD in the VTA occurs in VTA dopamine neurons but not GABA neurons.
     3 Cannabinoid induces in vivo LTD in VTA dopamine neurons
     Compared with the slices prepared at 24 hours after chronic HU210 injection, LFS failed to induce LTD at the slices prepared at 30 minutes after the last HU210 injection, but not at 24 hours, by a preceding HU210-induced LTD in vivo, indicating the occlusion of LFS-induced LTD in vitro at 30 minutes. Cell surface levels of GluR2 in the VTA significantly reduced at 30 minutes, but not at 24 hours, after the fifth HU210 injection. The AMPAR/NMDAR current ratio of glutamatergic synaptic currents in VTA dopamine neurons was significantly smaller at 30 minutes than both that at 24 hours after the fifth HU210 injection and that in naive rats. NR2B/NR2A EPSC ratio of VTA dopamine neurons was significantly larger in HU210-treated rats than that in naive rats. All these evidences support that cannabinoid likely induces in vivo LTD in VTA dopamine neurons.
     4 Role of VTA astrocytes in cannabinoid-induced in vivo LTD in VTA dopamine neurons
     It were reported that astrocytes express CB1R. So we if selective knocking down of CB1R expression in the VTA using CB1R shRNA expressed by adenoviral vectors could disturb cannabinoid-induced in vivo LTD. Through immunoblotting method, we firstly confirmed that bilateral injection of CB1R shRNA expressed by adenoviral vectors into the VTA significantly suppressed CB1R expression; then we show that VTA astrocytes are the major targets of intra-VTA injection of the vectors by double staining technology; finally, we found that LFS-induced LTD in HU210-treated rats was inhibited after vectors intra-VTA microinjection. Furthermore, we observed that riluzole, a drug can inhibit pre-synaptic glutamate release and enhance glutamate uptake into astrocytes, daily intra-VTA infusion before systemic HU210 injection prevented LFS-induced LTD in the VTA.
     It is generally agreed that NR2B-containing NMDAR induces GluR2 endocytosis and subsequent LTD induction. Here we show that an increase in NR2B/NR2A EPSC ratio of VTA dopamine neurons at 24 hours after the fifth HU210 injection. Immunofluorescent staining results show that the majority of NR2B-and NR2A-containing NMDARs in the VTA are located in extra-synaptic and synaptic zones, respectively, indicating that the extra-synaptic NR2B activation by glutamate released from nearby astrocytes is response to cannabinoid-induced LTD.
     5 Counteractive effects of cannabinoid and nicotine
     While we show evidence here strongly suggesting that cannabinoid exposure in vivo induces LTD in vivo in VTA dopamine circuitry, previous studies show that many other drugs of abuse including nicotine, cocaine, amphetamine, morphine and ethanol may induce LTP in vivo in these neurons(10-12).It would be of interest to examine co-administration of cannabinoid and one of these drugs of abuse may neutralize their opposite effects on VTA synaptic plasticity.
     We obtained two lines of evidence to support this hypothesis. First, HFS, but not LFS, induced VTA LTP from rats receiving chronic nicotine injection. Second, neither HFS nor LFS induced VTA LTP or LTD from rats receiving chronic co-administration of HU210 and nicotine.
     Conclusion
     Cannabinoid exposure in vivo induced in vivo LTD in the VTA that lasts for less than 24 hr, and facilitated LTD induction in the DA neuron 24 hours later. The signaling process of this LTD induction in the VTA is that cannabinoid via CB1R on astrocytes activate post-extrasynaptic NR2B subunits of NMDAR and then lead GluR2 subunits of AMPAR endocytosis. Furthermore, LTD induced by cannabinoid and TLP induced by nicotine could be neutralized each other.
引文
[1]Elkashef, A.,Vocci, F.,Huestis, M.,Haney, M.,Budney, A.,Gruber, A., and el-Guebaly, N. Marijuana neurobiology and treatment. Subst. Abuse,2008, 29:17-29.
    [2]Compton, W.M.,Grant, B.F.,Colliver, J.D.,Glantz, M.D.,and Stinson, F.S. Prevalence of marijuana use disorders in the United States:1991-1992 and 2001-2002.JAMA,2004,291:2114-2121.
    [3]Hyman, S.E.,Malenka, R.C.,and Nestler, E.J. Neural mechanisms of addiction:the role of reward-related learning and memory. Annu. Rev. Neurosci.,2006, 29:565-598.
    [4]Kauer, J.A. Learning mechanisms in addiction:synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu. Rev. Physiol.,2004, 66:447-475.
    [5]Malenka, R.C.,and Bear, M.F. LTP and LTD:an embarrassment of riches. Neuron, 2004,44:5-21.
    [6]Wilson R.I.,Nicoll R.A. Endocannabinoid signaling in the brain. Science,2002, 296:678-682.
