SV40 ST使良性永生化前列腺上皮细胞获得TRAIL敏感表型的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分良性永生化前列腺上皮细胞LH/LE对TRAIL不同敏感性及其机制研究
     目的肿瘤坏死因子相关凋亡诱导配体(Tumor necrosis factor-related apoptosis-inducing ligand, TRAIL)可选择性诱导某些肿瘤细胞凋亡,而对绝大多数正常细胞无毒性作用,这一特性使TRAIL在抗肿瘤治疗中具有很好的应用前景。本研究是为了明确良性永生化前列腺上皮细胞LH/LE对TRAIL的不同敏感性及其机制。
     方法正常前列腺上皮细胞通过导入猿猴空泡病毒40(SV40)大T抗原和端粒酶末端转移酶催化亚单位(hTERT),使其永生化,得到LH细胞;在这基础上又导入SV40小T抗原片段,得到LE细胞。TRAIL作用于这两种细胞后,MTT法检测细胞活力,显微镜下观察细胞形态学改变和流式细胞术检测细胞凋亡状态。Western blot检测PP2A和c-Fos的蛋白表达。TRAIL处理LH和LE细胞后检测PP2A酶活性。SPSS 13.0软件进行统计学分析。
     结果LH细胞对TRAIL耐受,LE细胞对TRAIL敏感。TRAIL作用后大约45%的LE细胞发生凋亡,而TRAIL作用后的LH细胞发生凋亡的比例很低。Western blot结果显示,PP2A蛋白表达量在LH细胞与LE细胞间未见明显差异,而PP2A的酶活性在LH细胞中明显高于LE; c-Fos蛋白表达在LE细胞中明显高于LH细胞。
     结论SV40 ST赋予了良性永生化前列腺上皮细胞LE细胞TRAIL敏感性表型。
     第二部分奥克代酸诱导TRAIL。耐受的良性永生化前列腺上皮细胞LH细胞获得TRAIL敏感表型的研究
     目的研究奥克代酸(Okadaic acid, OA)诱导TRAIL耐受的LH细胞获得TRAIL敏感性及其机制。
     方法蛋白磷酸酶2A(PP2A)抑制剂OA处理TRAIL耐受的良性永生化前列腺上皮细胞LH细胞后,TRAIL作用于处理组和对照组,MTT法检测细胞活力,细胞形态学和流式细胞术染色检测细胞凋亡状态。Western blot检测4PP2A和·c-Fos的蛋白表达。酶活性试剂盒检测PP2A酶活性。用SPSS 13.0进行统计学分析。
     结果显示经OA诱导后的LH细胞对TRAIL敏感,细胞形态学可见大量的细胞发生凋亡,流式细胞检测显示经OA诱导TRAIL作用后的LH细胞有大约32%的细胞发生凋亡,而未经OA诱导TRAIL作用后的LH细胞中,凋亡细胞的比例很低。Western blot结果显示,经OA诱导后LH细胞中PP2A蛋白表达量明显减少,PP2A酶活性明显下降,而c-Fos蛋白表达量经OA诱导后明显增多。
     结论OA诱导TRAIL耐受的LH细胞获得TRAIL敏感表型。
     第三部分A-Fos逆转奥克代酸诱导TRAIL耐受的LH细胞向TRAIL敏感转化的研究
     目的明确c-Fos在良性永生化前列腺上皮细胞对TRAIL敏感性中的作用及其机制。
     方法A-Fos质粒转染LH细胞,奥克代酸(Okadaic acid, OA)处理后,TRAIL作用于各实验组,MTT法检测细胞活力,细胞形态学和流式细胞术检测细胞凋亡状态。Western blot检测PP2A和c-Fos的蛋白表达。用SPSS 13.0进行统计学分析。
     结果MTT法检测细胞活力显示,经OA诱导后的LH细胞对TRAIL敏感,转染A-Fos质粒的LH细胞虽然经OA诱导但对TRAIL敏感性下降;流式细胞术显示:未经OA诱导TRAIL作用后的LH细胞中凋亡细胞的比例很低,经OA诱导TRAIL作用后的LH细胞后有大约51%的细胞发生凋亡;而经OA诱导TRAIL作用后,转染A-Fos质粒的LH细胞的细胞凋亡率低于未转染A-Fos质粒的LH细胞;Western blot结果显示,经OA诱导后未转染组和A-Fos转染组中PP2A蛋白表达量明显减少,而c-Fos蛋白表达量增多;且A-Fos转染组中c-Fos蛋白表达量低于未转染组。
     结论OA诱导TRAIL耐受的LH细胞获得TRAIL敏感表型,其机制可能通过减少PP2A酶表达,抑制PP2A酶活性,增加c-Fos表达等途径发挥作用。而A-Fos可能通过抑制c-Fos表达,从而逆转OA诱导TRAIL耐受的LH细胞向TRAIL敏感转化。c-Fos作为促凋亡因素,是TRAIL诱导凋亡所必须的。
PART 1:Sensitivity and mechanism of the benign prostatic immortalized cells to TRAIL-induced apoptosis
     Objective Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because it induces apoptosis in cancer cells but spares most normal cells. To determine whether benign prostatic immortalized cells have variable sensitivity to TRAIL-induced apoptosis and explore the possible mechanism.
     Methods Normal prostatic epithelial cells immortalized by combination of the early region of simian virus 40 large T antigen and a catalytic subunit of telomerase (hTERT) and then followed by the early region of simian virus 40 small T antigen (LE) were treated with different doses of TRAIL. MTT assay was used to detect the cell viability. Flow cytometry and cell morphology were performed to examine apoptotic percentages of treated cells. Western blot were used to detect the expression of PP2A and c-Fos. The PP2A activity of LH and LE cells were determined by phosphatase assays after treatment with TRAIL.Statistic analyses were performed using SPSS software version 13.0.
     Results After treated with increasing doses of TRAIL, LH cells were resistant to TRAIL, whereas LE cells were sensitive to TRAIL. Nearly 45% of LE cells had undergone apoptosis after administrated with TRAIL, whereas the LH cells showed much lower percentages of cell death. Western blot results revealed that PP2 A protein expressions showed no significant differences between LH cells and LE cells with/without TRAIL treatment; the protein expression of c-Fos/AP-1 significantly increased in TRAIL-sensitive LE cells.There is decreased PP2A activity in LE cells compared to LH cells. And the PP2A activity in both LH and LE cells did not change when treated with TRAIL.
     Conclusion SV40 ST endues the immortalized benign prostatic epithelial cells LE cells with TRAIL-sensitive phenotype.
     PART 2:Okadaic acid Endues the TRAIL-resistant Benign Immortalized Prostatic Epithelial Cells LH with TRAIL-sensitive Phenotype
     Objective To determine whether okadaic acid changes LH cells from TRAIL-resistant to TRAIL-sensitive and its possible mechanism.
