NF-κB p65反义寡核苷酸诱导胃癌SGC-7901细胞凋亡的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:采用NF-κB p65 ASODN技术特异性阻断目的基因,探讨ASODN干扰前后胃癌细胞生长增殖及凋亡、细胞形态的变化,初步研究NF-κB p65下调对胃癌SGC-7901细胞凋亡的影响,探讨诱导凋亡可能的机制。
     方法:人工合成NF-κB p65 ASODN,通过脂质体转染法转染人胃癌细胞系SGC-7901,实验分为对照组、Lip组、ASODN+Lip组和MSODN+Lip组,核苷酸浓度为10μM、20μM、40μM。分别在药物转染后24h、48h、72h收集细胞,采用MTT法测定NF-κB p65 ASODN对胃癌细胞增殖及凋亡的影响;流式细胞仪检测胃癌细胞凋亡率及细胞周期;光镜观察药物作用后细胞形态学变化;通过免疫细胞化学技术检测NF-κB p65,Bcl-2蛋白的表达。
     结果:①MTT法检测显示:不同浓度的NF-κB p65 ASODN均可抑制胃癌SGC-7901细胞的增殖,呈时间-剂量依赖性;②流式细胞仪检测显示:NF-κBp65 ASODN可诱导细胞凋亡,使细胞阻滞于G0/G1期,NF-κB p65 ASODN处理SGC7901细胞48 h后凋亡率为(50.51±3.35)%,错义寡核苷酸(MSODN)处理组为(20.34±2.11)%,两组相比,差异有显著性(P<0.05)。③HE染色显示:NF-κB p65 ASODN处理SGC-7901细胞48h后,光镜下可见细胞缩小变圆,核浓缩、核碎裂、边聚等。④免疫细胞化学结果显示:NF-κB p65 ASODN处理SGC-7901细胞48小时后, NF-κB p65蛋白及Bcl-2蛋白的表达水平较对照组显著下降(P<0.05)。
     结论:①NF-κB p65 ASODN与阳离子脂质体形成的复合物可以成功转染进入SGC-7901细胞内;②NF-κBp 65 ASODN在体外可以较明显的抑制SGC-7901细胞的增殖、诱导SGC-7901细胞凋亡,作用强度呈剂量-时间依赖性;③N F-κB p65 ASODN可以下调NF-κB p65,Bcl-2蛋白的表达;④NF-κB p65 ASODN诱导SGC-7901细胞凋亡的机制可能是其经脂质体转染入细胞后与细胞核及胞浆内NF-κB p65 mRNA特异性结合,抑制或封闭NF-κB p65 mRNA的表达,下调NF-κB p65蛋白及其下游产物Bcl-2等相关抑凋亡基因蛋白的表达,从而抑制细胞增殖,诱导细胞凋亡。
Objective:The investigation used NF-κB p65 ASODN technique to block objective genes specificity, approached the the effect of NF-κB p65 ASODN on proliferation and apoptosis and change in form of SGC-7901, invested the effect of apotosis in SGC-7901 by down regulatiing the expression of NF-κB p65, approached the Mechanism of action of inducing apotosis.
     Methods:Man-made synthesis NF-κBp65 ASODN, Transfecting SGC-7901 trough liposome infection protocol. The experiment can be divided into groups: control group, Lip group, ASODN+Lip group, MSODN+Lip group. ASODN was divided with different concentrations (10μM,20μM,40μM) and collecting cells in different times(24h,48h,72h). The effect of NF-κB p65 ASODN on cell proliferation was observed by MTT colormetric assay. The rate of SGC-7901apoptosis and cell cycle was identified by flow cytometry (FCM) and the morphological change of apoptosis was observed by light microscopy. And then the expression of apoptosis-regulating protein NF-κB p65, Bcl-2 in SGC-7901 after apoptosis induced by NF-κBp65 ASODN were examined by immunocytochemical staining assay .