    [7]Ameri A. The effects of cannabinoid on the brain. Prog Neurobiol,1999,58(4): 315-48.
    [8]Yanovsky Y.,Mades S.,Misgeld U. Retrograde signaling changes thevenue of postsynaptic inhibition in rat substantia nigra. Neuroscience,2003,122:317-28.
    [9]Ashton K.J.,Nilsson U.,Willems L.,Holmgren K.,Headrick J.P.Usefulness of coronary flow reserve measured by transthoracic coronary Doppler ultrasound to detect severe left anterior descending coronary arterystenosis. Biochem. Biophys. Res. Commun,2003,312:367-72.
    [10]Marco A.D., Alain M. Endocannabinoid mediated short term synaptic plasticity: depolarization induced suppression of inhibition (DSI) and depolarization induced suppression of excitation (DSE).Bri. J. Pharmacol.,2004,142(1):9-19.
    [11]Egertova M.,Giang D.K.,Cravatt B.F.,et al.A new perspective on cannabinoid signalling:complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc. R. Soc.Lond. B.Biol. Sci.,1998,265:2081-2085.
    [12]Ryberg E.,Vu H.K.,Larsson N.,et al.Identification and characterization of a novel sp lice variant of the human CB 1 receptor. FEBS Lett.,2005,579(1): 259-264.
    [13]Marcaggi P.,Attwell D.Endocannabinoid signaling depends on the spatial pattern of synapse activation. Nat. Neurosci.,2005,8(6):776-781.
    [14]Sjostrom P.J.,Turrigiano GG,Nelson S.B.Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron,2003,39(4): 641-654.
    [15]Vivien C.,Boris D.H.,Pascal S.K., et al.Endocannabinoid 2 mediated long-term plasticity requires cAMP/PKA signaling and R IM1 alpha. J. Neurosci.,2007, 55(1):169.
    [16]Marta N.,Alfonso A. Endocannabinoids mediate neuron-astro-cyte communication. J. Neurosci.,2008,57(6):883-893.
    [17]Hollister L.E. Health aspects of cannabis. Pharmacol. Rev.,1986,38:1-20.
    [18]Budney A.J, Hughes J.R.,Moore B.A.,et al. Marijuana abstinence effects inmarijuana smokers maintained in their home environment. Arch. GenPsychiatry, 2001,58:917-924.
    [19]Aceto M.D., Scates S.M., Lowe J.A, et al. Dependence on delta9-tetrahydrocannabinol:studies on precipitated and abrupt withdrawal. J. Pharmacol.Exp. Ther.,1996,278:1290-1295.
    [20]Diana M.,Melis M.,Muntoni A.L,et al.Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proc. Natl.Acad. Sci.,1998,95:10269-10273.
    [21]Manzanares J.,Corchero J.,Romero J., et al. Pharmacological and biochemical interactions between opioids and cannabinoids. Trends Pharmacol.Sci.,1999,20: 287-294.
    [22]Hine B.,Torrelio M.,Gershon S.Attenuation of precipitated abstinence in methadone-dependent rats by delta 9-THC.Psychopharmacol.Commun.,1975, 1(3):275-83.
    [23]Yamaguchi T.,Hagiwara Y.,Tanaka H.,Sugiura T.,Waku K.,Shoyama Y., Watanabe S.,Yamamoto T. Endogenous cannabinoid,2-arachidonoylglycerol, attenuates naloxone-precipitated withdrawal signs in morphine-dependent mice. Brain Res.,2001,909(1-2):121-6.
    [24]Ledent C.,Valverde O.,Cossu G.,et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science,1999, 283:401-404.
    [25]Fattore, L.,Martellotta, M.C.,Cossu, G.,Mascia,M.S., and Fratta, W. CB1 cannabinoid receptor agonist WIN 55,212-2 decreases intravenous cocaine self-administration in rats. Behav. Brain Res.,1999,104:141-146.
    [26]Vlachou, S.,Nomikos, G.G.,and Panagis, G WIN 55,212-2 decreases the reinforcing actions of cocaine through CB1 cannabinoid receptor stimulation. Behav. Brain Res.,2003,141:215-222.
    [27]Eisch A.J, Barrot M., Schad C.A. Opiates inhibit neurogenesis in the adult rat hippocampus. J. Neurobiology,2000,97:7579-7584.
    [28]Franklin T.R.,Acton P.D.,Maldjian J.A.,Gray J.D.,Croft J.R.,Dackis C.A., O'Brien C.P. Childress AR:Decreased gray matter concentration in the insular,orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol. Psychiatry,2002,51:134-142.
    [29]Ungless, M.A.,Whistler, J.L.,Malenka, R.C.,Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature,2001,411: 583-587.
    [30]Saal, D.,Dong, Y.,Bonci, A.,and Malenka, R.C.Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron,2003,37:577-582.
