人源羊水间充质干细胞的分离培养及其免疫抑制作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚胎干细胞(Embryonic Stem Cells)的研究一直受到伦理道德问题的束缚与限制,为此众多研究者尝试寻找其他干细胞来源,以期绕过ES这个伦理束缚。近几年的研究结果发现在羊水中存在少量具有ES细胞特性的干细胞,并将其命名为人源羊水干细胞(human Amniotic Fluid Stem Cells, hAFSCs)。该种细胞表达ES细胞和成体干细胞标志基因,体外诱导可分化为包括三个胚层的细胞并通过功能测试。这就表明hAFSCs具有很好的应用价值。另外hAFSCs具有容易获取,不会损害母体及胚胎的特点。综合以上两点,可以认为hAFSCs是一种细胞和组织工程治疗新的种子细胞来源。
     间充质干细胞(mesenchymal stem cells, MSCs)是一种具有多向分化潜能的成体干细胞,是当前干细胞研究领域的热点。研究MSCs主要集中在两个方面,分别是MSCs的多分化潜能和免疫抑制作用。前者在组织器官缺损性疾病、退行性疾病、自身免疫性疾病和遗传缺陷等疾病的治疗中有着巨大的临床应用前景;后者则主要为细胞疗法用于副作用小的免疫抑制治疗提供了契机。这两方面目前在基础和临床研究中都已取得令人鼓舞的结果。
     鉴于以上研究背景,本文的第一部分主要从人孕中期羊水中分离纯化得到间充质干细胞。首先从羊水中培养细胞,而后通过形态选择其中的成纤维样细胞,并将这部分细胞进行单克隆培养及扩增,以达到后续实验要求。将分离得到的细胞克隆通过染色体G染色、RT-PCR和流式细胞仪等技术,分析细胞来源及其分子标记,从而初步鉴定为间充质样细胞(mesenchymanl-like cells, MCs)。而后经由诱导分化实验将MCs在特定分化培养基中进行培养,使其向脂肪细胞和骨细胞进行分化,从而证实分离得到的MCs具有分化能力,确定其为MSCs。在此基础上,检测第5代AF-MSCs的增殖曲线及第40代AF-MSCs的生物学特性,发现其具有旺盛的增殖能力,平均约33h增殖一代,且在不断传代过程中,始终保持其干细胞全能性标记Oct-4的表达及正常的细胞倍型。
     在文章的第二部分主要研究了AF-MSCs的免疫抑制作用及其机制。研究发现AF-MSCs具有抑制受到植物凝集素(Phytohemagglutinin, PHA)刺激的同种异体外周血单核淋巴细胞(peripheral blood mononuclear cells, PBMC)增殖的能力,且这种抑制作用与AF-MSCs细胞的数量呈线性相关性。研究发现AF-MSCs通过分泌TGF-beta1来发挥其免疫抑制作用。进一步研究发现在共培养体系中加入anti-TGF-beta1后发现AF-MSCs抑制PBMC增殖的能力消失且培养体系中CD4+CD25+Foxp3+ T细胞的频率跟本底对比具有显著性提高,证实分泌产生的TGF-beta1不是通过诱导细胞凋亡产生抑制作用而是通过将CD4+CD25- T细胞诱导为具有抑制能力的CD4+CD25+Foxp3+免疫调节T细胞,而后通过调节性T细胞抑制其它细胞的增殖来发挥其免疫抑制功能。
Researchers are trying to find out new resources of stem cells because of the ethical arguments of embryonic stem cells (ESs). Recent studies demonstrateded that a few cells displaying ES’s characteristics exist in amniotic fluid, which was named human amniotic fluid stem cell (hAFS cell). hAFS cells that express embryonic and adult stem cell markers can differentiate into cell types of three embryonic germ layer and display specialized functions. All these confirmed that the hAFS cells have value of application. On the other hand, hAFS cells can be obtained easily and do not damage the mother body and the embryo. So the hAFS cells may offer an alternative approach for the cell therapy and tissue engineering.
     Mesenchymal stem cells (MSCs) resemble a multipotent adult stem cell population capable of differentiating into different mesodermal cell lineages including osteoblasts, chondroblasts and adipocytes. Research on the MSCs mainly concentrated in two areas: the multi-differentiation potential and the immune-suppression. MSCs have generated a great deal of excitement as a potential source of cells for regenerative medicine and tissue engineering owing to their dramatic potential of proliferation and differentiation, and raise high hopes in clinical application. On the other side, this is an opportunity for the cell therapy providing the low side effects.