     Result:①MTT analysis: NF-κB p65 ASODN with different concentrations incubated with SGC-7901 for 24h, 48h and 72h could significantly inhibit SGC-7901 proliferation in dose-dependent and time-dependent manner compared with the control group(p<0.05);②Flow cytometry quantitation: NF-κB p65 ASODN could induce cells apoptosis and block cells in G0/G1 time. The apoptosis ratio of ASODN+Lip group was (50.51±3.35)%, which was significantly higher than that of MSODN+Lip group (20.34±2.11)% (P<0.05).③HE staining: Treatment with 40μM concentrations of Ursolic acid for 48h resulted in morphologic changes of SGC-7901, including karyorrhexis and cytoplasm vacuolization.④Immunocytochemistry: NF-κB p65 ASODN incubated with SGC-7901 for 48h, the expressions of NF-κB p65, bcl-2 protein in SGC-7901 were significantly up-regulated(P<0.05).
     Conclusion:①The compounds with NF-κB p65 ASODN and liposome could transfected into SGC-7901 successfully.②NF-κB p65 ASODN could significantly inhibit SGC-7901 proliferation and induce apoptosis in dose-dependent and time-dependent manner.③NF-κB p65 ASODN could down regulated the expressions of NF-κB p65 and Bcl-2 protein in SGC-7901.④Our results suggested that SGC-7901 cells apoptosis induced by NF-κB p65 ASODN through mechanisms was that it could transfected into SGC-7901 with liposome, then specific bind with NF-κB p65 mRNA, inhibit and block the expression of NF-κB p65 mRNA, reduce the expressions of NF-κB p65 and Bcl-2 protein, thus inhibit proliferation and induce cells apoptosis at last.
引文
[1]Shah MA, Schwartz GK. Treatment of metastatic esophagus and gastric cancer[J]. Sem in Oncol, 2004, 31 (4):574-87.
    [2]Bentires M. Kappa-B nuclear factor and apoptosis of cancerous cells[J]. Bull Mem Acad R Med Belq, 2001:156(6 Pt 2):329-37.
    [3]Li Q,Yu YY,Zhu ZG, et al. Effect of NF-kappaB constitutive activation on proliferation and apoptosis of gastric cancer cell lines[J]. Eur Surg Res, 2005, 37(2):105-10.
    [4]Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences[J]. Cell 1986, 46:705-16.
    [5]Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights[J]. Annu Rev Immunol, 1996, 14:649-83.
    [6]van den Berg R, Haenen GR, van den Berg H, et al. Transcription factor NF-kappaB as a potential biomarker for oxidative stress[J]. Br J Nutr, 2001, 86(Suppl 1):s121-27.
    [7]Kundu JK,Surh YJ. Molecular basis of chemoprevention by resveratrol: NF-kappaB and AP-1 as potential targets[J]. Mutat Res, 2004, 555(1-2):65-80.
    [8]Yates LL,Gorecki DC.The nuclear factor-kappaB (NF-kappaB): from a versatile transcription factor to a ubiquitous therapeutic target[J]. Acta Biochim Pol, 2006, 53(4):651-62.
    [9] Sasaki N, Morisaki T, Hashizume K, et al. Nuclear factor-kappa B p65(RelA) transcription factor is constitutively activated in human gastric carcinoma tissue[J]. Clin Cancer Res, 2001, 7(12):4136-42.
    [10]Yamanaka N,Sasaki N,Tasaki A, et al. Nuclear factor-kappaB p65 is a prognostic indicator in gastric carcinoma[J]. Anticancer Res, 2004, 24(2C):1071-5.
    [11]Ryuichi Morishita, Naruya Tomita, Yasufumi Kaneda, et al. Molecular therapy to inhibit NF-κB activation by transcription factor decoy oligonucleotides[J].Current Opinion in Pharmacology, 2004, 4:139-46.
    [12]Yang YJ,Zhang YL,Wang JD, et al. Role of eukaryotic initiation factor-4E (eIF-4E) in regulation of expression of NF-kappaB and its subsequent influence on transcription and activity of heparanase in human colon adenocarcinoma cell line[J]. Ai Zheng, 2003, 2(10):1023-9.