    [31]Thomas, M.J.,Beurrier, C.,Bonci, A.,Malenka, R.C.Longterm depression in the nucleus accumbens:a neural correlate of behavioral sensitization to cocaine. Nat. Neurosci.,2001,4:1217-1223.
    [32]Wolf, M.E. LTP May Trigger Addiction. Molecular interventions, Mol Interv.,2003, 3(5):248-52.
    [33]Marina E. Wolf, Xiu Sun, Simona Mangiavacchi, Steven Z. Chao Psychomotor stimulants and neuronal plasticity. Neuropharmacology.2004;47 Suppl 1:61-79.
    [34]Nestler E.J. Is there a common molecular pathway for addiction? Nat. Neurosci., 2005,8(11):1445-9.
    [35]Kauer J.A.,Malenka R.C.Synaptic plasticity and addiction. Nature Rev Neurosci, 2007,8:844-858.
    [36]Sun X.,Zhao Y,Wolf M.E. Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J Neurosci.,2005, 25(32):7342-51.
    [37]Fu Y.,Pollandt S.,Liu J.,Krishnan B.,Genzer K.,Orozco-Cabal L.,Gallagher J.P., Shinnick-Gallagher P. Long-term potentiation (LTP) in the central amygdala (CeA) is enhanced after prolonged withdrawal from chronic cocaine and requires CRF1 receptors. J. Neurophysiol.,2007,97(1):937-41.
    [38]Pu L.,Bao G.B.,Xu N.J.,Ma L.,Pei G. Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci.,2002,22(5):1914-21.
    [39]Malenka R.C.,Nicoll R.A. Long-term potentiation-a decade of progress? Science, 1999,285(5435):1870-1874.
    [40]Noel J.,Ralph G.S.,Pickard L.,Williams J.,Molnar E.,Uney J.B.,Collingridge G.L.,Henley J.M. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron,1999,23(2):365-76.
    [41]Seeburg P.H. The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci.,1993,16(9):359-65.
    [42]Ritter L.M.,Vazquez D.M.,Meador-Woodruff J.H. Ontogeny of ionotropic glutamate receptor subunit expression in the rat hippocampus. Brain Res.,2002, 139(2):227-36.
    [43]Miserendino M.J.,Sananes C.B.,Melia K.R.,Davis M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature,1999,345(6277):716-718.
    [44]Rodrigues S.M.,Schafe G.E.,LeDoux J.E. Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J. Neurosci.,2001,21(17):6889-6896.
    [45]Weisskopf M.G,LeDoux J.E. Distinct populations of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala. J. Neurophysiol.,1999,81(2):930-934.
    [46]Bauer E.P., Schafe GE.,LeDoux J.E. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J.Neurosci.,2002,22(12): 5239-49.
    [47]Monyer H.,Burnashev N.,Laurie D.J.,Sakmann B.,Seeburg P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron,1994,12(3):529-40.
    [48]Laurie D.J.,Bartke I.,Schoepfer R.,Naujoks K.,Seeburg P.H. Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies. Brain Res.,1997,51(1-2):23-32.
    [49]Sheng M.,Cummings J.,Roldan L.A.,Jan Y.N.,Jan L.Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature,1994,368(6467):144-7.
    [50]Buller A.L.,Larson H.C.,Schneider B.E.,Beaton J.A.,Morrisett R.A.,Monaghan D.T. The molecular basis of NMD A receptor subtypes:native receptor diversity is predicted by subunit composition. J. Neurosci.,1994,14(9):5471-84.
    [51]Harris A.Z., Pettit D.L. Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices.J. Physiol.,2007,584:509-19.
    [52]Fontan-Lozano A.,Saez-Cassanelli J.L.,Inda M.C.,de los Santos-Arteaga M., Sierra-Dominguez S.A.,Lopez-Lluch G, Delgado-Garcia J.M.,Carrion A.M. Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor. J. Neurosci.,2007,27(38):10185-95.
    [53]Liu L.,Wong T.P.,Pozza M.F.,Lingenhoehl K.,Wang Y,Sheng M., Auberson Y.P., Wang Y.T. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science,2004,304(5673):1021-4.
    [54]Yu SY, Wu DC, Liu L, Ge Y, Wang YT. Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. J. Neurochem.,2008,106(2):889-99.
    [55]Massey P.V.,Johnson B.E.,Moult P.R.,Anberson Y.P.,Brown M.W.,Molnar E., Collingridge GL.,Bashir Z.I. Differential Roles of NR2A and NR2B-Containing NMDA Receptors in Cortical Long-Term Potentiation and Long-Term Depression. J. Neurosci.,2004,24(36):7821-7828.
    [56]He H.Y.,Hodos W.,Quinlan E.M. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. J. Neurosci.,2006,26(11):2951-5.
