人脐血源基质细胞对MHC半相合造血干细胞移植小鼠GVHD调节作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异基因造血干细胞移植(Allogeneic Hematopoietic Stem Cell Transplantation,Allo-HSCT)是目前治疗恶性血液病的有效方法。HLA(Human Leucocyte Antigen)相合的亲缘相关或无关供者是Allo-HSCT最合适的供者。然而仅有25%~30%的患者能找到HLA相合的亲缘供者;在无亲缘关系人群中找到HLA相合供者的概率是1/5万~1/10万,甚至更低。90%以上的患者能够找到HLA半相合的亲属(父母、子女、兄弟姐妹或堂表亲)供者,若能顺利跨越HLA限制,可为更多需接受移植治疗而无相合供者的患者获得治愈的机会。然而HLA半相合移植患者发生移植物抗宿主病(Graft Versus Host Disease,GVHD)的几率大约为80%左右(1),GVHD是Allo-HSCT的主要并发症之一,是导致移植失败的重要原因。寻求安全有效的防治Allo-HSCT后GVHD的新措施成为临床关注的焦点。骨髓来源多能间充质基质细胞(multipotent mesenchymal stromal cells, MSC)主要生物学功能包括支持造血细胞的增殖、分化和成熟,同时也具有对免疫细胞的调节作用。大量动物模型和临床研究证实MSC对GVHD有一定的防治作用。但由于骨髓收集方法相对困难、MSC的多向分化潜能等均限制了其在临床的应用。本室采用CD34+细胞分选,结合Dexter培养分离出脐带血中另外一群非造血细胞:人脐血源基质细胞(hUCB-derived stromal cells,hUCBDSC),且已经证实其具备体外支持造血的能力(3)。推测hUCBDSC可能具有和MSC相似的对免疫细胞调节作用的特性。本研究在构建MHC(Major Histocompability Complex)半相合移植小鼠GVHD模型基础上,着眼于启动GVHD异源反应的两个重要因素T细胞和DC细胞,从体外和体内探讨hUCBDSC的免疫调节作用以及可能机制。
     一、主要方法
     (一)体外实验
     1.采用6%明胶和1.077 g/L percoll分离液分离脐带血中的单个核细胞,磁珠分选CD34+细胞,含12.5%HS、12.5%FBS、10-6mol/L氢化可的松、10ng/mlSCF、10ng/ml bFGF的DMEM培养液培养hUCBDSC,37℃、5%CO2、饱和湿度恒温箱孵育。48h后全量换液,以后每周半量换液;待细胞融合度达到80%左右时,进行传代培养;
     2.采用流式细胞仪检测原代分离培养和冻存复苏后hUCBDSC细胞表面免疫分子HLA-Ⅰ、Ⅱ类分子,CD80,CD86,CD40和CD40L的表达率;
     3.采用70%percoll分离液和R&D systems公司的Mouse T cell Enrichment Columns进行小鼠脾脏T细胞的分选;
     4.分离小鼠骨髓单个核细胞后,rmGM-CSF和LPS诱导BM-DC的分化和成熟;
     5.将PHA或DC刺激的小鼠脾脏T细胞和不同浓度的hUCBDSC共培养, CCK-8检测细胞增殖情况;
     6.PHA刺激条件下小鼠T细胞和hUCBDSC共培养后,流式细胞仪检测T细胞的周期、凋亡、CD4+CD25+Foxp3+调节性T细胞(CD4+Treg)以及Th1/Th2亚群的变化。
     7.小鼠BM-DC和hUCBDSC共培养后,扫描电镜和透射电镜观察BM-DC形态和结构,流式细胞仪检测表面免疫分子MHC-Ⅱ、CD80、CD86的表达,CCK-8检测试剂盒检测其刺激异源T细胞增殖反应的能力。
     (二)体内实验
     1.受鼠C57BL/6×BALB/c F1接受750 cGy 60Coγ射线照射后4小时内经尾静脉注射供鼠C57BL/6来源的骨髓细胞BMC(1×107/只)、脾脏细胞SP(1×107/只),建立MHC半相合造血干细胞移植小鼠急性GVHD模型;
     2.受鼠移植BMC和SP的同时或1w后输注hUCBDSC(1×107/只),观察小鼠生存时间、GVHD临床表现和靶器官组织病理变化;
     3.细胞移植后1w、2w、3w和4w,流式细胞仪检测受鼠脾脏T细胞CD4+Treg、Th1/Th2亚群的比例和DC表面免疫分子MHC-II、CD80和CD86的表达。
     二、主要结果
     (一)体外实验
     1.hUCBDSC组成性高表达HLA-Ⅰ(84.1±2.9%),几乎不表达HLA-Ⅱ(1.6±0.3%)类分子,共刺激分子CD80(0.8±0.1%),CD86(0.8±0.1%),CD40(0.6±0.1%)和CD40L(0.5±0.1%)。细胞冻存复苏不影响上述分子的表达;
     2.hUCBDSC并不会引起小鼠T细胞的增殖,相反,以剂量依赖性方式抑制PHA或DC刺激的小鼠T细胞增殖;
     3.在PHA刺激72h后,处于G1期的T细胞占62.1±3.7%,S期占35.6±2.7%。而当与hUCBDSC共培养时, 84.3±3.6%T细胞处于G1期,12.3±1.5%T细胞处于S期。两者比较有显著统计学意义(p<0.01);
     4.PHA刺激单独培养的T细胞和与hUCBDSC共培养的T细胞中早期凋亡细胞的比例无明显差别(p>0.05);
     5.和单独培养的T细胞比较,与hUCBDSC共培养的T细胞中CD4+Treg亚群所占的比例显著增高(1.2±0.3% vs 12.1±1.4%,p<0.01);
     6.在PHA刺激时,T细胞单独培养或与hUCBDSC共培养5天后, Th1/Th2的比例分别为1.4±0.1%和0.7±0.1%,两者之间比较具有显著统计学意义(p<0.01);
     7.当BM-DC和hUCBDSC共培养时,电镜观察其表面突起显著减少,细胞器也不丰富。表面免疫分子MHC-II、CD80和CD86的表达显著降低,且其刺激异源T细胞增殖的能力也显著降低。
     (二)体内实验
     1.受鼠C57BL/6×BALB/c F1接受750 cGy TBI后输注供鼠C57BL/6来源的BMC和SP后,通过对生存期、临床表现和组织病理的观察,证实成功构建了MHC半相合HSCT小鼠GVHD模型;
     2.细胞移植后4h内或1w后输注hUCBDSC,小鼠长期生存率从20%分别提高到60%和40%,显著降低了小鼠GVHD临床评分和组织病理评分;
     3.细胞移植后各时相点流式细胞仪分析受鼠脾脏T细胞亚群和DC的变化,输注hUCBDSC的受鼠脾脏CD4+Treg比例增高、Th1/Th2亚群比值降低、DC表面免疫分子MHC-II、CD80和CD86的表达降低。
     三、结论
     1.hUCBDSC体外具有低免疫源性的特点,可以抑制PHA或DC刺激的小鼠T淋巴细胞的增殖。可能的作用机制包括阻止T细胞从G1期进入S期,诱导CD4+Treg的产生,降低Th1/Th2亚群的比例和对BM-DC成熟的影响。
     2.hUCBDSC可以延长MHC半相合造血干细胞移植后小鼠的生存期,减轻GVHD临床表现和靶器官组织病理变化,这可能与体内CD4+Treg的增多、Th1/Th2极化,以及不成熟DC的产生有关。
Introduction
     Allogeneic hematopoietic stem cell transplantation(Allo-HSCT)– using blood or marrow as the source– provides curative therapy for a substantial number of patients with hematological malignancies .HLA matched related or unrelated donors are the best selections. However, the odds are that only 25~30% of patients will have a matched sibling to act as donor, and the chance of finding a matched unrelated donor is even lower(one in 50~100 thousand). Another potential alternative donor is a genetically haploidentical family member. Such a donor is readily available in 90% of patients, which will increase the therapeutical opportunity for patients who have no HLA matched donors if the HLA barrier could be overcome suitably.80% of patients, who have received