     Methods The TRAIL-resistant Benign Immortalized Prostatic Epithelial Cells (LH) were treated with different doses of TRAIL after treated by Okadaic acid, an inhibitor of PP2A. MTT assay was used to detect the cell viability. Flow cytometry and cell morphology were performed to examine apoptotic percentages of treated cells. Western blot were used to detect the expression of PP2A and c-Fos. The PP2A activity of LH and LE cells were determined by phosphatase assays after treatment with TRAIL. Statistic analyses were performed using SPSS software version 13.0.
     Results OA combined with TRAIL significantly increased apoptosis in the TRAIL-resistant LH cells as shown by Annexin V and cell viability assays. Western blot results revealed that OA alone or OA combined with TRAIL not only decreased the protein expression of PP2A, but also increased the protein expression of c-Fos. In accordance with our immunoblot findings, OA alone or OA combined with TRAIL decreased PP2A activity.
     Conclusion Okadaic acid endued the TRAIL-resistant Benign Immortalized Prostatic Epithelial Cells LH with TRAIL-sensitive Phenotype.
     PART 3:A-Fos converts the LH cells from a relatively TRAIL-sensitive to a TRAIL-resistant phenotype after treatment by OA combined with TRAIL
     Objective To explore the effect of c-Fos on the benign prostatic immortalized cells sensitive to TRAIL and its possible mechanism.
     Methods The TRAIL-resistant Benign Immortalized Prostatic Epithelial Cells (LH) were treated with OA, TRAIL or in combination with OA and TRAIL after transfection with/without the A-Fos vector. MTT assay was used to detect the cell viability. Flow cytometry and cell morphology were performed to examine apoptotic percentages of treated cells. Western blot were used to detect the expression of PP2A and c-Fos. Statistic analyses were performed using SPSS software version 13.0.
     Results OA did not enhance the ability of TRAIL to promote apoptosis like before.Western blot results revealed that the activity of c-Fos/AP-1 was inhibited by the dominant negative form A-Fos.
     Conclusion ectopic expression of the dominant-negative form of c-Fos, A-Fos, converted the LH cells from a relatively TRAIL-sensitive to a TRAIL-resistant phenotype after treatment by OA combined with TRAIL.
引文
1. American Cancer Society, Cancer Facts & figures-20031-48 (2003).
    2. Evan G, Littlewood T.A matter of life and cell death.Science.1998 Aug 28; 281(5381):1317-22. Review.
    3. Rathmell JC, Thompson CB.The central effectors of cell death in the immune system.Annu Rev Immunol.1999;17:781-828.
    4. Roulston A, Marcellus RC, Branton PE.Viruses and apoptosis.Annu Rev Microbiol. 1999; 53:577-628.
    5. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, et al.Identification and characterizationof a new member of the TNF family that induces apoptosis.Immunity.1995 Dec; 3(6):673-82.
    6. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A.Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family.J Biol Chem.1996 May 31;271(22):12687-90.
    7. Ashkenazi A, Dixit VM.Apoptosis control by death and decoy receptors.Curr Opin Cell Biol.1999 Apr;11(2):255-60.
    8. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH.Safety and antitumor activity of recombinant soluble Apo2 ligand.J Clin Invest.1999 Jul; 104(2):155-62.
    9. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH.Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo.Nat Med.1999 Feb;5(2):157-63.
    10. French LE, Tschopp J.The TRAIL to selective tumor death.Nat Med.1999 Feb; 5 (2):146-7.
    11. R. L. Johnson et al., paper presented at the American Association of Cancer Research
    Annual Meeting, Orlando FL 2004.
    12. C. M. Roach et al., paper presented at the American Association of Cancer Research Annual Meeting, Orlando FL 2004.
    13. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG.The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain.Immunity.1997 Dec; 7(6):813-20.
    14. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ.Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells.J Immunol.1998 Sep 15; 161(6):2833-40.
    15. Walczak H, Krammer PH.The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems.Exp Cell Res.2000 Apr 10; 256(1):58-66.
    16. Nesterov A, Lu X, Johnson M, Miller GJ, Ivashchenko Y, Kraft AS.Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis J Biol Chem.2001 Apr 6;276(14):10767-74. Epub 2001 Jan 18.
    17. Chen X, Thakkar H, Tyan F, Gim S, Robinson H, Lee C, Pandey SK, Nwokorie C, Onwudiwe N, Srivastava RK.Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer.Oncogene.2001 Sep 20; 20(42):6073-83.
    18. Janssens V, Goris J, Van Hoof C.PP2A:the expected tumor suppressor.Curr Opin Genet Dev.2005 Feb; 15(1):34-41.
    19. Janssens V, Goris J.Protein phosphatase 2A:a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.Biochem J. 2001 Feb 1;353(Pt3):417-39.
    20. Virshup DM.Protein phosphatase 2A:a panoply of enzymes.Curr Opin Cell Biol.2000 Apr; 12(2):180-5.
    1. Kagawa S, He C, Gu J, et al. Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res, 2001,61(8):3330-3338.
    2. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med,1999,5(2):157-163.
    3. Arroyo JD, Hahn WC. Involvement of PP2A in viral and cellular transformation. Oncogene,2005,24(52):7746-7755.
    4. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity,1995,3(6):673-682.
    5. Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol,1999,11(2):255-260.
    6. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol, 1992,10411-452.
    7. Ashkenazi A, Pai RC, Fong S, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest,1999,104(2):155-162.
    8. Schonthal AH. Role of PP2A in intracellular signal transduction pathways. Front Biosci,1998,3D1262-1273.
    9. Pan G, Ni J, Wei YF, et al. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science,1997,277(5327):815-818.
    10. Walczak H, Degli-Esposti MA, Johnson RS, et al.TRAIL-R2:a novel apoptosis-mediating receptor for TRAIL. EMBO J,1997,16(17):5386-5397.
    11. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science,1997,277(5327):818-821.
    12. Kischkel FC, Lawrence DA, Chuntharapai A, et al.Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity,2000,12(6):611-620.
    13. Sprick MR, Weigand MA, Rieser E, et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity,2000,12(6):599-609.
    14. Suliman A, Lam A, Datta R, et al. Intracellular mechanisms of TRAIL:apoptosis through mitochondrial-dependent and-independent pathways. Oncogene,2001, 20(17):2122-2133.
    15. Ehrhardt H, Fulda S, Schmid I, et al. TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB. Oncogene,2003,22(25):3842-3852.
    16. Nesterov A, Lu X, Johnson M, et al. Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. J Biol Chem,2001,276 (14): 10767-10774.