    [57]Majewska A.K.,Newton J.R.,Sur M. Remodeling of synaptic structure in sensory cortical areas in vivo.J. Neurosci.,2006,26(11):3021-9.
    [58]Thomas C.G.,Miller A.J.,Westbrook G.L.Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J. Neurophysiol.,2006, 95(3):1727-34.
    [59]Shi S.,Hayashi Y.,Esteban J.A.,Malinow R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell, 2001,105(3):331-43.
    [60]Stanton P.K. LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Hippocampus,1996,6(1):35-42.
    [61]Man, H.Y.,Lin, J.W.,Ju, W.H.,Ahmadian, G,Liu, L.,Becker, L.E.,Sheng, M., and Wang, Y.T. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron,2000,25:649-662.
    [62]Bliss T.V.,Collingridge GL. A synaptic model of memory:long-term potentiation in the hippocampus. Nature,1993,361(6407):31-9.
    [63]Carroll R.C.,Beattie E.C.,von Zastrow M.,Malenka R.C.Role of AMPA receptor endocytosis in synaptic plasticity. Nat. Rev. Neurosci.,2001,2(5):315-24.
    [64]Blanpied T.A.,Scott D.B.,Ehlers M.D. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron,2002,36(3): 435-49.
    [65]Ashby M.C.,De La Rue S.A., Ralph G.S.,Uney J.,Collingridge G.L.,Henley J.M. Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. J. Neurosci.,2004,24(22):5172-6.
    [66]Shi S.H.,Hayashi Y,Petralia R.S.,Zaman S.H.,Wenthold R.J.,Svoboda K., Malinow R. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science,1999,284(5421):1811-6.
    [67]Lu W.,Man H.,Ju W.,Trimble W.S.,MacDonald J.F.,Wang Y.T. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron,2001,29(1):243-54.
    [68]Rothman J.E. Mechanisms of intracellular protein transport. Nature,1994, 372(6501):55-63.
    [69]Luscher C.,Xia H.,Beattie E.C.,Carroll R.C.,von Zastrow M.,Malenka R.C., Nicoll R.A. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron,1999,24(3):649-58.
    [70]Luthi A.,Chittajallu R.,Duprat F.,Palmer M.J.,Benke T.A.,Kidd F.L.,Henley J.M.,Isaac J.T.,Collingridge G.L. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron,1999,24(2): 389-99.
    [71]Liu S.Q.,Cull-Candy S.G.Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature,2000,405(6785):454-8.
    [72]Hayashi Y.,Shi S.H.,Esteban J.A.,Piccini A., Poncer J.C.,Malinow R. Driving AMPA receptors into synapses by LTP and CaMKII:requirement for GluR1 and PDZ domain interaction. Science,2000,287(5461):2262-7.
    [73]Lee S.H.,Liu L.,Wang Y.T.,Sheng M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron,2002,36(4):661-74.
    [74]Malinow R., Malenka R.C.AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci.,2002,25:103-26.
    [75]Lu W.,Ziff E.B.PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking. Neuron,2005,47(3):407-21.
    [76]Kirson E.D., Yaari Y. Synaptic NMDA receptors in developing mouse hippocampal neurones:functional properties and sensitivity to ifenprodil.J. Physiol.,1996,497: 437-55.
    [77]Tovar K.R.,Westbrook GL. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro.J. Neurosci.,1999, 19(10):4180-4188.
    [78]Kohr G, Jensen V., Koester H.J.,Mihaljevic A.L.,Utvik J.K.,Kvello A.,Ottersen O.P.,Seeburg P.H.,Sprengel R.,Hvalby O.Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction. J. Neurosci.,2003,23(34):10791-9.
    [79]Chowdhury S.,Shepherd J.D.,Okuno H.,Lyford G,Petralia R.S.,Plath N.,Kuhl D.,Huganir R.L.,Worley P.F. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron,2006,52(3):445-59.
    [80]于书彦.AMPA受体运输在杏仁外侧核NM以受体依赖性的突触可塑性调节中的作用[D].山东大学图书馆.2008.
    [81]Vezina, P. Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci.Biobehav. Rev., 2004,27:827-839.
    [82]Wolf, M.E.,Sun, X. Mangiavacchi S, Chao SE,Psychomotor stimulants and neuronal plasticity. Neuropharmacology,2004,47:61-7.
    [83]Argilli E.,Sibley D.R.,Malenka R.C.,England P.M.,Bonci A. England, Antonello Bonci.Mechanism and Time Course of Cocaine-Induced Long-Term Potentiation in the Ventral Tegmental Area. J. Neurosci.,2008,28(37):9092-9100.
    [84]Kourrich S.,Rothwell P.E., Klug J.R., Thomas M.J. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J. Neurosci.,2007,27: 7921-7928.