HLA haploidentical transplants, would suffer from graft verus host disease (GVHD).GVHD, the main complication after Allo-HSCT, accounts for morbidity and mortality post transplantation. To explore safe and efficient method to prevent incidence and severity of GVHD become the focus of scientists and clinicians. The critical function of multipotent mesenchymal stromal cells(MSC) include regulation of hematopoietic cell proliferation, differentiation and maturation. The interaction between MSC and immune cell has also been studied. It was demonstrated that MSC possess the ability to regulate immunity, evidenced by its effect on the GVHD prevention in large amount of animal model and clinical research. However, the application of MSC is limited in clinic due to relative difficult collection and multipotential differentiation. Our laboratory has previously isolated a novel population of adherent fibroblast-like cells from human umbilical cord blood (hUCB) CD34+cells, called hUCB-derived stromal cells (hUCBDSCs) and confirmed their supportive effect on hematopoisis in vitro. Previous studies have usually investigated human MSC-allogeneic immune cell reaction in vitro. To test the feasibility of replacing human immune cells with xenogeneic counterparts in vitro is of significance in establishing an animal model for further in vivo study of immunological properties of human MSC, such as their inhibitory effect on GVHD. In the present study, we focused on immunological properties of hUCBDSCs and their effect on xenogeneic immune cells in vitro and GVHD in mouse subjected to MHC haploidentical transplantation. Methods
     Part A Experiment in vitro
     1. CD34+cells were isolated from human umbilical cord blood using 6% gelatin, percoll separating medium(density,1.077g/L) and magnetic bead selection and cultured in DMEM medium containing 12.5%HS, 12.5%FBS, 10-6mol/L hydrocortisone,10ng/mlSCF and 10ng/ml bFGF. Culture was replaced by fresh medium after 48 h, and then, it was demi-depopulated weekly and fresh medium was added to it. After the density of cells had risen above 80% confluence, hUCB-derived stromal cells were subcultured with 1:2ratio under the same culture medium and condition;
     2. The expression of HLA-I,HLA-II and costimulatory molecules such as CD80, CD86, CD40 and CD154 on freshly isolated and cryopreserved and resuscitated hUCBDSC was tested using flow cytometry;
     3. CD3+ T cells was isolated and enriched from spleen in mouse using 70% percoll combined with Mouse T cell Enrichment Columns;
     4. BM-DC was cultured and induced in medium containing rmGM-CSF and LPS after isolation of bone marrow mononuclear cells;
     5. hUCBDSC was cocultured with T cells stimulated by PHA or DC. The proliferation of the T cells was tested by CCK-8;
     6. hUCBDSC was cocultured with T cells stimulated by PHA. Cell cycle, apoptosis, the subset of CD4+Treg and Th1/Th2 in T cells were analyzed by flow cytometry;
     7. hUCBDSC was cocultured with BM-DC. Morphology was observed using electron microscope. The expression of MHC-Ⅱ、CD80、CD86 on BM-DC was tested by flow cytometry. T cells was stimulated by BM-DC after coculturation with hUCBDSC to analyze the function of BM-DC;
     Part B Experiment in vivo
     1. Recipient (B6×BALB/c)F1 mice were irradiated with a single dose of 750 cGy using a 60Coγ-ray source at a dose rate of approximately 31 cGy/min. BMC (1×107) and SP (1×10~7) were injected intravenously into recipient donor C57BL/6 mice within 4 hours of conditioning
     2. hUCBDSC(1×107) was infused simultaneously or on one week after transplantation of BMC and SP. Survival time, GVHD clinical appearance and pathohistological manifestation were observed;
     3. The subset of CD4+Treg and Th1/Th2 in splenic T cells and expression of MHC-Ⅱ、CD80、CD86 on splenic DC were analyzed in recipient mice using flow cytometry on 1w,2w,3w and 4w post transplantation.