    17. Munshi A, Pappas G, Honda T, et al. TRAIL (APO-2L) induces apoptosis in human prostate cancer cells that is inhibitable by Bcl-2. Oncogene,2001,20(29): 3757-3765.
    18. Johnson TR, Stone K, Nikrad M, et al. The proteasome inhibitor PS-341 overcomes TRAIL resistance in Bax and caspase 9-negative or Bcl-xL overexpressing cells. Oncogene,2003,22(32):4953-4963.
    19. Vogler M, Walczak H, Stadel D, et al. Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res,2009,69(6):2425-2434.
    20. Kim Y, Suh N, Sporn M, et al. An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem,2002, 277(25):22320-22329.
    21. Sablina AA, Hahn WC.SV40 small T antigen and PP2A phosphatase in cell transformation. Cancer Metastasis Rev,2008,27(2):137-146.
    22. Hahn WC, Dessain SK, Brooks MW, et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol,2002, 22(7):2111-2123.
    23. Chen Y, Xu Y, Bao Q, et al. Structural and biochemical insights into the regulation of protein phosphatase 2 A by small t antigen of SV40. Nat Struct Mol Biol,2007, 14(6):527-534.
    24. JanssensV, Goris J, Van Hoof C. PP2A:the expected tumor suppressor. Curr Opin GenetDev,2005,15(1):34-41.
    25. Janssens V, Goris J, Van Hoof C.PP2A:the expected tumor suppressor. Curr Opin Genet Dev,2005,15(1):34-41.
    1. Ashkenazi A, Pai RC, Fong S, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Investig 1999; 104:155-62.
    2. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999;5:157-63.
    3. French LE, Tschopp J. The TRAIL to selective tumor death. Nat Med 1999;5:146-7.
    4. Chawla-Sarkar M, Bauer JA, Lupica JA, et al. Suppression of NF-(?)B survival signaling by nitrosylcobalamin sensitizes neoplasms to the anti-tumor effects of Apo2L/TRAIL. J Biol Chem 2003;278:39461-9.
    5. Ehrhardt H, Fulda S, Schmid I, Hiscott J, Debatin KM, Jeremias I. TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-(?)B. Oncogene 2003;22:3842-52.
    6. Asakuma J, Sumitomo M, Asano T, Hayakawa M. Selective Akt inactivation and tumor necrosis actor-related apoptosis-inducing ligand sensitization of renal cancer cells by low concentrations of paclitaxel. Cancer Res 2003;63:1365-70.
    7. Nesterov A, Lu X, Johnson M, Miller GJ, Ivashchenko Y, Kraft AS. Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. J Biol Chem 2001;276:10767-74.
    8. Panka DJ, Mano T, Suhara T, Walsh K, Mier JW. Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J Biol Chem 2001;276:6893-6.
    9. Munshi A, Pappas G, Honda T, et al. TRAIL (APO-2L) induces apoptosis in human prostate cancer cells that is inhibitable by Bcl-2. Oncogene 2001;20:3757-65.
    10. Johnson TR, Stone K, Nikrad M, et al. The proteasome inhibitor PS-341 overcomes TRAIL resistance in Bax and caspase 9-negative or Bcl-xL overexpressing cells. Oncogene 2003;22:4953-63.
    11. Vogler, M., et al., Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res,2009.69(6):p.2425-34.
    12. Kim Y, Suh N, Sporn M, Reed JC. An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 2002;277:22320-9.
    13. Thome M, Schneider P, Hofmann K, et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 1997;386:517-21.
    14. Chang HY, Yang X. Proteases for cell suicide:functions and regulation of caspases.Microbiol Mol Biol Rev 2000;64:821-46.
    15. Moncada A, Cendan CM, Baeyens JM, et al. Effects of serine/threonine protein phosphatase inhibitors on morphine_induced antinociception in the tail flick test in mice [J].Eur J Pharmacol,2003,465(1):53-60.
    16. Leira F, Vieites JM, Vieytes MR, et al. Apoptotic events induced by the phosphatase inhibitor okadaic acid in normal human lung fibroblasts [J]. Toxicol In Vitro,2001, 15(3):199-208.
    17. Carvalho Pinto_Silva CR, Ferreira JF, Costa RHR, et al. Micronucleus induction in mussels exposed to okadaic acid [J]. Toxicon,2003,41(1):93-97.
    18. Fernandez JJ, Candenas ML, Souto ML, et al. Okadaic Acid, Useful Tool for Studying Cellular Processes [J]. Curr Med Chem,2002,9(2):229-262.
    19. Boudreau, R.T. and D.W. Hoskin, The use of okadaic acid to elucidate the intracellular role(s) of protein phosphatase 2A:lessons from the mast cell model system. Int Immunopharmacol,2005.5(10):p.1507-18.
    20. Boudreau RT, Garduno R, Lin TJ. Protein phosphatase 2A and protein kinase Calpha are physically associated and are involved in Pseudomonas aeruginosa-induced interleukin 6 production by mast cells. J Biol Chem 2002; 277(7):5322-9.
    21. von_Zezschwitz C, Vorwerk H, Tergau F, et al. Apoptosis induction by inhibitors of Ser/Thr phosphatases 1 and 2A is associated with transglutaminase activation in two different human epithelial tumour lines [J]. FEBS Lett,1997,413 (1):147-151.
    22. Tergau F, Weichert J, Quentin I, et al. Inhibitors of ser/thr phosphatases 1 and 2A induce apoptosis in pituitary GH3 cells [J]. Naunyn Schmiedebergs Arch Pharmacol, 1997,356(1):8-16.
    23. Zhang, X., W. Li, and A.F. Olumi, Overcoming resistance to trail-induced apoptosis in prostate cancer by regulation of c-FLIP. Methods Enzymol,2008.446:p.333-49.
    24. Yang, J.K., FLIP as an anti-cancer therapeutic target. Yonsei Med J,2008.49(1):p. 19-27.
    25. Gao M, Labuda T, Xia Y, et al. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 2004;306:271-5.
    26. Deng T, Karin M. c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature 1994;371:171-5.
    27. David JP, Mehic D, Bakiri L, et al. Essential role of RSK2 in c-Fos-dependent osteosarcoma development.J Clin Invest 2005; 115:664-72.
    28. Manak JR, de Bisschop N, Kris RM, Prywes R. Casein kinase II enhances the DNA binding activity of serum response factor. Genes Dev 1990;4:955-67.
    29. Mackeigan JP, Murphy LO, Dimitri CA, Blenis J.Graded mitogen-activated protein kinase activity precedes switch-like c-Fos induction in mammalian cells.Mol Cell Biol 2005;25:4676-82.