    [13]Zhang KZ, Xu JH, Huang XW, et al. Curcumin synergistically augments bcr/abl phosphorothioate antisense oligonucleotides to inhibit growth of chronic myelogenous leukemia cells[J]. Acta Pharmacol Sin, 2007, 28(1):105-10.
    [14]Wei SQ, Bi S, Zheng JH, et al. Experimental therapy of survivin antisense oligonucleotide for human ovarian cancer cell SKOV3[J], Ai Zheng, 2004, 23(8):890-5.
    [15]Dai LC, Wang X, Yao X, et al. Antisense oligonucleotides targeting midkine induced apoptosis and increased chemosensitivity in hepatocellular carcinoma cells[J]. Acta Pharmacol Sin, 2006, 27(12):1630-6.
    [16]Yang JH, Zhang YC, Qian HQ, et al. Survivin antisense oligodeoxynucleotide inhibits growthof gastric cancer cells[J]. World J Gastroenterol, 2004, 10(8):1121-4.
    [17]Hyndman L, Lemoine JL, Huang L, et al. HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes[J]. J Control Release, 2004, 1999(3):435-44.[18]Neurath MF, Fuss I, Schurmann G, et al. Cytokine gene transcription by NF-kappa B family members in patients with inflammatory bowel disease[J]. Ann N Y Acad Sci, 1998, 859:149-59.
    [19]章静波,黄东阳,主编。细胞生物学实验技术。 化学工业出版社,2006;P:70-74.
    [20]司徒镇强,吴军正,主编。细胞培养。世界图书出版公司,2001;P:299-302.
    [21]林菊生,冯作化,主编。现代细胞分子生物学技术。第一版,科学出版社,2004;P:984-985.
    [22]Ries LA, Wingo PA, Miller DS, et al. The annual report to the nation on the status of cancer, 1973-1997, with a special section on colorectal cancer[J]. Cancer, 2000, 88(10): 2398-424.
    [23]Guillermet-Guibert J, Saint-Laurent N, Davenne L, et al. Novel synergistic mechanism for sst2 somatostatin and TNFalpha receptors to induce apoptosis: crosstalk between NF-kappaB and JNK pathways. Cell Death Differ[J]. 2007, 14(2):197-208.
    [24]Sen R,Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences[J]. Cell 1986, 46(5):705-16.
    [25]Bottex-Gauthier C, Pollet S, Favier A, et al. The Rel/NF-kappa-B transcription factors: complex role in cell regulation[J]. Pathol Biol (Paris), 2002 , 50(3):204-11.
    [26]Chiao PJ, Na R, Niu J, et al. Role of Rel/NF-kappaB transcription factors in apoptosis of human hepatocellular carcinoma cells[J]. Cancer, 2002 , 95(8):1696-705.
    [27]Handel ML, McMorrow LB, Gravallese EM. Nuclear factor-kappaB in rheumatoid synovium. Localization of p50 and p65[J]. Arthritis Rheum 1995, 38(12):1762-70.
    [28]Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases[J]. Sci STKE. 2006, 2006(357):re13.
    [29]Suh J,Rabson AB.NF-κB activation in human prostate cancer: important mediator or epiphenomenon? [J]. J Cell Biochem, 2004, 91(1):100-17.
    [30]Cho SJ, Park JW, Kang JS, et al. Nuclear factor-kappaB dependency of doxorubicin sensitivity in gastric cancer cells is determined by manganese superoxide dismutase expression[J]. Cancer Sci, 2008, [Epub ahead of print].
    [31]Paterson BM, Roberts BE, Kuff EL. Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation[J]. Proc Natl Acad Sci USA, 1977, 74(10):4370-4.
    [32]Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide[J]. Proc Natl Acad Sci USA, 1978, 75(1):280-4.
    [33]Harland R, Weintraub H. Translation of mRNA injected into Xenopus oocytes is specifically inhibited by antisense RNA[J]. J Cell Biol, 1985, 101(3):1094-9.