     Results
     Part A Experiment in vitro
     1. 84.1±2.9% of hUCBDSC expressed HLA-I, but there was nearly no expression of HLA-II (1.6±0.3%). The levels of costimulator expression were as follows: CD80 (0.8±0.1%), CD86 (0.8±0.1%),CD40 (0.6±0.1%), and CD40L (0.5±0.1%), and cell cryopreservation did not influence the expression of aboved molecules;
     2. The addition of hUCBDSCs in in vitro culture did not evoke xenogeneic T-cell proliferation; on the contrary, it suppressed the proliferation induced by PHA or allogeneic dendritic cells;
     3. The proportion of T cell in G1 and S phase was 62.1±3.7% and 35.6±2.7% after T cells were stimulated by PHA for 72 hours. The percentage of T cells in G1 phase was increased to 84.3±3.6%, and in S phase was decreased to 12.3±1.5% when PHA stimulated T cells were cocultured with hUCBDSC;
     4. There are no significant difference statistically on the percentage of apopotic cell between T cells alone and T cells cocultured with hUCBDSC;
     5. There was a significant increase in the proportion of CD4+Treg (12.1±1.4% vs 1.2±0.3%, p < 0.01) when T cells were stimulated by PHA in the presence of hUCBDSCs compared with control;
     6. The ratio of Th1/Th2 subset in T cells alone was 1.4±0.1%, significantly higher than in T cells cocultured with hUCBDSC (0.7±0.1%, p<0.01);
     7. The surface projection and organelle in BM-DC was significantly decreased evidenced by observation using electron microscope. The expression of MHC-Ⅱ、CD80、CD86 on BM-DC was down-regulated. The stimulatory ability of BM-DC was significantly attenuated.
     Part B Experiment in vivo
     1. The MHC haploidentical HSCT GVHD model in mouse has been successfully constructed ecidenced by typical GVHD clinical appearance and pathohistological changes;
     2. The long-time survival ratio of recipient mice was increased from 20% to 60% and 40% after infusion of hUBDSC on day0 or on week. In addition, the GVHD clinical appearance has been attenuated significantly, and the injury degree of targeted tissue was significantly decreased.
     3. The subset of CD4+Treg in splenic T cells in recipient mice subjected to hUCBDSC infusion was increased significantly, and Th1/Th2 subset was decreased. Expression of MHC-Ⅱ、CD80、CD86 on splenic DC were down-regulated significantly.
     Conclusion
     1. HUCBDSC are immunoprivileged evidenced by lower or negligible expression of MHC-II, costimulatory molecules including CD80,CD86,CD40 and CD154 on cellular surface and non stimulatory effect on xenogeneic T cells. Interruption of cell cycle, induction of CD4+Treg, polarization of Th1/Th2 subset and interference with BM-DC maturation may be involved in its possible mechanisms rather than apoptosis.
     2. HUCBDSC could prolong survival time of mice subjected to MHC haploidentical HSCT, and attenuate GVHD clinical appearance and pathohistological change of target tissue. In accordance with results in vitro, possible mechanisms include induction of CD4+Treg, polarization of Th1/Th2 subset and interference with BM-DC maturation.
引文
1. Rowe JM, Lazarus HM. Genetically haploidentical stem cell transplantation for acute leukemia. Bone Marrow Transplant 2001; 27 (7): 669.
    2. Higman MA, Vogelsang GB. Chronic graft versus host disease. Br J Haematol 2004; 125 (4): 435.
    3. Gao L, Chen X, Zhang X, et al. Human umbilical cord blood-derived stromal cell, a new resource of feeder layer to expand human umbilical cord blood CD34+ cells in vitro. Blood Cells Mol Dis 2006; 36 (2): 322.
    4. Cutler C, Antin JH. An overview of hematopoietic stem cell transplantation. Clin Chest Med 2005; 26 (4): 517.
    5. Storb R, Thomas ED. Allogeneic bone-marrow transplantation. Immunol Rev 1983; 71: 77.
    6. Thomas ED. Karnofsky Memorial Lecture. Marrow transplantation for malignant diseases. J Clin Oncol 1983; 1 (9): 517.
    7. Noel D, Djouad F, Bouffi C, Mrugala D, Jorgensen C. Multipotent mesenchymal stromal cells and immune tolerance. Leuk Lymphoma 2007; 48 (7): 1283.
    8. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101 (9): 3722.
    9. Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11 (5): 389.