    30. Deng T, Karin M. c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature 1994;371:171-5.
    31. David JP, Mehic D, Bakiri L, et al. Essential role of RSK2 in c-Fos-dependent osteosarcoma development.J Clin Invest 2005;115:664-72.
    32. Manak JR, de Bisschop N, Kris RM, Prywes R. Caseinkinase II enhances the DNA binding activity of serum response factor. Genes Dev 1990;4:955-67.
    33. Wang Y, Falasca M, Schlessinger J, et al. Activation of the c-Fos serum response element by phosphatidylinositol 3-kinase and rho pathways in HeLa cells. Cell Growth Differ 1998;9:513-22.
    34. Acquaviva C, Bossis G, Ferrara P, Brockly F, Jariel-Encontre I, Piechaczyk M. Multiple degradation pathways for Fos family proteins. Ann N Y Acad Sci 2002;973:426-34
    1. Zhang, X., et al., c-Fos as a proapoptotic agent in TRAIL-induced apoptosis in prostate cancer cells. Cancer Res,2007.67(19):p.9425-34.
    2. Multiple pathways regulated by the tumor suppressor PP2A in transformation Trends Mol Med 14 (2008) 152-60.
    3. Chen, Y., et al., Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nat Struct Mol Biol,2007.14(6):p. 527-34.
    4. Sablina, A.A. and W.C. Hahn, SV40 small T antigen and PP2A phosphatase in cell transformation. Cancer Metastasis Rev,2008.27(2):p.137-46.
    5. Wagner EF, Eferl R. Fos/AP-1 proteins in bone and the immune system. Immunol Rev 2005;208:126-40.
    6. Smeyne RJ, Vendrell M, Hayward M, et al. Continuous c-Fos expression precedes programmed cell death in vivo. Nature 1993;363:166-9.
    7. Marti A, Jehn B, Costello E, et al. Protein kinase A and AP-1 (c-Fos/JunD) are induced during apoptosis of mouse mammary epithelial cells. Oncogene 1994;9: 1213-23.
    8. Preston GA, Lyon TT, Yin Y, et al. Induction of apoptosis by c-Fos protein. Mol Cell Biol 1996;16:211-8.
    9. Zhang, X., et al., c-Fos as a proapoptotic agent in TRAIL-induced apoptosis in prostate cancer cells. Cancer Res,2007.67(19):p.9425-34.
    10. Bonovich M, Olive M, Reed E, O'Connell B, Vinson C.Adenoviral delivery of A-FOS, an AP-1 dominant negative, selectively inhibits drug resistance in two human cancer cell lines. Cancer Gene Ther 2002;9:62-70.
    11. Zhang, X., W. Li, and A.F. Olumi, Low-dose 12-O-tetradecanoylphorbol-13-acetate enhances tumor necrosis factor related apoptosis-inducing ligand induced apoptosis in prostate cancer cells. Clin Cancer Res,2007.13(23):p.7181-90.
    12. MacFarlane, M., TRAIL-induced signalling and apoptosis. Toxicol Lett,2003. 139(2-3):p.89-97.
    13. Xiao, C., et al., Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma cells. J Biol Chem,2002.277(28):p.25020-5.
    14. Golks A, Brenner D,Fritsch C,Krammer PH, Lavrik IN. c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem 2005;280:14507-13.
    15. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG The novel receptor TRAIL-R4 induces NF-nB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain.Immunity 1997;7:813-20.
    16. Chang DW, Xing Z, Pan Y, et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 2002;21:3704-14.
    17. Kreuz S, Siegmund D, Scheurich P, Waj ant H. NF-nB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 2001;21:3964-73.
    18. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J. NF-nB signals induce the expression of c-FLIP. Mol Cell Biol 2001;21:5299-305.
    19. Ricci MS, Jin Z, Dews M, et al. Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol Cell Biol 2004;24:8541-55.
    1. Ole Gjoerup, Herta Chao, James A, et al. pRB-dependent, J domain-independent function of simian virus 40 large T antigen in override of p53 growth suppression [J], J Virol,2000,74:864-874.
    2. Stephanie Gaillard, Kelly M, Fahrbach, et al. Overexpression of simian virus 40 small-T antigen blocks centrosome function and mitotic progression in human fibroblasts [J].J Virol,2001,75:9799-9807.
    3. Khalili K, Brady J, Khoury G(1987) Translational regulation of SV40 early mRNA defines a new viral protein. Cell 48:639-645.
    4. Shenk T, Carbon J, Berg P (1976) Construction and analysis of viable deletion mutants of simian virus 40. J Virol 18:664-671.
    5. Zerrahn J, Knippschild U, Winkler T, Deppert W (1993) Independent expression of the transforming amino-terminal domain of large T antigen from an alternatively spliced third SV40 early mRNA. EMBO J 12:4739-4746.
    6. Sleigh M, Topp W, Hanich R, Sambrook J (1978) Mutants of SV40 with an altered small t protein are reduced in their ability to transform cells. Cell 14:79-88.
    7. Kelley WL, Georgopoulos C (1997) The T/t common exon of simian virus 40, JC and the BK polyomavirus T antigens can functionally replace the J-domain of the Escherichia coli dnaJ molecular chaperone. Proc Natl Acad Sci USA 94:3679-3684.
    8. Aloni Y, Dhar R, Laub O, Horowitz M, Khoury G (1977) Novel mechanism for RNA maturation:the leader sequences of simian virus 40 mRNA are not transcribed adjacent to the coding sequences. Proc Natl Acad Sci USA 74:3686-3690.
    9. Thimmappaya B, Reddy VB, Dhar R, Celma M, Subramanian KN, Zain BS, Pan J, Weissman SM (1978) The structure of genes, intergenic sequences and mRNA from SV40 virus. Cold Spring Harbor Symp Quant Biol 42:449-456.
    10. DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM (1988) SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275-283.
    11. Chen S, Paucha E (1990) Identification of a region of simian virus 40 large T antigen required for cell transformation. J Virol 64:3350-3357.
    12. Ewen ME, Ludlow JW, Marsilio E, DeCaprio JA, Millikan RC, Cheng SH, Paucha E, Livingston DM (1989) An N-terminal transformation-governing sequence of SV40 large T antigen contributes to the binding of both p110Rb and a second cellular protein, p120. Cell 58:257-267.
    13. Ewen ME, Xing YG, Lawrence JB, Livingston DM (1991) Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell 66:1155-1164.
    14. Kalderon D, Richardson WD, Markham AF, Smith AE (1984) Sequence requirements for nuclear location of simian virus 40 LT antigen. Nature 311:33-38.
    15. Pipas JM (1992) Common and unique features of T antigens encoded by the polyomavirus group. J Virol 66:3979-3985.
    16. Manfredi JJ, Prives C (1994) The transforming activity of simian virus 40 large tumor antigen. Biochim Biophys Acta 1198:65-83.