    [34]Tang X, Dmochowski IJ. Synthesis of light-activated antisense oligodeoxynucleotide[J]. Nat Protoc, 2006, 1(6):3041-8.
    [35]Law LY, Zhang WV, Stott NS, et al. In vitro optimization of antisense oligodeoxynucleotide design: an example using the connexin gene family[J]. J Biomol Tech, 2006, 17(4):270-82.
    [36]Ruben SM, Dillon PJ, Schreck R, et al. Isolation of a rel-related human cDNA that potentially encodes the 65-kD subunit of NF-kappa B[J]. Science, 1991, 251(5000):1490-3.
    [37]Shi J, Yan WW, Qi XR, et al. Characteristics and biodistribution of soybean sterylglucoside and polyethylene glycol-modified cationic liposomes and their complexes with antisense oligodeoxynucleotide[J]. Drug Deliv, 2005, 12(6):349-56.
    [38]Kanamaru T, Takagi T, Takakura Y, er al. Biological effects and cellular uptake of c-myc antisense oligonucleotides and their cationic liposome complexes[J]. J Drug Target, 1998, 5(4):235-46.
    [39]Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection[J]. Proc Natl Acad Sci USA, 1989, 86(16):6077-81.
    [40]Whitt M, Buonocore L, Rose JK. Liposome-mediated transfection[J]. Curr Protoc Immunol, 2001, Chapter 10:Unit 10-6
    [41]Stuart DD, Allen TM. A new liposomal formulation for antisese oligodeoxynucleotides with small size, high incorporation efficiency and good stability[J]. Biochim Biophys Acta, 2000, 1463(2):219-29.
    [42]Bartsch M, Weeke-Klimp AH, Hoenselaar EP, et al. Stabilized lipid coated lipoplexes for the delivery of antisense oligonucleotides to liver endothelial cells in vitro and in vivo[J]. J Drug Target, 2004, 12(9-10 ):613-21.
    [43]Hartmann G, Krug A, Bidlingmaier M, et al. Spontaneous and cationic lipid-mediated uptake of antisense oligonucleotides in human momocyte and lymphocytes[J]. J Pharmacol Exp Ther, 1998, 285(2):920-8.
    [44]Roush W. Antisense aims for a renaissance[J]. Science, 1997, 276(5316):1192-3.
    [45]Henry SP, Zuckerman JE, Rojko J, et al. Toxicological properties of several novel oligonucleotide analogs in mice[J]. Anticancer Drug Des, 1997, 12(1):1-14.
    [46]Dean NM, Bennett CF. Antisense oligonucleotide-based therapeutics for cancer[J]. Oncogene, 2003, 22(56):9087-96.
    [47]Morishita R, Tomita N, Kaneda Y,et al. Molecular therapy to inhibit NF-κB activation by transcription factor decoy oligonucleotides[J]. Curr Opin Pharmacol, 2004, 4(2):139-46.
    [48]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26(4):239-57.
    [49]Piotrowska A, Izykowska I, Podhorska-Okolow M, et a1. The structure of NF- kappaB family proteins and their role in apoptosis[J]. Postepy Hig Med Dosw(Online), 2008, 62:64-7.
    [50]Pytel D, Wysocki T, Majsterek I. Comparative study of DNA damage, cell cycle and apoptosis in human K562 and CCRF-CEM leukemia cells: role of BCR/ABL in therapeutic resistance[J]. Comp Biochem Physiol C Toxicol Pharmacol. 2006, 144(1):85-92.
    [51] Hayon T, Dvilansky A, Shpilberg O, et al. Appraisal of the MTT-based assay as a useful tool for predicting drug chemosensitivity in leukemia[J]. Leuk Lymphoma, 2003, 44(11):1957-62.
    [52]Sen S. Programmed cell death: concept, mechanism and control[J]. Biol Rev Camb Philos Soc[J]. 1992, 67(3):287-319.
    [53]Zharov VP, Galanzha EI, Shashkov EV, et al. Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo[J]. J Biomed Opt, 2007, 12(5):051503.