    [85]Kalivas P.W.N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat. Neurosci.,2009
    [86]Artola A.2008.Diabetes-stress-and ageing-related changes in synaptic plasticity in hippocampus and neocortex-The same metaplastic process. Eur. J. Pharmacol. 585:153-162
    [87]Artola, A.,Singer, W.,1993. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci.16: 480-487.
    [88]Ngezahayo, A.,Schachner, M.,Artola, A. Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. J. Neurosci.,2000, 20:2451-2458.
    [89]Hyman, J.M., Wyble, B.P.,Goyal, V.,Rossi, C.A., Hasselmo, M.A. Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J. Neurosci.,2003,23:11725-11731.
    [90]Sjostrom, P.J.,Turrigiano, G.G.,Nelson, S.B.Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron,2001,32:1149-1164.
    [91]Mockett, B.,Coussens, C.,Abraham, W.C.NMDA receptor-mediated metaplasticity during the induction of long-term depression by lowfrequency stimulation. Eur. J. Neurosci.,2002,15:1819-1826.
    [92]Volterra, A.,Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci.,2005,6:626-640.
    [93]Halassa, M.M.,Fellin, T.,Haydon, P.G The tripartite synapse:roles for gliotransmission in health and disease. Trends Mol.Med.,2007,13:54-63.
    [94]Ge W.P.,Yang X.J.,Zhang Z.J.,Wang H.K.,Deng Q.D.,Duan S.Long-Term Potentiation of Neuron-Glia Synapses Mediated by Ca2+-Permeable AMPA Receptors. Science,2006,312:1533-1537
    [95]Ge W.P.,Duan S.Persistent Enhancement of Neuron-Glia Signaling Mediated by Increased Extracellular K+ Accompanying Long-Term Synaptic Potentiation. J. Neurophysiol.,2007,97:2564-2569.
    [96]Perea, G.,Araque, A. Astrocytes potentiate transmitter release at single hippocampal synapses. Science,2007,317:1083-1086.
    [97]Philip G. Astrocyte Control of Synaptic Transmission and Neurovascular Coupling. Physiol Rev,2006,86:1009-1031.
    [98]Liu, Q.S.,Xu, Q.,Arcuino, G,Kang, J.,Nedergaard, M. Astrocyte-mediated activation of neuronal kainate receptors. Proc. Natl.Acad. Sci. U. S. A.,2004,101: 3172-3177.
    [99]Jourdain, P.,Bergersen, L.H.,Bhaukaurally, K.,Bezzi, P.,Santello, M.,Domercq, M.,Matute, C.,Tonello, F.,Gundersen, V.,Volterra, A. Glutamate exocytosis from astrocytes controls synaptic strength. Nat. Neurosci.,2007,10:331-339.
    [100]Yang, Y,Gozen, O.,Watkins, A.,Lorenzini, I.,Lepore, A.,Gao, Y,Vidensky, S., Brennan, J.,Poulsen, D.,Won Park, J.,Li Jeon, N.,Robinson, M.B.,Rothstein, J.D.Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1.Neuron,2009,61:880-894.
    [101]Pascual, O.,Casper, K.B.,Kubera, C.,Zhang, J.,Revilla-Sanchez, R.,Sul, J.Y, Takano, H.,Moss, S.J.,McCarthy, K., aydon, P.G Astrocytic purinergic signaling coordinates synaptic networks. Science,2005,310:113-116.
    [102]Fellin, T.,Halassa, M.M.,Terunuma, M.,Succol, F.,Takano, H.,Frank, M.,Moss, S.J.,Haydon, P.G. Endogenous non-neuronal modulators of synaptic transmission control cortical slow oscillations in vivo.Proc. Natl.Acad. Sci.U. S.A.,2009,106: 15037-15042.
    [103]Fellin, T.,Pascual, O.,Gobbo, S.,Pozzan, T.,Haydon, P.G.,and Carmignoto, G Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMD A receptors. Neuron,2004,43:729-743.
    [104]D'Ascenzo, M., Fellin, T.,Terunuma, M.,Revilla-Sanchez, R.,Meaney, D.F., Auberson, Y P.,Moss, S.J.,Haydon, P.G. mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc. Natl.Acad. Sci.U.S.A.,2007,104:1995-2000.
    [105]Charles, K.J.,Deuchars, J.,Davies, C.H.,Pangalos, M.N. GABA B receptor subunit expression in glia. Mol.Cell.Neurosci.,2003,24:214-223.
    [106]Navarrete, M.,Araque, A. Endocannabinoids mediate neuron-astrocyte communication. Neuron,2008,57:883-893.
    [107]Haydon P.G.,Blendy J.,Moss S.J.,Rob Jackson F. Astrocytic control of synaptic transmission and plasticity:a target for drugs of abuse? Neuropharmacology,2009, 56:83-90.