     In this study, in the first part, we isolated and purified the mesenchymal stem cells from human amniotic fluid. First, we isolated and cultured the cells in human amniotic fluid, and choosed the fibroblastoid-like cells to purify and expand. Then, we identified the source and molecular markers of cell clones by Chromosome Giemsa staining, RT-PCR and flow cytometer, and they were identified as the mesenchymal-like cells. Mesenchymal-like cells could be induced to differentiate into adipocytes and osteoblasts in the special medium, and they were confirmed as MSCs because of the differentiation ability. Additionally, we found that AF-MSCs, which can double in 33h on average, have strong proliferation ability and they hold the expression of Oct-4 that is the maker of pluripotency and the normal chromosome ploidy in the different passages.
     In the second part, we discovered that the AF-MSCs have inhibitory effects on the proliferation of peripheral blood mononuclear cells (PBMC). And this inhibition showed a linear correlation with the AF-MSCs’quantity. We further explored that the AF-MSCs could secrete the TGF-beta1, which mediated the AF-MSCs’suppressive effects on the PBMC. Adding anti-TGF-beta1 in co-culture system found that TGF-beta1 does not stimulate cells’apoptosis but induce the CD4+CD25- T cells into CD4+CD25+Foxp3+ T cells, which have the suppressive function to inhibit other cells’proliferation. So AF-MSCs suppress PBMC’s proliferation via secreting TGF-beta1 to induce the regulatory T cells.
引文
1. Hoehn, H. and D. Salk (1982). Morphological and biochemical heterogeneity of amniotic fluid cells in culture[J]. Methods Cell Biol 26: 11-34.
    2. Gosden, C. M. (1983). Amniotic fluid cell types and culture[J]. Br Med Bull 39(4): 348-354.
    3. Prusa, A. R., E. Marton, et al. (2003). Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research[J]? Hum Reprod 18(7): 1489-1493.
    4. De Coppi, P., G. Bartsch, Jr., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy[J]. Nat Biotechnol 25(1): 100-106.
    5. Asakura, A., M. Komaki, et al. (2001). Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation[J]. Differentiation 68(4-5): 245-253.
    6. Gronthos, S., D. M. Franklin, et al. (2001). Surface protein characterization of human adipose tissue-derived stromal cells[J]. J Cell Physiol 189(1): 54-63.
    7. In 't Anker, P. S., S. A. Scherjon, et al. (2003). Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation[J]. Blood 102(4): 1548-1549.
    8. De Bari, C., F. Dell'Accio, et al. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane[J]. Arthritis Rheum 44(8): 1928-1942.
    9. Bieback, K. and H. Kluter (2007). Mesenchymal stromal cells from umbilical cord blood[J]. Curr Stem Cell Res Ther 2(4): 310-323.
    10. Kawada, H., J. Fujita, et al. (2004). Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction[J]. Blood 104(12): 3581-3587.
    11. Sato, K., K. Ozaki, et al. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells[J]. Blood 109(1): 228-234.
    12. Le Blanc, K., I. Rasmusson, et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells[J]. Lancet 363(9419): 1439-1441.
    13. Pittenger, M. F., A. M. Mackay, et al. (1999). Multilineage potential of adult human mesenchymal stem cells[J]. Science 284(5411): 143-147.
    14. Conget, P. A. and J. J. Minguell (1999). Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells[J]. J Cell Physiol 181(1): 67-73.
    15. Tsai, M. S., S. M. Hwang, et al. (2006). Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells[J]. Biol Reprod 74(3): 545-551.
    16. Leis, M., M. Marschall, et al. (2004). Downregulation of the cellular adhesion molecule Thy-1 (CD90) by cytomegalovirus infection of human fibroblasts[J]. J Gen Virol 85(Pt 7): 1995-2000.
    17. Kim, J., Y. Lee, et al. (2007). Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells[J]. Cell Prolif 40(1): 75-90.
    18. Xu, X., Z. Yu, et al. (1999). Expression of leukocyte adhesion molecules CD11b, L-selectin and CD45 during hemodialysis[J]. Chin Med J (Engl) 112(12): 1073-1076.
    19.司徒镇强,吴军正.细胞培养[M].西安:世界图书出版公司,1996,pp.137.
    20. Buitrago, W. and D. R. Roop (2007). Oct-4: the almighty POUripotent regulator[J]? J Invest Dermatol 127(2): 260-262.
    21. Welstead, G. G., T. Brambrink, et al. (2008). Generating iPS cells from MEFS through forced expression of Sox-2, Oct-4, c-Myc, and Klf4[J]. J Vis Exp(14).
    22. Kunisaki, S. M., M. Armant, et al. (2007). Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials[J]. J Pediatr Surg 42(6): 974-979; discussion 979-980.