    10. Brunstein CG, Wagner JE. Umbilical cord blood transplantation and banking. Annu Rev Med 2006; 57: 403.
    11. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 (5411): 143.
    12. Lutz MB, Kukutsch N, Ogilvie AL, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 1999; 223 (1): 77.
    13. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4 (5): 267.
    14. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418 (6893): 41.
    15. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970; 3 (4): 393.
    16. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276 (5309): 71.
    17. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001; 19 (3): 180.
    18. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64 (2): 278.
    19. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998; 16 (2): 155.
    20. Bensinger WI, Martin PJ, Storer B, et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001; 344 (3): 175.
    21. Couban S, Simpson DR, Barnett MJ, et al. A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies. Blood 2002; 100 (5): 1525.
    22. Gurevitch O, Prigozhina TB, Pugatsch T, Slavin S. Transplantation of allogeneic or xenogeneic bone marrow within the donor stromal microenvironment. Transplantation 1999; 68 (9): 1362.
    23. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363 (9419): 1439.
    24. Ringden O, Uzunel M, Rasmusson I, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 2006; 81 (10): 1390.
    25. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75 (3): 389.
    26. Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102 (10): 3837.
    27. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99 (10): 3838.
    28. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31 (10): 890.
    29. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57 (1): 11.
    30. Djouad F, Bony C, Haupl T, et al. Transcriptional profiles discriminate bone marrow- derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther 2005; 7 (6): R1304.
    31. Le Blanc K, Rasmusson I, Gotherstrom C, et al. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin- activated lymphocytes. Scand J Immunol 2004; 60 (3): 307.
    32. Rasmusson I. Immune modulation by mesenchymal stem cells. Exp Cell Res 2006; 312 (12): 2169.
    33. Plumas J, Chaperot L, Richard MJ, Molens JP, Bensa JC, Favrot MC. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 2005; 19 (9): 1597.
    34. Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001; 2 (4): 301.
    35. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299 (5609): 1057.
    36. Stockinger B. T lymphocyte tolerance: from thymic deletion to peripheral control mechanisms. Adv Immunol 1999; 71: 229.
    37. Bouneaud C, Kourilsky P, Bousso P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 2000; 13 (6): 829.
    38. Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000; 12 (4): 431.
    39. Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol 1998; 160 (3): 1212.
    40. Stephens LA, Mason D. CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25- subpopulations. J Immunol 2000; 165 (6): 3105.
    41. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188 (2): 287.
    42. Read S, Mauze S, Asseman C, Bean A, Coffman R, Powrie F. CD38+ CD45RB(low) CD4+ T cells: a population of T cells with immune regulatory activities in vitro. Eur J Immunol 1998; 28 (11): 3435.
    43. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105 (4): 1815.
    44. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767.
    45. Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001; 106 (3): 255.
    46. Yamazaki S, Patel M, Harper A, et al. Effective expansion of alloantigen-specific Foxp3+ CD25+ CD4+ regulatory T cells by dendritic cells during the mixed leukocyte reaction. Proc Natl Acad Sci U S A 2006; 103 (8): 2758.
    47. Hackstein H, Morelli AE, Thomson AW. Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends Immunol 2001; 22 (8): 437.
    48. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-deriveddendritic cells. J Immunol 2006; 177 (4): 2080.
    49. Zhang W, Ge W, Li C, et al. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 2004; 13 (3): 263.
    50. Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105 (10): 4120.
    51. Ardavin C. Origin, precursors and differentiation of mouse dendritic cells. Nat Rev Immunol 2003; 3 (7): 582.
    52. MacDonald KP, Rowe V, Filippich C, et al. Donor pretreatment with progenipoietin-1 is superior to granulocyte colony-stimulating factor in preventing graft-versus-host disease after allogeneic stem cell transplantation. Blood 2003; 101 (5): 2033.
    53. Ferrara J, Guillen FJ, Sleckman B, Burakoff SJ, Murphy GF. Cutaneous acute graft-versus-host disease to minor histocompatibility antigens in a murine model: histologic analysis and correlation to clinical disease. J Invest Dermatol 1986; 86 (4): 371.
    54. Grass JA, Wafa T, Reames A, et al. Prevention of transfusion-associated graft-versus- host disease by photochemical treatment. Blood 1999; 93 (9): 3140.
    55. Hill GR, Crawford JM, Cooke KR, Brinson YS, Pan L, Ferrara JL. Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 1997; 90 (8): 3204.
    56. Robinson SN, Freedman AS, Neuberg DS, Nadler LM, Mauch PM. Loss of marrow reserve from dose-intensified chemotherapy results in impaired hematopoietic reconstitution after autologous transplantation: CD34(+), CD34(+)38(-), and week-6 CAFC assays predict poor engraftment. Exp Hematol 2000; 28 (12): 1325.
    57. Anderson BE, Taylor PA, McNiff JM, et al. Effects of donor T-cell trafficking and priming site on graft-versus-host disease induction by naive and memory phenotype CD4 T cells. Blood 2008; 111 (10): 5242.
    58. Ferrara JL, Reddy P. Pathophysiology of graft-versus-host disease. Semin Hematol 2006; 43 (1): 3.
    59. Hill GR, Ferrara JL. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bonemarrow transplantation. Blood 2000; 95 (9): 2754.