    17. Fanning E (1992) Simian virus 40 large T antigen:the puzzle, the pieces, and the emerging picture. J Virol 66:1289-1293.
    18. Friedman T, Doolittle R, Walter G (1978) Amino acid sequence homology between polyoma and SV40 tumor antigens deduced from nucleotide sequences. Nature 274:291-293.
    19. Goswami R, Turk B, Enderle K, Howe A, Rundell K (1992) Effect of zinc ions on the biochemical behavior of simian virus 40 small-tantigen expressed in bacteria. J Virol 66:1746-1751.
    20. Turk B, Porras A, Mumby MC, Rundell K (1993) Simian virus 40 small-tantigen binds two zinc ions. J Virol 67:3671-3673.
    21. Jog P, Joshi B, Dhamankar V, Imperiale MJ, Rutila J, Rundell K (1990) Mutational analysis of simian virus 40 small t antigen. J Virol 64:2895-2900.
    22. Mungre S, Enderle K, Turk B, Porras A, WuY-Q, Mumby MC, Rundell K (1994) Mutations which affect the inhibition of protein phosphatase 2 A by simian virus 40 ST antigen in vitro decrease viral transformation. J Virol 68:1675-1681.
    23. Sontag E, Fedorov S, Kamibayashi C, Robbins D, Cobb M, Mumby M(1993) The interaction of SV40 small t antigen with protein phosphatase 2A stimulates the Map kinase pathway and induces cell proliferation. Cell 75:887-897.
    24. Prives C, Beck Y (1977) Characterization of SV40 T antigen polypeptides synthesized in vivo and in vitro. INSERM-EMBO 69:175-188.
    25. Bouck N, Beales N, Shenk T, Berg P, di Mayorca G (1978) New region of the simian virus 40 genome required for efficient viral transformation. Proc Natl Acad Sci USA 75:2473-2477.
    26. Chang LS, Pan S, Pater MM, Di Mayorca G (1985) Differential requirement for S V40 early genes in immortalization and transformation of primary rat and human embryonic cells. Virology 146:246-261.
    27. Porras A, Bennett J, Howe A, Tokos K, Bouck N, Henglein B, Sathyamangalam S, Thimmapaya B, Rundell K (1996) A novel simian virus 40 early-region domain mediates transactivation of the cyclin A promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. J Virol.70:6902-6908.
    28. Sugano S, Yamaguchi N, Shimojo H (1982) Small t protein of simian virus 40 is required for dense focus formation in a rat cell line. J Virol 41:1073-1076.
    29. Zhu J, Rice PW, Gorsch L, Abate M, Cole CN (1992) Transformation of a continuous rat embryo fibroblast cell line requires three separate domains of simian virus 40 large T antigen. J Virol 66:2780-2791.
    30. Martin R, Setlow V, Edwards C, Vembu D (1979) The roles of the simian virus 40 tumor antigens in transformation of Chines hamster lung cells. Cell 17:635-643.
    31. Bikel I, Montano X, Agha M, Brown M, McCormack M, Boltax J, Livingston D (1987) SV40 small t antigen enhances the transformation activity of limiting concentrations of SV40 large T antigen. Cell 48:321-330.
    32. Jat PS, Cepko CL, Mulligan RC, Sharp PA (1986) Recombinant retroviruses encoding simian virus 40 large T antigen and polyomavirus large and middle T antigens. Mol Cell Biol 6:1204-1217.
    33. Matthews B, Levine AS, Dixon K (1987) Deletion mutations in the small t antigen gene alter the tissue specificity of tumors induced by simian virus 40. J Virol 61:1282-1285.
    34. Carbone M, Lewis AM, Matthews BJ, Levine AS, Dixon K (1989) Characterization of hamster tumors induced by simian virus 40 small t deletion mutants as true histiocytic lymphomas. Cancer Res 49:1565-1571.
    35. Choi Y, Lee I, Ross SR (1988) Requirement for the simian virus 40 small t antigen in tumorigenesis in transgenic mice. Mol Cell Biol 8:3382-3390.
    36. Montano X,Millikan R, Milhaven JM, Newsome DA, Ludlow JW, Arthur AK, Fanning E, Bikel I, Livingston DM (1990) Simian virus 40 small tumor antigen and an amino-terminal domain of large tumor antigen share a common transforming function. Proc Natl Acad Sci USA 87:7448-7452.
    37. Yang Y-C, Hearing P, Rundell K (1979) Cellular proteins associated with simian virus 40 early gene products in newly infected cells. J Virol 32:147-154.
    38. Rundell K, Major EO, Lampert M(1981) Association of cellular 56,000 and 32, 000-molecular weight proteins with BK virus and polyomavirus t-antigens. J Virol 37:1090-1093.
    39. Walter G, Carbone-Wiley A, Joshi B, Rundell K (1988) Homologous cellular proteins associated with simian virus 40 small-t antigen and polyomavirus medium T antigen. J Virol 62:4760-4762.
    40. Walter G, Ferre F, Espiritu O, Carbone-Wiley A (1989) Molecular cloning and sequencing of cDNA encoding polyoma medium tumor antigen-associated 61-kDa protein. Proc Natl Acad Sci USA 86:8669-8672.
    41. Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL, Roberts TM (1990) Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60:167-176.
    42. Kamibayashi C, Estes R, Lickteig RL, Yang SI, Craft C, Mumby MC (1994) Comparison of heterotrimeric protein phosphatase 2A containing different B subunits. J Biol Chem 269:20139-20148.
    43. Ruediger R, Roeckel D, Fait J, Bergqvist A, Magnusson G, Walter G (1992) Identification of binding sites on the regulatory A subunit of protein phosphatase 2 A for the catalytic subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol 12:4872-4882.
    44. Virshup DM(2000) Protein phosphatase 2A:a panoply of enzymes Curr Opin Cell Biol 12:180-185.
    45. McCright B, Rivers AM, Audlin S, Virshup DM (1996) The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem 271:22081-22089.
    46. Pallas DC, Weller W, Jaspers S, Miller TB, Lane WS, Roberts TM (1992) The third subunit of protein phosphatase 2A (PP2A), a 55 kilodalton protein which is apparently substituted for by T antigens in complexes with the 36-and 63-kilodalton PP2A subunits, bears little resemblance to T antigens. J Virol 66:886-893.
    47. Yang S-I, Lickteig RL, Estes R, Rundell K, Walter G, Mumby MC (1991) Control of protein phosphatase 2A by simian virus 40 small t antigen. Mol Cell Biol 11: 1988-1995.