    23. Cheng, J., A. Dutra, et al. (2004). Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media[J]. Genesis 39(2): 100-104.
    24. Baker, D. E., N. J. Harrison, et al. (2007). Adaptation to culture of human embryonic stem cells and oncogenesis in vivo[J]. Nat Biotechnol 25(2): 207-215.
    1. Nauta, A. J. and W. E. Fibbe (2007). Immunomodulatory properties of mesenchymal stromal cells[J]. Blood 110(10): 3499-3506.
    2. Urban, V. JS., J. Kiss, et al. (2008). Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes[J]. Stem Cells 26(1): 244-253.
    3. Koc, O. N., J. Day, et al. (2002). Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH)[J]. Bone Marrow Transplant 30(4): 215-222.
    4. Ren, G., L. Zhang, et al. (2008). Mesenchymal stem cell-mediated immuno-suppression occurs via concerted action of chemokines and nitric oxide[J]. Cell Stem Cell 2(2): 141-150.
    5. English, K., J. M. Ryan, et al. (2009). Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cellinduction of CD4+CD25(High) forkhead box P3+ regulatory T cells[J]. Clin Exp Immunol 156(1): 149-160.
    6. Gieseke, F., B. Schutt, et al. (2007). Human multipotent mesenchymal stromal cells inhibit proliferation of PBMCs independently of IFNgammaR1 signaling and IDO expression[J]. Blood 110(6): 2197-2200.
    7. Khakoo, A. Y., S. Pati, et al. (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma[J]. J Exp Med 203(5): 1235-1247.
    8. Sun, B., K. H. Roh, et al. (2009). Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model[J]. Cytotherapy 11(3): 289-298, 281 p following 298.
    9. Gao, P., Q. Ding, et al. (2010). Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma[J]. Cancer Lett 290(2): 157-166.
    10. Ren, C., S. Kumar, et al. (2008). Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model[J]. Stem Cells 26(9): 2332-2338.
    11. Shen, L. S., J. Wang, et al. (2009). CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression[J]. Clin Immunol 131(1): 109-118.
    12. Barda-Saad, M., L. A. Rozenszajn, et al. (1996). Selective adhesion of immature thymocytes to bone marrow stromal cells: relevance to T cell lymphopoiesis[J]. Exp Hematol 24(2): 386-391.
    13. Barda-Saad, M., L. A. Rozenszajn, et al. (1999). Adhesion molecules involved in the interactions between early T cells and mesenchymal bone marrow stromal cells[J]. Exp Hematol 27(5): 834-844.
    14. Bartholomew, A., C. Sturgeon, et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo[J]. Exp Hematol 30(1): 42-48.
    15. Lazarus H, Curtin P, Devine S, et al. (2000). Role of mesenchymal stem cells in allogeneic transplantation. Early phase I clinical results[J]. Blood 96: 392
    16. Cohen, J. L., A. Trenado, et al. (2002). CD4(+)CD25(+) immunoregulatory T Cells: new therapeutics for graft-versus-host disease[J]. J Exp Med 196(3): 401-406.
    17. mengde cao, Roniel Cabrera, Yiling Xu, et al. (2009). Phytohaemagglutinin plus anti-CD28 induce conversion of CD4+CD25- T cells into CD4+CD25+ regulatory T cells[J]. The Journal of Immunology 182: 47.17
    18. Lucas, C., S. Wallick, et al. (1991). TGF-beta: a possible autocrine immune regulator[J]. Ciba Found Symp 157: 98-108; discussion 108-114.
    19. Shevach, E. M., T. S. Davidson, et al. (2008). Role of TGF-Beta in the induction of Foxp3 expression and T regulatory cell function[J]. J Clin Immunol 28(6): 640-646.
    1. Friedenstein, A. J., K. V. Petrakova, et al. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues[J]. Transplantation 6(2): 230-247.
    2. Piersma, A. H., K. G. Brockbank, et al. (1985). Characterization of fibroblastic stromal cells from murine bone marrow[J]. Exp Hematol 13(4): 237-243.
    3. Owen, M. (1988). Marrow stromal stem cells[J]. J Cell Sci Suppl 10: 63-76.
    4. Pittenger, M. F., A. M. Mackay, et al. (1999). Multilineage potential of adult human mesenchymal stem cells[J]. Science 284(5411): 143-147.
    5.高晓明.医学免疫基础[M].北京:北京医科大学出版社,2001.
    6.刘佳,王栓科,赵琳等. (2007).间充质干细胞的细胞表型及免疫学研究进展[J].国际生物医学工程杂志. 30(1): 51-54.
    7. Gotherstrom, C., O. Ringden, et al. (2004). Immunologic properties of human fetal mesenchymal stem cells[J]. Am J Obstet Gynecol 190(1): 239-245.