    [108]Bainton R.J.,Tsai L.T.Y.,Schwabe T.,DeSalvo M.,Gaul U.,Heberlein U. Moody encodes two GPCRs that regulate cocaine behaviors and blood-brain barrier permeability in Drosophila. Cell,2005,123:145-156.
    [109]Suh, J.,Jackson, F.R. Drosophila Ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron,2007,55:435-447.
    [110]Bowers, M.S.,Kalivas, P.W. Forebrain astroglial plasticity is induced following withdrawal from repeated cocaine administration. Eur. J. Neurosci.,2003,17: 1273-1278.
    [111]Narita, M.,Miyatake, M.,Narita, M., Shibasaki, M.,Shindo, K.,Nakamura, A., Kuzumaki, N.,Nagumo, Y.,Suzuki,T. Direct evidence of astrocytic modulation in the development of rewarding effects induced by drugs of abuse. Neuropsychopharmacology,2006,31:2476-2488.
    [112]Narita, M.,Miyatake, M.,Suzuki, M., Kuzumaki, N.,Suzuki, T. Role of astrocytes in rewarding effects of drugs of abuse. Nihon Shinkei Seishin Yakurigaku Zasshi,2006,26:33-39.
    [113]Kalivas, P.W., McFarland, K.,Bowers, S.,Szumlinski, K.,Xi, Z.X.,Baker, D. Glutamate transmission and addiction to cocaine. Ann.N.Y.Acad. Sci.,2003, 1003:169-175.
    [114]Bellone C.,Luischer C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat Neurosci.,2006, 9:636-641.
    [115]Chiamulera, C.,Epping-Jordan,M.P.,Zocchi, A.,Marcon, C.,Cottiny, C.,Tacconi, S.,Corsi, M.,Orzi, F., Conquet, F. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat. Neurosci.,2001,4:873-874.
    [116]Lupica, C.R.,Riegel, A.C.,and Hoffman, A.F. Marijuana and cannabinoid regulation of brain reward circuits. Br. J. Pharmacol.,2004,143:227-234.
    [117]Nestler, E.J. Historical review:molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol.Sci.,2004,25:210-218.
    [118]Bonci, A.,and Malenka, R.C.Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J. Neurosci., 1999,19:3723-3730.
    [119]Johnson S.W.,North R.A. Two types of neuron in the rat ventral tegmental area and their synaptic inputs.J. Physiol.,1992,450:455-468.
    [120]Mansvelder, H.D., and McGehee, D.S.Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron,2000,27:349-357.
    [121]Nugent, F.S.,Penick, E.C.,and Kauer, J.A. Opioids block long-term potentiation of inhibitory synapses. Nature,2007,446:1086-90.
    [122]Pan, B.,Hillard, C.J.,and Liu, Q.S.Endocannabinoid signaling mediates cocaine-induced inhibitory synaptic plasticity in midbrain dopamine neurons. J. Neurosci.,2008,28:1385-1397.
    [123]Jiang, W.,Zhang, Y.,Xiao, L.,Van Cleemput, J.,Ji, S.,Bai, G.,Zhang, X. Cannabinoid promotes embryonic and adult hippocampus neurogenesis and produces anxiolytic-and antidepression-like effects. J. Clin. Invest.,2005, 115:3104-3116.
    [124]Ji, S.,Zhang, Y., Van Cleemput, J.,Liao, M.,Li, L.,Jiang, W.,Wan, Q.,Backstrom, J.R.,and Zhang, X. Disruption of PTEN coupling with 5-HT2C receptor suppresses behavioral responses induced by drugs of abuse. Nat. Med.,2006, 12:324-329.
    [125]Ro, S.,Hwang, S.J.,Ordog, T.,and Sanders, K.M. Adenovirus-based short hairpin RNA vectors containing an EGFP marker and mouse U6, human H1,or human U6 promoter. Biotechniques,2005,38:625-627.
    [126]Liu, A.,Hoffman, P.W.,Lu, W.,and Bai, G. NF-kappaB site interacts with Sp factors and up-regulates the NR1 promoter during neuronal differentiation. J. Biol. Chem.,2004,279:17449-17458.
    [127]Gutlerner, J.L.,Penick, E.C.,Snyder, E.M.,and Kauer, J.A. Novel protein kinase A-dependent long-term depression of excitatory synapses. Neuron,2002, 36:921-931.
    [128]Leonoudakis, D.,Zhao, P.,and Beattie, E.C.Rapid tumor necrosis factor a-induced exocytosis of glutamate receptor 2-lacking AMPA receptors to extrasynaptic plasma membrane potentiates excitotoxicity. J.Neurosci.,2008, 28:2119-2130.
    [129]Liu Q.S.,Pu L.,Poo M.M. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons.Nature,2005,437:1027-1031.