    48. Sontag E, Nunbhakdi-Craig V, Lee G, Bloom GS, Mumby MC (1996) Regulation of the phosphorylation state and microtubule binding activity of Tau by protein phosphatase 2A. Neuron 1201-1207.
    49. Howe AK, Gaillard S, Bennett JS, Rundell K (1998) Cell cycle progression in monkey cells expressing simian virus 40 small t antigen from adenovirus vectors. J Virol 72:9637-9644.
    50. Alberts AS, Deng T, Lin A, Meinkoth JL, Schonthal A, Mumby MC, Karin M, Feramisco JR (1993) Protein phosphatase 2A potentiates activity of promoters containing AP-1-binding elements.Mol Cell Biol 13:2104-2112.
    51. Frost JA, Alberts AS, Sontag E, Guan K, Mumby MC, Feramisco JR (1994) Simian virus 40 small t antigen cooperates with mitogen activated kinases to stimulate AP-1 activity. Mol Cell Biol 14:6244-6252.
    52. Wheat WH, Roesler WJ, Klemm DJ (1994) Simian virus 40 small tumor antigen inhibits dephosphorylation of protein kinase A phosphorylated CREB and regulates CREB transcriptional stimulation. Mol Cell Biol 14:5881-5890.
    53. Graessman A, Graessman M, Tjian R, Topp WC (1980) Simian virus 40 small t protein is required for loss of actin cable networks in rat cells. J Virol 33:1182-1186.
    54. Phillips B, Rundell K (1988) Failure of simian virus 40 small t antigen to disorganize actin cables in nonpermissive cell lines. J Virol 62:768-775.
    55. Virshup DM, Kauffman MG, Kelly TJ (1989) Activation of SV40 DNA replication in vitro by cellular protein phosphatase 2A.EMBO J 8:3891-3898.
    56. Virshup DM, Russo AA, Kelly TJ (1992) Mechanism of activation of simian virus 40 DNA replication by protein phosphatase 2A.Mol Cell Biol 12:4883-4895.
    57. Scheidtmann KH, Virshup DM, Kelly TJ (1991) Protein phosphatase 2A dephosphorylates simian virus 40 large T antigen specifically at residues involved in regulation of DNA-binding activity. J Virol 65:2098-2101.
    58. Carbone M, Hauser J, Carty MP, Rundell K, Dixon K, Levine AS (1992) Simian virus 40 small-t antigen inhibits SV40 DNA replication in vitro. J Virol 66:1804-1808.
    59. Cicala C, Avantaggiati ML, Graessmann A, Rundell K, Levine AS, Carbone M (1994) Simian virus 40 small-t antigen stimulates viral DNA replication in permissive monkey cells. J Virol 68:3138-3144.
    60. Loeken M, Bikel I, Livingston DM, Brady J (1988) Transactivation of RNA polymerase II and III promoters by SV40 small t antigen. Cell 55:1171-1177.
    61. Loeken MR (1992) Simian virus 40 small-t antigen transactivates the adenovirus E2A promoter by using mechanisms distinct from those used by adeno virus El A. J Virol 66:2551-2555.
    62. Loeken MR (1993) Multiple, distinct trans-activation functions are encoded by the simian virus 40 large T and small t antigens, only some of which require the 82-residue amino-terminal common domain. J Virol 67:7684-7689.
    63. Wang W-B, Bikel I, Marsilio E, Newsome D, Livingston DM (1994) Transrepression of RNA polymerase II promoters by the simian virus 40 small t antigen. J Virol 68:6180-6187.
    64. Campbell KS, Mullane KP, Aksoy IA, Stubdal H, Zalvide J, Pipas JM, Silver PA, Roberts TM, Schaffhausen BS, DeCaprio JA (1997) DnaJ/hsp40 chaperone domain of SV40 large T antigen promotes efficient viral DNA replication. Genes Dev 11:1098-1110.
    65. Stubdal H, Zalvide J, DeCaprio JA (1996) Simian virus 40 large T antigen alters the phosphorylation state of the RB-related proteins p 130 and p107. J Virol 70:2781-2788.
    66. Stubdal H, Zalvide J, Campbell KS, Schweitzer C, Roberts TM, DeCaprio JA (1997) Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen. Mol Cell Biol 17:4979-4990.
    67. Marsilio E, Cheng SH, Schaffhausen B, Paucha E, Livingston DM (1991) The T/t common region of simian virus 40 large T antigen contains a distinct transformation-governing sequence. J Virol 65:5647-5652.
    68. Peden KWC, Pipas JM(1992) Simian virus 40 mutants with amino acid substitutions near the amino terminus of large T antigen. Virus Genes 6:107-118.
    69. Srinivasan A, Peden KWC, Pipas JM (1989) The large tumor antigen of simian virus 40 encodes at least two distinct transforming functions. J Virol 63:5459-5463.
    70. Srinivasan A, McClellan AJ, Vartikar J, Marks I, Cantalupo P, Li Y, Whyte P, Rundell K, Brodsky JL, Pipas JM (1997) The aminoterminal transforming region of simian virus 40 large T and small t antigens functions as a J domain. Mol Cell Biol 17:4761-4773.
    71. Porras A, Gaillard S, Rundell K (1999) The simian virus 40 small t and LT antigens
    jointly regulate cell cycle reentry in human fibroblasts. J Virol 73:3102-3107.
    72. Winston J, Dong F, Pledger WJ (1996) Differential modulation of Gl cyclins and the Cdk inhibitor p27kipl by platelet-derived growth factor and plasma factors in density-arrested fibroblasts. J Biol Chem 271:11253-11260.
    73. Polyak K, Kato J, Solomon MJ, Sherr CJ, Massague J,Roberts JM, Koff A (1994) p27Kip1, a cyclin-cdk inhibitor, links transforming growth factor and contact inhibition to cell cycle arreST. Genes Dev 8:9-22.
    74. Kato A, Takahashi H, Takahashi Y, Matsushime H (1997) Inactivation of the cyclin D-dependent kinase in the rat fibroblast cell line,3Y1, induced by contact inhibition. J Biol Chem 272:8065-8070.
    75. Hengst L, Reed SI (1996) Translational control of p27Kip1 accumulation during the cell cycle. Science 271:1861-1864.
    76. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parson R, Tren JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1 a potential mediator of p53 tumor suppression. Cell 75:817-825.
    77. Waldman T, Kinzler KW, Vogelstein B (1995) p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55:5187-5190.
    78. Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, Vogelstein B, Jacks T (1995) p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 9:935-944.
    79. Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE (1997) Cyclin E-CDK2 is a regulator of p27Kipl. Genes Devll:1464-1478.
    80. Schuchner S, Wintersberger E (1999) Binding of polyomavirus small T antigen to protein phosphatase 2A is required for elimination of p27 and support of S-phase induction in concert with large T antigen. J Virol 73:9266-9273.