    60. Shlomchik WD. Graft-versus-host disease. Nat Rev Immunol 2007; 7 (5): 340.
    61. Sorror ML, Maris MB, Storer B, et al. Comparing morbidity and mortality of HLA-matched unrelated donor hematopoietic cell transplantation after nonmyeloablative and myeloablative conditioning: influence of pretransplantation comorbidities. Blood 2004; 104 (4): 961.
    62. Dustin ML. Role of adhesion molecules in activation signaling in T lymphocytes. J Clin Immunol 2001; 21 (4): 258.
    63. Zeiser R, Nguyen VH, Beilhack A, et al. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production. Blood 2006; 108 (1): 390.
    64. Ferrara JL, Deeg HJ. Graft-versus-host disease. N Engl J Med 1991; 324 (10): 667.
    65. van den Brink MR, Burakoff SJ. Cytolytic pathways in haematopoietic stem-cell transplantation. Nat Rev Immunol 2002; 2 (4): 273.
    66. Wysocki CA, Panoskaltsis-Mortari A, Blazar BR, Serody JS. Leukocyte migration and graft-versus-host disease. Blood 2005; 105 (11): 4191.
    67. Chakraverty R, Cote D, Buchli J, et al. An inflammatory checkpoint regulates recruitment of graft-versus-host reactive T cells to peripheral tissues. J Exp Med 2006; 203 (8): 2021.
    68. Brubaker DB. Immunopathogenic mechanisms of posttransfusion graft-vs-host disease. Proc Soc Exp Biol Med 1993; 202 (2): 122.
    69. Grinnemo KH, Mansson A, Dellgren G, et al. Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium. J Thorac Cardiovasc Surg 2004; 127 (5): 1293.
    70. Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6 (11): 1282.
    71. Saito T, Kuang JQ, Bittira B, Al-Khaldi A, Chiu RC. Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg 2002; 74 (1): 19.
    72. Levings MK, Sangregorio R, Roncarolo MG. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001; 193 (11): 1295.
    73. Hess AD, Fischer AC, Horwitz L, Bright EC, Laulis MK. Characterization of peripheral autoregulatory mechanisms that prevent development of cyclosporin-induced syngeneic graft-versus-host disease. J Immunol 1994; 153 (1): 400.
    74. Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL. CD4(+)CD25(+) immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J Exp Med 2002; 196 (3): 401.
    75. Masteller EL, Tang Q, Bluestone JA. Antigen-specific regulatory T cells--ex vivo expansion and therapeutic potential. Semin Immunol 2006; 18 (2): 103.
    76. Fowler DH, Gress RE. Th2 and Tc2 cells in the regulation of GVHD, GVL, and graft rejection: considerations for the allogeneic transplantation therapy of leukemia and lymphoma. Leuk Lymphoma 2000; 38 (3-4): 221.
    77. Antin JH, Ferrara JL. Cytokine dysregulation and acute graft-versus-host disease. Blood 1992; 80 (12): 2964.
    78. Blazar BR, Korngold R, Vallera DA. Recent advances in graft-versus-host disease (GVHD) prevention. Immunol Rev 1997; 157: 79.
    79. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 383 (6603): 787.
    80. Zheng ZH, Li XY, Ding J, Jia JF, Zhu P. Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology (Oxford) 2008; 47 (1): 22.
    81. Batten P, Sarathchandra P, Antoniw JW, et al. Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: relevance to tissue engineering human heart valves. Tissue Eng 2006; 12 (8): 2263.
    82. Sato K, Yamashita N, Yamashita N, Baba M, Matsuyama T. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 2003; 18 (3): 367.
    1. Weiden PL, Sullivan KM, Flournoy N, Storb R, Thomas ED. Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med 1981; 304 (25): 1529.
    2. Sullivan KM, Weiden PL, Storb R, et al. Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLA-identical siblings as treatment of acute and chronic leukemia. Blood 1989; 73 (6): 1720.
    3. Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75 (3): 555.
    4. Marmont AM, Horowitz MM, Gale RP, et al. T-cell depletion of HLA-identical transplants in leukemia. Blood 1991; 78 (8): 2120.
    5. Ferrara JL, Deeg HJ. Graft-versus-host disease. N Engl J Med 1991; 324 (10): 667.
    6. Drobyski WR, Klein J, Flomenberg N, et al. Superior survival associated with transplantation of matched unrelated versus one-antigen-mismatched unrelated or highly human leukocyte antigen-disparate haploidentical family donor marrow grafts for the treatment of hematologic malignancies: establishing a treatment algorithm for recipients of alternative donor grafts. Blood 2002; 99 (3): 806.
    7. Flomenberg N, Baxter-Lowe LA, Confer D, et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood 2004; 104 (7): 1923.
    8. Giebel S, Locatelli F, Lamparelli T, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 2003; 102 (3): 814.
    9. Dickinson AM, Wang XN, Sviland L, et al. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nat Med 2002; 8 (4): 410.
    10. Dickinson AM, Middleton PG, Rocha V, Gluckman E, Holler E. Genetic polymorphisms predicting the outcome of bone marrow transplants. Br J Haematol 2004;127 (5): 479.
    11. Middleton PG, Taylor PR, Jackson G, Proctor SJ, Dickinson AM. Cytokine gene polymorphisms associating with severe acute graft-versus-host disease in HLA-identical sibling transplants. Blood 1998; 92 (10): 3943.
    12. Middleton PG, Cullup H, Dickinson AM, et al. Vitamin D receptor gene polymorphism associates with graft-versus-host disease and survival in HLA-matched sibling allogeneic bone marrow transplantation. Bone Marrow Transplant 2002; 30 (4): 223.