    [54]Mayo MW, Baldwin AS. The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance[J]. Biochim Biophys Acta, 2000, 1470(2):M55-62.
    [55]Wu L, Pu Z, Feng J, et al. The ubiquitin-proteasome pathway and enhanced activity of NF-kappaB in gastric carcinoma[J]. J Surg Oncol, 2008, 97(5):439-44.
    [56]Zheng CH, Zhou YJ, Zhu J, et al. Construction of a three-dimensional pharmacophore for Bcl-2 inhibitors by flexible docking and the multiple copy simultaneous search method[J]. Bioorg Med Chem, 2007, 15(19):6407-17.
    [57]Nagamatsu K, Tsuchiya F, Oguma K, et al. The effect of small interfering RNA (siRNA) against the Bcl-2 gene on apoptosis and chemosensitivity in a canine mammary gland tumor cell line[J]. Res Vet Sci, 2008, 84(1):49-55.
    [58]Koshida Y, Saegusa M, Okayasu I. Apoptosis, cell proliferation and expression of Bcl-2 and Bax in gastric carcinomas: immunohistochemical and clinicopathological study[J]. Br J Cancer, 1997, 75(3):367-73.
    1 Sen R,Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences[J]. Cell 1986, 46(5):705-16.
    2 Guillermet-Guibert J, Saint-Laurent N, Davenne L, et al. Novel synergistic mechanism for sst2 somatostatin and TNFalpha receptors to induce apoptosis: crosstalk between NF-kappaB and JNK pathways[J]. Cell Death Differ, 2007, 14(2):197-208.
    3 Dutta F, Fan Y, Gupta N, et a1. Current insights into the regulation of programmed cell death by NF-kappaB[J]. Oncogene, 2006, 25(51):6800-16.
    4 Novack DV, Yin L, Hagen-Stapleton A, et al. The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis[J]. J Exp Med, 2003, 198(5):771-81.
    5 Rottenberg S, Schmuckli-Maurer J, Grimm S, et al. Characterization of the bovine IkappaB kinases (IKK)alpha and IKKbeta, the regulatory subunit NEMO and their substrate IkappaBalpha[J]. Gene, 2002, 299(1-2):293-300.
    6 Marpegan L, Bekinschtein TA, Freudenthal R, et a1. Participation of transcription factors from the Rel/NF-kappa B family in the circadian system in hamsters[J]. Neurosci Lett, 2004, 358 (1): 9-12.
    7 Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases[J]. Sci STKE, 2006, 357:13.
    8 Scheidereit C. IkappaB kinase complexes: gateways to NF-kappaB activation and transcription[J]. Oncogene, 2006, 25(51):6685-705.
    9 Matsuo S, Yamazaki S, Takeshige K, et a1. Crucial roles of binding sites for NF-kappaB and C/EBPs in IkappaB-zeta-mediated transcriptional activation[J]. Biochem J, 2007, 405 (3): 605-15.
    10 Levidou G, Korkolopoulou P, Nikiteas N, et al. Expression of nuclear factor kappaB in human gastric carcinoma: relationship with I kappaB a and prognostic significance[J]. Virchows Arch. 2007, 450(5):519-27.
    11 Sasaki N, Morisaki T, Hashizume K, et al. Nuclear factor-kappa B p65(RelA) transcription factor is constitutively activated in human gastric carcinoma tissue[J]. Clin Cancer Res, 2001, 7(12):4136-42.
    12 Piotrowska A, Izykowska I, Podhorska-Okolow M, et a1. The structure of NF- kappaB family proteins and their role in apoptosis[J]. Postepy Hig Med Dosw(Online), 2008, 15(62): 64-67.
    13 Erickson GR, Gimble JM, Franklin DM, et a1. Chondrogenic potential of adipose tissue-derived stroma1 cells in vitro and in vivo[J]. Biochem Biophys Res Commun, 2002, 290(2):763-69.
    14 Karin M, Cao Y, Greten FR, et a1. NF-kappaB in cancer:from innocent bystander to major culprit[J]. Nat Rev Cancer, 2002, 2(4):301-310.