    81. Zerfass-Thome K, Schulze A, Zwerschke W, Vogt B, Helin K, Bartek J, Henglein B, Jansen-Durr P (1997) p27KIP1 blocks cyclin E-dependent transactivation of cyclin A gene expression. Mol Cell Biol 17:407-415.
    82. Kolzau T, Hansen RS, Zahra D, Reddel RR, Braithwaite AW (1999) Inhibition of SV40 large T antigen induced apoptosis by small T antigen. Oncogene 18: 5598-5603.
    83. Conzen SD, Snay CA, Cole CN (1997) Identification of a novel antiapoptotic functional domain in simian virus 40 large T antigen. J Virol 71:4536-4543.
    84. Kowalik TF, DeGregori J, Schwarz JK, Nevins JR(1995)E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J Virol 69:2491-2500.
    85. Qin X-Q, Livingston DM, Kaelin JWG, Adams PD (1994) Deregulated transcription factor E2F-1 expression leads to Sphase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 91:10918-10922.
    86. Kennedy SG, Kandel ES, Cross TK, Hay N (1999) Akt/protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 19:5800-5810.
    87. Tang Y, Zhou H, Chen A, Pittman RN, Field J (2000) The Akt proto-oncogene links Ras to Pak and cell survival signals. J Biol Chem 275:9106-9109.
    88. Brunet A, Bonni A, ZigmondMJ, LinMZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857-868.
    89. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231-241.
    90. Sontag E, Nunbhakdi-Craig V, Bloom GS, Mumby MC (1995) A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle. J Cell Biol 128:1131-1144.
    91. Snaith HA, Armstrong CG, Guo Y, Kaiser K, Cohen PT (1996) Deficiency of protein phosphatase 2A uncouples the nuclear and centrosome cycles and prevents attachment of microtubules to the kinetochore in Drosophila microtubule star (mts) embryos. J Cell Sci 109:3001-3012.
    92. Cross SM, Sanchez CA, Morgan CA, Schimke MK, Ramel S, Idzerda RL, RaskindWH, Reid BJ (1995) A p53-dependent mouse spindle checkpoint. Science 267:1353-1356.
    93. Thomas JT, Laimins LA (1998) Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle check point. J Virol 72:1131-1137.
    94. Cahill DP, da Costa LT, Carson-Walter EB, Kinzler KW, Vogel stein B, Lengauer C (1999) Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 58:181-187.
    [1]V. Janssens, J. Goris, Protein phosphatase 2A:a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling, Biochem. J. 353(2001)417-439.
    [2]R.S. Westphal, K.A. Anderson, A.R. Means, B.E. Wadzinski, A signaling complex of Ca2+-calmodulin-dependent protein kinase IV and protein phosphatase 2A, Science 280 (1998) 1258-1261.
    [3]J.C. Rathmell, C.B.Thompson, Pathways of apoptosis in lymphocyte development, homeostasis, and disease, Cell 109 (Suppl.) (2002) S97-S107.
    [4]S.B. Bratton, G.M. Cohen, Apoptotic death sensor:an organelle's alter ego? Trends Pharmacol. Sci.22 (2001) 306-315.
    [5]H.Li, J. Yuan, Deciphering the pathways of life and death, Curr. Opin. Cell Biol. 11(1999)261-266.
    [6]D. Barford, A.K. Das, M.P. Egloff, The structure and mechanism of protein phosphatases:insights into catalysis and regulation, Annu. Rev. Biophys. Biomol. Struct.27 (1998) 133-164.
    [7]V. Janssens, J. Goris, Protein phosphatase 2A:a highly regulated family of serine/threonine phosphatases implicated in cell growth and signaling, Biochem. J. 353(2001)417-439.
    [8]Mumby, M.,2007. PP2A:unveiling a reluctant tumor suppressor. Cell 130,21-24.
    [9]Glaser, N.D., Lukyanenko, Y.O., Wang, Y., Wilson, G.M., Rogers, T.B., 2006. JNK activation decreases PP2A regulatory subunit B56alpha expression and mRNA stability and increases AUF1 expression in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol.291, H1183-H1192.
    [10]Xing, Y., Li, Z., Chen, Y., Stock, J.B., Jeffrey, P.D., Shi, Y., 2008. Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell 133,154-163.
    [11]Gotz, J., Probst, A., Ehler, E., Hemmings, B., Kues, W.,1998. Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. Proc. Natl. Acad. Sci. U.S.A.95,12370-12375.
    [12]T.A. Millward, S. Zolnierowicz, B.A. Hemmings, Regulation of protein kinase cascades by protein phosphatase 2A, Trends Biochem. Sci.24 (1999) 186-191.
    [13]A. Gross, J.M. McDonnell, S.J. Korsmeyer, BCL-2 family members and the mitochondria in apoptosis, Genes Dev.13 (1999) 1899-1911.
    [14]M.V. Blagosklonny, Unwinding the loop of Bcl-phosphorylation, Leukemia 15 (2001) 869-874.
    [15]P.P. Ruvolo, X.Deng, B.K. Carr, W.S.May, A functional role for mitochondrial protein kinase Calpha in Bcl-2 phosphorylation and suppression of apoptosis, J. Biol. Chem.273 (1998) 25436-25442.
    [16]X. Deng, P. Ruvolo, B. Carr, W.S. May, Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl-2 kinases, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 1578-1583.
    [17]X. Deng, L. Xiao, W. Lang, F. Gao, P. Ruvolo, W.S. May Jr., Novel role for JNK as a stress-activated Bcl-2 kinase, J. Biol. Chem.276 (2001) 23681-23688.
    [18]X.Deng, T. Ito, B. Carr, M. Mumby, W.S. May Jr., Reversible phosphorylation of Bcl-2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A, J. Biol. Chem.273 (1998) 34157-34163.
    [19]S. Galadari, K. Kishikawa, C. Kamibayashi, M.C. Mumby, Y.A. Hannun, Purification and characterization of ceramide-activated protein phosphatases, Biochemistry 37 (1998) 11232-11238.
    [20]P.P. Ruvolo, X. Deng, T. Ito, B.K. Carr, W.S. May, Ceramide induces Bcl-2 dephosphorylation via a mechanism involving mitochondrial PP2A, J. Biol. Chem. 274(1999)20296-20300.
    [21]P.P. Ruvolo, W.Clark, M. Mumby, F. Gao, W.S.May, A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl-2 phosphorylation status and function, J. Biol. Chem.277 (2002) 22847-22852.
    [22]H.R. Stennicke, G.S. Salvessen, Properties of caspases, Biochim. Biophys. Acta 1387(1998)17-31.