    [130]Jones S.,Kauer J.A. Amphetamine depresses excitatory synaptic transmission via serotonin receptors in the ventral tegmental area. J. Neurosci.,1999,19:9780-9787.
    [131]Margolis E.B.,Lock H.,Hjelmstad GO.,Fields H.L. The ventral tegmental area revisited:is there an electrophysiological marker for dopaminergic neurons? J. Physiol.,2006,577:907-924.
    [132]Hessler, N.A.,Shirke, A.M.,and Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature,1993,366:569-572.
    [133]Murthy, V.N., Sejnowski, T.J.,and Stevens, C.F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron,1997,18:599-612.
    [134]Anwyl,R. Induction and expression mechanisms of postsynaptic NMDA receptor-independent homosynaptic long-term depression. Prog. Neurobiol.,2006, 78:17-37.
    [135]Malenka, R.C.,and Bear, M.F. LTP and LTD:an embarrassment of riches. Neuron, 2005,44:5-21.
    [136]Lu, J.,Goula, D.,Sousa, N.,and Almeida, O.F.X.Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors. Neurosci.,2003,121:123-131.
    [137]Bedingfield, J.S.,Kemp, M.C.,Jane, D.E.,Tse, H-W.,Roberts, P.J.,and Watkins, J.C. Structure-activity relationships for a series of phenylglycine derivatives acting at metabotropic glutamate receptors (mGluRs).Br. J. Pharmacol.,1995, 116:3323-3329.
    [138]Wenzel A.,Fritschy J.M.,Mohler H., Benke D. NMDA receptor heterogeneity during postnatal development of the rat brain:differential expression of the NR2A, NR2B, and NR2C subunit proteins. J. Neurochem.,1997,68(2):469-78.
    [139]Ahmadian, G,Ju, W.,Liu, L.,Wyszynski, M.,Lee, S.H.,Dunah, A.W., Taghibiglou, C.,Wang, Y.,Lu, J.,et al.Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J., 2004,23:1040-1050.
    [140]Brebner, K.,Wong, T.P.,Liu, L.,Liu, Y.,Campsall,P.,Gray, S.,Phelps, L. Phillips, A.G.,and Wang, Y.T. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science,2005,310:1340-1343.
    [141]Wong, T.P.,Howland,J.G.,Robillard, J.M.,Ge, Y.,Yu, W.,Titterness, A.K., Brebner, K.,Liu, L.,Weinberg, J.,Christie, B.R.,et al.Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proc. Natl. Acad. Sci.U.S.A.,2007,104:11471-11476.
    [142]Chevaleyre V, Heifets BD, Kaeser PS, Sudhof TC, Castillo PE. Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha. Neuron,2007,54(5):801-12.
    [143]Hsia AY, Malenka RC, Nicoll RA(1998) Development of excitatory circuitry in the hippocampus. J Neurophysiol 79:2013-2024.
    [144]Borgland S.L.,Malenka R.C.,Bonci A. Acute and chronic cocaine induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J. Neurosci., 2004,24:7482-7490.
    [145]Faleiro L.J.,Jones S.,Kauer J.A. Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection. Neuropsychopharmacology,2004,29:2115-2125.
    [146]Dumont E.C.,Mark GP.,Mader S.,Williams J.T. Self-administration enhances excitatory synaptic transmission in the bed nucleus of the stria terminalis. Nat. Neurosci.,2005,8:413-414.
    [147]Clem R.L., Barth A. Pathway-specific trafficking of native AMPARs by in vivo experience. Neuron,2006,49:663-670.
    [148]Yashiro K.,Philpot B.D.Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology,2008,55(7): 1081-94.
    [149]Mato, S.,Robbe, D., Puente, N.,Grandes, P.,Manzoni, O.J. Presynaptic homeostatic plasticity rescues long-term depression after chronic Delta 9-tetrahydrocannabinol exposure.J. Neurosci.,2005,25:11619-11627.
    [150]Melis, M.,Pistis, M.,Perra, S.,Muntoni, A.L.,Pillolla, G,and Gessa, GL. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J. Neurosci.,2004,24:53-62.
    [151]Pittenger, C.,Coric, V.,Banasr, M.,Bloch, M.,Krystal, J.H.,and Sanacora, G. Riluzole in the treatment of mood and anxiety disorders. CNS Drugs,2008, 22:761-786.
    [152]Carpenter-Hyland, E.P., Woodward, J.J.,and Chandler, L.J. Chronic ethanol induces synaptic but not extrasynaptic targeting of NMD A receptors. J. Neurosci., 2004,24:7859-7868.
    [153]Mahanty, N.K.,and Sah, P. Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature,1998, 394:683-687.