    13. Middleton PG, Norden J, Cullup H, et al. Oestrogen receptor alpha gene polymorphism associates with occurrence of graft-versus-host disease and reduced survival in HLA-matched sib-allo BMT. Bone Marrow Transplant 2003; 32 (1): 41.
    14. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4 (5): 267.
    15. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 (5411): 143.
    16. Gurevitch O, Prigozhina TB, Pugatsch T, Slavin S. Transplantation of allogeneic or xenogeneic bone marrow within the donor stromal microenvironment. Transplantation 1999; 68 (9): 1362.
    17. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363 (9419): 1439.
    18. Ringden O, Uzunel M, Rasmusson I, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 2006; 81 (10): 1390.
    19. Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11 (5): 389.
    20. Bensinger WI, Martin PJ, Storer B, et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001; 344 (3): 175.
    21. Couban S, Simpson DR, Barnett MJ, et al. A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies. Blood 2002; 100 (5): 1525.
    22. Sato K, Ozaki K, Oh I, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 2007; 109 (1): 228.
    23. Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 2005; 105 (5): 2214.
    24. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105 (4): 1815.
    25. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003; 75 (3): 389.
    26. Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102 (10): 3837.
    27. Selmani Z, Naji A, Zidi I, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008; 26 (1): 212.
    28. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101 (9): 3722.
    29. Augello A, Tasso R, Negrini SM, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 2005; 35 (5): 1482.
    30. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99 (10): 3838.
    31. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31 (10): 890.
    32. Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76 (8): 1208.
    33. Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107 (1): 367.
    34. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006; 107 (4): 1484.
    35. Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105 (10): 4120.
    36. Velardi A, Ruggeri L, Alessandro, Moretta, Moretta L. NK cells: a lesson from mismatched hematopoietic transplantation. Trends Immunol 2002; 23 (9): 438.
    37. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295 (5562): 2097.
    38. Caligiuri MA, Velardi A, Scheinberg DA, Borrello IM. Immunotherapeutic approaches for hematologic malignancies. Hematology Am Soc Hematol Educ Program 2004: 337.
    39. Ruggeri L, Mancusi A, Burchielli E, et al. Natural killer cell recognition of missing self and haploidentical hematopoietic transplantation. Semin Cancer Biol 2006; 16 (5): 404.
    40. Ruggeri L, Capanni M, Mancusi A, Aversa F, Martelli MF, Velardi A. Natural killer cells as a therapeutic tool in mismatched transplantation. Best Pract Res Clin Haematol 2004; 17 (3): 427.
    41. Beelen DW, Ottinger HD, Ferencik S, et al. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood 2005; 105 (6): 2594.
    42. Davies SM, Ruggieri L, DeFor T, et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Killer immunoglobulin-like receptor. Blood 2002; 100 (10): 3825.
    43. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155 (3): 1151.
    44. Levings MK, Sangregorio R, Roncarolo MG. Human cd25(+)cd4(+) t regulatory cellssuppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001; 193 (11): 1295.
    45. Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001; 2 (4): 301.
    46. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299 (5609): 1057.
    47. Stockinger B. T lymphocyte tolerance: from thymic deletion to peripheral control mechanisms. Adv Immunol 1999; 71: 229.
    48. Bouneaud C, Kourilsky P, Bousso P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 2000; 13 (6): 829.
    49. Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000; 12 (4): 431.
    50. Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol 1998; 160 (3): 1212.
    51. Stephens LA, Mason D. CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25- subpopulations. J Immunol 2000; 165 (6): 3105.
    52. Read S, Mauze S, Asseman C, Bean A, Coffman R, Powrie F. CD38+ CD45RB(low) CD4+ T cells: a population of T cells with immune regulatory activities in vitro. Eur J Immunol 1998; 28 (11): 3435.
    53. Yamazaki S, Patel M, Harper A, et al. Effective expansion of alloantigen-specific Foxp3+ CD25+ CD4+ regulatory T cells by dendritic cells during the mixed leukocyte reaction. Proc Natl Acad Sci U S A 2006; 103 (8): 2758.
    54. Hess AD, Fischer AC, Horwitz L, Bright EC, Laulis MK. Characterization of peripheral autoregulatory mechanisms that prevent development of cyclosporin-induced syngeneic graft-versus-host disease. J Immunol 1994; 153 (1): 400.
    55. Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL. CD4(+)CD25(+) immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J Exp Med2002; 196 (3): 401.
    56. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 2002; 196 (3): 389.
    57. Masteller EL, Tang Q, Bluestone JA. Antigen-specific regulatory T cells--ex vivo expansion and therapeutic potential. Semin Immunol 2006; 18 (2): 103.
    58. Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 2000; 164 (1): 183.
    59. Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9 (9): 1144.
    60. Joffre O, Gorsse N, Romagnoli P, Hudrisier D, van Meerwijk JP. Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes. Blood 2004; 103 (11): 4216.
    61. Miura Y, Thoburn CJ, Bright EC, et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood 2004; 104 (7): 2187.
    62. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531.
    63. Shevach EM. Regulatory T cells in autoimmmunity*. Annu Rev Immunol 2000; 18: 423.
    64. Read S, Powrie F. CD4(+) regulatory T cells. Curr Opin Immunol 2001; 13 (6): 644.
    65. Piccirillo CA, Thornton AM. Cornerstone of peripheral tolerance: naturally occurring CD4+CD25+ regulatory T cells. Trends Immunol 2004; 25 (7): 374.
    66. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767.