    15 Suh J, Rabson AB. NF-kappaB activation in human prostate cancer: important mediator or epiphenomenon?[J].
    16 Liu XY, Shen ZY, Huang JH. Mechanism of epimedium flavonoids in regulating immuno-senescence via nuclear factor-kappa B related signal transduction pathway[J]. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2006, 26(7):620-4.
    17 Wu CY, Wang CJ, Tseng CC, et al. Helicobacter pylori promote gastric cancer cells invasion through a NF-kappaB and COX-2-mediated pathway [J]. World J Gastroenterol, 2005, 11 (21):3197-203.
    18 Hahm KB , Song YJ , Oh TY, et al . Chemoprevention of Helicobacter pylori-associated gastric carcinogenesis in a mouse model :is it possible ? [J]. J Biochem Mol Biol , 2003, 36(1):82-94.
    19 Kem MA, Schirmacher P, Breinig M. Significance of cyclooxygenase-2 as a chemotherapeutic target in hepatocellular carcinoma[J]. Verh Dtsch Ges Pathol, 2007, 91:257-68.
    20 Sharma C, Kaur J, Shishodia S, et al. Curcumin down regulates smokeless tobacco-induced NF-kappaB activation and COX-2 expression in human oral premalignant and cancer cells[J]. Toxicology, 2006, 228(1):1-15.
    21 Hahm KB, Lim HY, Sohn S, et al. In vitro evidence of the role of COX-2 in attenuating gastric inflammation and promoting gastric carcinogenesis[J]. J Environ Pathol Toxicol Oncol, 2002, 21(2):165-76.
    22 Chu SH, Lim JW, Kim KH, et al. NF-kappaB and Bcl-2 in Helicobacter pylori-induced apoptosis in gastric epithelial cells[J]. Ann N Y Acad Sci, 2003, 1010:568-72.
    23 Yang GF, Deng CS, Xiong YY, et al. Expression of nuclear factor-kappa B and target genes in gastric precancerous lesions and adenocarcinoma: association with Helicobactor pylori cagA (+) infection[J]. World J Gastroenterol, 2004, 10(4):491-6.
    24 Lee KH, Bae SH, Lee JL, et al. Relationship between urokinase-type plasminogen receptor, interleukin-8 gene expression and clinicopathological features in gastric cancer[J]. Oncology, 2004, 66(3):210-17.
    25 王维, 罗和生, 余保平. 胃癌及癌前病变中核因子-Kappa B 和端粒酶逆转录酶的表达与意义[J]. 中国癌症杂志, 2002, 12(4):280-92.
    26 Han JC, Zhang KL, Chen XY, et al. Expression of seven gastric cancer-associated genes and its relevance for Wnt, NF-kappaB and Stat3 signaling[J]. APMIS, 2007, 115(12):1331-43.
    27 Khalighinejad N, Hariri H, Behnamfar O, et al. Adenoviral gene therapy in gastric cancer: a review[J]. World J Gastroenterol, 2008, 14(2):180-4. J Cell Biochem, 2004, 91(1):100-17.
    28 Li HL, Chen DD, Li XH, et al. Changes of NF-kB, p53, Bcl-2 and caspaes in apoptosis induced by JTE-522 in human gastric adenocarcinoma cell line AGS cells: role of reactive oxygen species[J]. World J Gastroenterol, 2002, 8(3):431-35.
    29 Chang HJ, Kim MH, Baek MK, et al. Triptolide inhibits tumor promoter-induced uPAR expression via blocking NF-kappaB signaling in human gastric AGS cells[J]. Anticancer Res, 2007, 27(5A):3411.
    30 Beppu K, Morisaki T, Matsunaga H, et al. Inhibition of interferon-gamma-activated nuclear factor-kappa B by cyclosporin A: A possible mechanismfor synergistic induction of apoptosis by interferon-gamma and cyclosporin A in gastric carcinoma cells[J]. Biochem Biophys Res Commun , 2003, 305(4):797-805.