    [154]Farb, C.R.,Aoki, C.,and Ledoux, J.E. Differential localization of NMD A and AMPA receptor subunits in the lateral and basal nuclei of the amygdala:A light and electron microscopic study. J. Comp.Neurol.,1995,362:86-108.
    [155]McDonald, A.J. Localization of AMPA glutamate receptor subunits in subpopulations of non-pyramidal neurons in the rat basolateral amygdala. Neurosci.Lett.,1996,208:175-178.
    [156]Radley, J.J.,et al. Distribution of NMDA and AMPA receptor subunits at thalamoamygdaloid dendritic spines. Brain Res.,2007,1134:87-94.
    [157]Washburn, M.S.,Numberger, M.,Zhang, S.,and Dingledine, R. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors.J. Neurosci.,1997,17:9393-9406.
    [158]Zhu, P.J. Endocannabinoid signaling and synaptic plasticity in the brain. Crit. Rev. Neurobiol.,2006,18:113-124.
    [159]Heifets, B.D.,and Castillo, P.E. Endocannabinoid signaling and long-term synaptic plasticity. Annu. Rev. Physiol.,2009,71:283-306.
    [160]Lovinger, D.M. Presynaptic modulation by endocannabinoids. Handb. Exp. Pharmacol.,2008,184:435-477.
    [161]Kalivas, P.W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci.,2009,10:561-572.
    [162]Dalton, GL.,Wang, Y.T.,Floresco, S.B.,and Phillips, A.G. Disruption of AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear. Neuropsychopharmacol.,2008,33:2416-2426.
    [163]Kim, J.,Lee, S.,Park, K.,Hong, I.,Song, B.,Son, G,Park,H.,Kim, W.R.,Park, E.,Choe, H.K.,Kim, H.,Lee, C.,Sun, W.,Kim, K.,Shin, K.S.,and Choi,S. Amygdala depotentiation and fear extinction. Proc Natl Acad Sci U S A.,2007, 104:20955-20960.
    [164]Mao, S.C.,Lin, H.C.,and Gean, P.W. Augmentation of fear extinction by infusion of glycine transporter blockers into the amygdala. Mol Pharmacol.,2009, 76:369-378.
    [165]Van den Oever, M.C.,Goriounova, N.A.,Li, K.W.,Van der Schors, R.C., Binnekade, R.,Schoffelmeer, A.N.,Mansvelder, H.D.,Smit, A.B.,Spijker, S.,and De Vries, T.J. Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nat. Neurosci.,2008,11:1053-1058.
    [166]Harris, G.C.,Wimmer, M., Byrne, R., and Aston-Jones G Glutamate-associated plasticity in the ventral tegmental area is necessary for conditioning environmental stimuli with morphine. Neurosci.,2004,129:841-847.
    [167]Harris, G.C.,Wimmer, D.,Randall-Thompson, J.F.,and Aston-Jones G Lateral hypothalamic orexin neurons are critically involved in learning to associate an environment with morphine reward. Behav. Brain Res.,2007,183:43-51.
    [168]De Vries, T.J., Shaham, Y.,Homberg, J.R.,Crombag, H.,Schuurman, K.,Dieben, J.,Vanderschuren, L.J.,and Schoffelmeer, A.N.A cannabinoid mechanism in relapse to cocaine seeking. Nat. Med.,2001,7:1151-1154.
    [169]Wolf, M.E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol.,1998,54:679-720.
    [170]Tsou,K.,Brown,S.,Sanudo-Pena, M.C.,Mackie, K., and Walker, J.M. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neurosci.,1998,83:393-411.
    [171]Esteban J.A.,Shi S.H.,Wilson C.,Nuriya M.,Huganir R.L.,Malinow R. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat. Neurosci.,2003,6(2):136-43.
    [172]Navarrete, M.,and Araque, A. Endocannabinoids mediate neuron-astrocyte communication. Neuron,2008,57:883-893.
    [173]Magistretti P.J. Neuron-glia metabolic coupling and plasticity.J Exp Biol.,2006, 209:2304-11.
    [174]Nugent, F.S.,Hwong, A.R.,Udaka, Y.,and Kauer, J.A. High-frequency afferent stimulation induces long-term potentiation of field potentials in the ventral tegmental area. Neuropsychopharmacol.,2008,33:1704-1712.
    [175]Zucker, R.S.Short-term synaptic plasticity. Ann. Rev. Neurosci,1989,12:13-31.
    [176]Sjostrom, P.J.,Turrigiano, G.G.,and Nelson, S.B.Neocortical LTD via coincident activation of presynaptic NMD A and cannabinoid receptors. Neuron,2003, 39:641-654.
    [177]Sjostrom, P.J.,Turrigiano, GG,and Nelson, S.B.Endocannabinoid-dependent neocortical layer-5 LTD in the absence of postsynaptic spiking. J. Neurophysiol., 2004,92:3338-3343.