    8. Rasmusson, I., O. Ringden, et al. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells[J]. Transplantation 76(8): 1208-1213.
    9. Di Nicola, M., C. Carlo-Stella, et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood 99(10): 3838-3843.
    10. Le Blanc, K., L. Tammik, et al. (2003). Mesenchymal stem cells inhibit and stimulatemixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex[J]. Scand J Immunol 57(1): 11-20.
    11. Tse, W. T., J. D. Pendleton, et al. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation[J]. Transplantation 75(3): 389-397.
    12. Maitra, B., E. Szekely, et al. (2004). Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation[J]. Bone Marrow Transplant 33(6): 597-604.
    13. Zhang, W., W. Ge, et al. (2004). Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells[J]. Stem Cells Dev 13(3): 263-271.
    14. Jiang, X. X., Y. Zhang, et al. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells[J]. Blood 105(10): 4120-4126.
    15. Nauta, A. J., G. Westerhuis, et al. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting[J]. Blood 108(6): 2114-2120.
    16. Niemeyer, P., A. Seckinger, et al. (2004). Allogenic transplantation of human mesenchymal stem cells for tissue engineering purposes: an in vitro study[J]. Orthopade 33(12): 1346-1353.
    17. Sotiropoulou, P. A., S. A. Perez, et al. (2006). Interactions between human mesenchymal stem cells and natural killer cells[J]. Stem Cells 24(1): 74-85.
    18. Koc, O. N., J. Day, et al. (2002). Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH)[J]. Bone Marrow Transplant 30(4): 215-222.
    19. Rasmusson I, Ringdén O, Sundberg B, et al. (2005). Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms[J]. Exp Cell Res 305(1): 33-41
    20. Nauta AJ, Fibbe WE. (2007). Immunomodulatory properties of mesenchymal stromalcells[J]. Blood 110 (10): 3499-3506
    21. Keating A. (2006). Mesenchymal stromal cells[J]. Curr Opin Hematol 13(6): 419-425
    22. 22, Chabannes D, Hill M, Merieau E, et al. (2007). A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells[J]. Blood 110(10): 3691-3694
    23. Ren G, Zhang L, Zhao X, et al. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide[J]. Cell Stem Cell 2(2): 141-150
    24. Sato K, Ozaki K, Oh I, et al. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells[J]. Blood 109(1): 228-234
    25. Tse, W. T., J. D. Pendleton, et al. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation[J]. Transplantation 75(3): 389-397.
    26. Silva, W. A., Jr., D. T. Covas, et al. (2003). The profile of gene expression of human marrow mesenchymal stem cells[J]. Stem Cells 21(6): 661-669.
    27. Neuss, S., E. Becher, et al. (2004). Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing[J]. Stem Cells 22(3): 405-414.
    28. Chunmeng, S., C. Tianmin, et al. (2004). Effects of dermal multipotent cell transplantation on skin wound healing[J]. J Surg Res 121(1): 13-19.
    29. Azuma, H., S. Takahara, et al. (2001). Hepatocyte growth factor prevents the development of chronic allograft nephropathy in rats[J]. J Am Soc Nephrol 12(6): 1280-1292.
    30. Asseman, C. and F. Powrie (1998). Interleukin 10 is a growth factor for a population of regulatory T cells[J]. Gut 42(2): 157-158.
    31. Arikawa, T., K. Omura, et al. (2004). Regulation of bone morphogenetic protein-2 expression by endogenous prostaglandin E2 in human mesenchymal stem cells[J]. J Cell Physiol 200(3): 400-406.
    32. Stagg, J., S. Pommey, et al. (2006). Interferon-gamma-stimulated marrow stromal cells:a new type of nonhematopoietic antigen-presenting cell[J]. Blood 107(6): 2570-2577.
    33. Krampera, M., S. Glennie, et al. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide[J]. Blood 101(9): 3722-3729.
    34. Meisel, R., A. Zibert, et al. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation[J]. Blood 103(12): 4619-4621.
    35. Aggarwal, S. and M. F. Pittenger (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses[J]. Blood 105(4): 1815-1822.
    36. Glennie, S., I. Soeiro, et al. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells[J]. Blood 105(7): 2821-2827.
    37. Urban, V. S., J. Kiss, et al. (2008). Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes[J]. Stem Cells 26(1): 244-253.
    38. Zappia, E., S. Casazza, et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy[J]. Blood 106(5): 1755-1761.
    39. Majithia, V. and S. A. Geraci (2007). Rheumatoid arthritis: diagnosis and management[J]. Am J Med 120(11): 936-939.