    67. Sato K, Yamashita N, Yamashita N, Baba M, Matsuyama T. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 2003; 18 (3): 367.
    68. Fowler DH, Gress RE. Th2 and Tc2 cells in the regulation of GVHD, GVL, and graft rejection: considerations for the allogeneic transplantation therapy of leukemia and lymphoma. Leuk Lymphoma 2000; 38 (3-4): 221.
    1. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008; 2 (4): 313.
    2. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418 (6893): 41.
    3. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970; 3 (4): 393.
    4. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 2007; 25 (11): 2896.
    5. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001; 19 (3): 180.
    6. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64 (2): 278.
    7. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998; 16 (2): 155.
    8. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9 (5): 641.
    9. Luria EA, Panasyuk AF, Friedenstein AY. Fibroblast colony formation from monolayer cultures of blood cells. Transfusion 1971; 11 (6): 345.
    10. Bieback K, Kern S, Kluter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 2004; 22 (4): 625.
    11. Hida N, Nishiyama N, Miyoshi S, et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells 2008; 26 (7): 1695.
    12. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004; 22 (7): 1338.
    13. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyteproliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A 1998; 95 (15): 8801.
    14. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7 (2): 211.
    15. Alfaro MP, Pagni M, Vincent A, et al. The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci U S A 2008; 105 (47): 18366.
    16. Hu Y, Liao L, Wang Q, et al. Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 2003; 141 (5): 342.
    17. Pierdomenico L, Bonsi L, Calvitti M, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 2005; 80 (6): 836.
    18. Brooke G, Tong H, Levesque JP, Atkinson K. Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev 2008; 17 (5): 929.
    19. Rebelatto CK, Aguiar AM, Moretao MP, et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood) 2008; 233 (7): 901.
    20. Musina RA, Bekchanova ES, Belyavskii AV, Sukhikh GT. Differentiation potential of mesenchymal stem cells of different origin. Bull Exp Biol Med 2006; 141 (1): 147.
    21. Brownell HL, Narsimhan RP, Corbley MJ, Mann VM, Whitfield JF, Raptis L. Ras is involved in gap junction closure in proliferating fibroblasts or preadipocytes but not in differentiated adipocytes. DNA Cell Biol 1996; 15 (6): 443.
    22. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (4): 315.
    23. Hanabusa K, Nagaya N, Iwase T, et al. Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke 2005; 36 (4): 853.
    24. Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 2007; 292 (5): F1626.
    25. Urban VS, Kiss J, Kovacs J, et al. Mesenchymal stem cells cooperate with bone marrowcells in therapy of diabetes. Stem Cells 2008; 26 (1): 244.
    26. Ma Y, Xu Y, Xiao Z, et al. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 2006; 24 (2): 315.
    27. Schneider RK, Neuss S, Stainforth R, et al. Three-dimensional epidermis-like growth of human mesenchymal stem cells on dermal equivalents: contribution to tissue organization by adaptation of myofibroblastic phenotype and function. Differentiation 2008; 76 (2): 156.
    28. Imitola J, Raddassi K, Park KI, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 2004; 101 (52): 18117.
    29. Cui X, Chopp M, Zacharek A, et al. Chemokine, vascular and therapeutic effects of combination Simvastatin and BMSC treatment of stroke. Neurobiol Dis 2009.
    30. Shichinohe H, Kuroda S, Yano S, Hida K, Iwasaki Y. Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct. Brain Res 2007; 1183: 138.
    31. Sordi V, Malosio ML, Marchesi F, et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005; 106 (2): 419.
    32. Wynn RF, Hart CA, Corradi-Perini C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 2004; 104 (9): 2643.
    33. Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 2006; 124 (1): 175.
    34. Toksoy A, Muller V, Gillitzer R, Goebeler M. Biphasic expression of stromal cell-derived factor-1 during human wound healing. Br J Dermatol 2007; 157 (6): 1148.
    35. Cheng Z, Ou L, Zhou X, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 2008; 16 (3): 571.
    36. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 (5411): 143.
    37. Lien SC, Usami S, Chien S, Chiu JJ. Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-beta1-induced phenotypic modulation of 10T1/2cells to smooth muscle cells. Cell Signal 2006; 18 (8): 1270.
    38. Sgodda M, Aurich H, Kleist S, et al. Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Exp Cell Res 2007; 313 (13): 2875.
    39. Li Y, Zhang R, Qiao H, et al. Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol 2007; 211 (1): 36.
    40. Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 2007; 25 (11): 2837.
    41. Popp FC, Slowik P, Eggenhofer E, et al. No contribution of multipotent mesenchymal stromal cells to liver regeneration in a rat model of prolonged hepatic injury. Stem Cells 2007; 25 (3): 639.
    42. Chiu RS, Stuchly MA. Electric fields in bone marrow substructures at power-line frequencies. IEEE Trans Biomed Eng 2005; 52 (6): 1103.
    43. Liu D, Wang F, Zou Z, et al. Bone marrow derivation of interstitial cells of Cajal in small intestine following intestinal injury. Neurogastroenterol Motil 2009; under revision.
    44. Nevo Z, Robinson D, Horowitz S, Hasharoni A, Yayon A. The manipulated mesenchymal stem cells in regenerated skeletal tissues. Cell Transplant 1998; 7 (1): 63.
    45. Zaidi N, Nixon AJ. Stem cell therapy in bone repair and regeneration. Ann N Y Acad Sci 2007; 1117: 62.
    46. Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 1997; 6 (2): 125.
    47. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 1998; 4 (4): 415.
    48. Ju YJ, Muneta T, Yoshimura H, Koga H, Sekiya I. Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res 2008; 332 (3): 469.
    49. Nesti LJ, Li WJ, Shanti RM, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Eng Part A 2008; 14 (9): 1527.
    50. Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002; 99 (13): 8932.
    51. Le Blanc K. Mesenchymal stromal cells: Tissue repair and immune modulation. Cytotherapy 2006; 8 (6): 559.
    52. Slater BJ, Kwan MD, Gupta DM, Panetta NJ, Longaker MT. Mesenchymal cells for skeletal tissue engineering. Expert Opin Biol Ther 2008; 8 (7): 885.
    53. Zhao D, Wu H, Li F, Li R, Tao C. Electromagnetic field change the expression of osteogenesis genes in murine bone marrow mesenchymal stem cells. J Huazhong Univ Sci Technolog Med Sci 2008; 28 (2): 152.
    54. Yang Q, Peng J, Guo Q, et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials 2008; 29 (15): 2378.
    55. Yamasaki T, Deie M, Shinomiya R, et al. Meniscal regeneration using tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. J Biomed Mater Res A 2005; 75 (1): 23.
    56. Kuo TK, Ho JH, Lee OK. Mesenchymal Stem Cell Therapy for Non-musculoskeletal Diseases: Emerging Applications. Cell Transplant 2009.
    57. Arthur A, Zannettino A, Gronthos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 2009; 218 (2): 237.
    58. Sasaki M, Honmou O, Kocsis JD. A rat middle cerebral artery occlusion model and intravenous cellular delivery. Methods Mol Biol 2009; 549: 187.
    59. Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001; 32 (11): 2682.
    60. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 2001; 189 (1-2): 49.
    61. Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001; 32 (4): 1005.
    62. Lee ES, Chan J, Shuter B, et al. Microgel Iron Oxide Nanoparticles for Tracking HumanFetal Mesenchymal Stem Cells Through Magnetic Resonance Imaging. Stem Cells 2009; 27 (8): 1921.
    63. Kurozumi K, Nakamura K, Tamiya T, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 2004; 9 (2): 189.
    64. Keimpema E, Fokkens MR, Nagy Z, et al. Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathol Appl Neurobiol 2009; 35 (1): 89.
    65. Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res 2006; 84 (7): 1495.
    66. Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 2003; 183 (2): 355.
    67. Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 2003; 92 (6): 692.
    68. Liao W, Xie J, Zhong J, et al. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation 2009; 87 (3): 350.
    69. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98 (5): 1076.
    70. Lozito TP, Kuo CK, Taboas JM, Tuan RS. Human mesenchymal stem cells express vascular cell phenotypes upon interaction with endothelial cell matrix. J Cell Biochem 2009; 107 (4): 714.
    71. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007; 25 (10): 2648.
    72. Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol 2009; 217 (2): 318.
    73. Traktuev DO, Merfeld-Clauss S, Li J, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2008; 102 (1): 77.
    74. Caplan AI. All MSCs are pericytes? Cell Stem Cell 2008; 3 (3): 229.
    75. Au P, Tam J, Fukumura D, Jain RK. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 2008; 111 (9): 4551.
    76. Ozerdem U, Alitalo K, Salven P, Li A. Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis. Investigative Ophthalmology & Visual Science 2005; 46 (10): 3502.
    77. Sorrell JM, Caplan AI. Fibroblast heterogeneity: more than skin deep. J Cell Sci 2004; 117 (Pt 5): 667.
    78. Zipori D. Mesenchymal stem cells: harnessing cell plasticity to tissue and organ repair. Blood Cells Mol Dis 2004; 33 (3): 211.
    79. Crigler L, Kazhanie A, Yoon TJ, et al. Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. FASEB J 2007; 21 (9): 2050.
    80. Muller I, Lymperi S, Dazzi F. Mesenchymal stem cell therapy for degenerative inflammatory disorders. Curr Opin Organ Transplant 2008; 13 (6): 639.
    81. Nasef A, Ashammakhi N, Fouillard L. Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms. Regen Med 2008; 3 (4): 531.
    82. Toubai T, Paczesny S, Shono Y, et al. Mesenchymal Stem Cells for Treatment and Prevention of Graft-Versus-Host Disease after Allogeneic Hematopoietic Cell Transplantation. Curr Stem Cell Res Ther 2009.
    83. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30 (1): 42.
    84. Yanez R, Lamana ML, Garcia-Castro J, Colmenero I, Ramirez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 2006; 24 (11): 2582.
    85. Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005; 106 (5): 1755.
    86. Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008;371 (9624): 1579.
    87. Ringden O, Uzunel M, Sundberg B, et al. Tissue repair using allogeneic mesenchymal stem cells for hemorrhagic cystitis, pneumomediastinum and perforated colon. Leukemia 2007; 21 (11): 2271.
    88. Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102 (10): 3837.
    89. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105 (4): 1815.
    90. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 2006; 177 (4): 2080.
    91. Coyne TM, Marcus AJ, Woodbury D, Black IB. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 2006; 24 (11): 2483.
    92. Xiong Y, Qu C, Mahmood A, et al. Delayed transplantation of human marrow stromal cell-seeded scaffolds increases transcallosal neural fiber length, angiogenesis, and hippocampal neuronal survival and improves functional outcome after traumatic brain injury in rats. Brain Res 2009; 1263: 183.
    93. Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 2008; 358 (4): 353.