    [23]S.B. Bratton, M. MacFarlane, K. Cain, G.M. Cohen, Protein complexes activate distinct caspase cascades in death receptor and stressinduced apoptosis, Exp. Cell Res.256 (2000) 27-33.
    [24]R.V. Talanian, C. Quinlan, S. Trautz, M.C. Hackett, J.A. Mankovich, D. Banach, T. Ghayur, K.D. Brady, W.W.Wong, Substrate specificities of caspase family proteases, J. Biol. Chem.272 (1997) 9677-9682.
    [25]M.F. Santoro, R.R. Annand, M.M. Robertson, Y.W. Peng, M.J. Brady, J.A. Mankovich, M.C. Hackett, T. Ghayur, G. Walter, W.W. Wong, D.A. Giegel, Regulation of protein phosphatase 2A activity by caspase-3 during apoptosis, J. Biol. Chem.273 (1998) 13119-13128.
    [26]H. Chung, A.C. Nairn, K. Murata, D.L. Brautigan, Mutation of Tyr307 and Leu309 in the protein phosphatase 2A catalytic subunit favors association with the alpha 4 subunit which promotes dephosphorylation of elongation factor-2, Biochemistry 38 (1999)10371-10376.
    [27]A. Roulston, R.C. Marcellus, P.E. Branton, Viruses and apoptosis, Annu. Rev. Microbiol.53 (1999) 577-628.
    [28]J.G. Teodoro, P.E. Branton, Regulation of apoptosis by viral gene products, J. Virol. 71 (1997) 1739-1746.
    [29]D.C.Pallas, L.K. Shahrik, B.L.Martin, S.Jaspers, T.B. Miller, D.L. Brautigan, T.M. Roberts, Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A, Cell 60 (1990) 167-176.
    [30]E. Sontag, S. Fedorov, C.Kamibayashi, D. Robbins, M. Cobb, M. Mumby, The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation, Cell 75 (1993) 887-897.
    [31]E. Sontag, J.M. Sontag, A. Garcia, Protein phosphatase 2A is a critical regulator of protein kinase C zeta signaling targeted by SV40 small t to promote cell growth and NF-kappaB activation, EMBO J.16 (1997) 5662-5671.
    [32]0. Gjoerup, D. Zaveri, T.M.Roberts, Induction of p53-independent apoptosis by simian virus 40 small t antigen, J. Virol.75 (2001) 9142-9155.
    [33]S.I. Hsu, C.M. Yang, k.G. Sim, D.M. Hentschel, E. O'Leary, J.V. Bonventre, EMBO J.20 (2001) 2273.
    [34]M. Sugimoto, T. Nakamura, N. Ohtani, L. Hampson, I.N. Hampson, A. Shimamoto, Y. Furuichi, K. Okumura, S. Niwa, Y. Taya, E. Hara, Genes Dev.13 (1999) 3027.
    [35]J.S. Bennetts, L.F. Fowles, J.L. Berkman, K.L.V. Bueren, J.M. Richman, F. Simpson, C. Wicking, Gene 374 (2006) 153.
    [36]R.Hayashi, Y. Goto, R. Ikeda, K.K. Yokoyama, K. Yoshida, J. Biol. Chem.281 (2006) 35633.
    [37]R. Watanabe-Fukunaga, S. Iida, Y. Shimizu, S. Nagata, R. Fukunaga, Genes Cells 10(2005)851.
    [38]T. Hirose, R. Fujii, H. Nakamura, S. Aratani, H. Fujita, M. Nakazawa, K. Nakamura, K. Nishioka, T. Nakajima, Int. J. Mol. Med.11 (2003) 705.
    [39]J.M. Abdullah, X. Jing, D.S. Spassov, R.G. Nachtman, R. Jurecic, Blood Cells Mol.Diseases 27 (2001) 667.
    [40]J.M. Cho, D.J. Song, J. Bergeron, N. Benlimame, M.S. Wold, M.A. Alaoui-Jamali,
    Nucleic Acids Res.28 (2000) 3478.
    [41]S. Calgaro, M. Boube, D.L. Cribbs, H.M. Bourbon, Genetics 160 (2002) 547.
    [42]D.J. Tang, L. Hu, D. Xie, Q.L.Wu, Y. Fang, Y. Zeng, J.S. Sham, X.Y. Guan, Cancer Res.65(2005) 6504.
    [43]K.G. Sim, Z. Zang, C.M. Yang, J.V. Bonventre, S.I. Hsu, Cell Cycle 3 (2004) 1296.
    [44]H. Darwish, J.M. Cho, M. Loignon, M.A.Alaoui-Jamali, Oncogene 26 (2007) 4319.
    [45]R.A. Swain, L. St Clair, The role of folic acid in deficiency states and prevention of disease, J. Fam. Pract.44 (1997) 138-144.
    [46]M.S. Elkind, R.L. Sacco, Stroke risk factors and stroke prevention, Semin. Neurol. 18(1998)429-440.
    [47]S.J. Duthie, Folic acid deficiency and cancer:mechanisms of DNA instability, Br. Med. Bull.55 (1999) 578-592.
    [48]R.H. Allen, S.P. Stabler, J. Lindenbaum, Relevance of vitamins, homocysteine and other metabolites in neuropsychiatric disorders, Eur. J. Pediatr.157 (Suppl.2) (1998) S122-S126.
    [49]R. Clarke, A.D. Smith, K.A. Jobst, H. Refsum, L. Sutton, P.M. Ueland, Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease, Arch. Neurol.55 (1998) 1449-1455.
    [50]G.E. Gray, Nutrition and dementia, J. Am. Diet. Assoc.89 (1989) 1795-1802.
    [51]L. Hassing, A. Wahlin, B. Winblad, L. Backman, Further evidence on the effects of vitamin B12 and folate levels on episodic memory functioning:a population-based study of healthy very old adults, Biol. Psychiatry 45 (1999) 1472-1480.
    [52]K. Nilsson, L. Gustafson, R. Faldt, A. Andersson, B. Hultberg, Plasma homocysteine in relation to serum cobalamin and blood folate in a psychogeriatric population, Eur. J. Clin. Invest.24 (1994) 600-606.
    [53]H. Nilsson-Ehle, Age-related changes in cobalamin (vitamin B12) handling. Implications for therapy, Drugs Aging 12 (1998) 277-292.
    [54]M.J. Renvall, A.A. Spindler, J.W. Ramsdell, M. Paskvan, Nutritional status of free-living Alzheimer's patients, Am. J. Med. Sci.298 (1989) 20-27.
    [55]H.X. Wang, A. Wahlin, H. Basun, J. Fastbom, B. Winblad, L. Fratiglioni, Vitamin B(12) and folate in relation to the development of Alzheimer's disease, Neurology 56(2001)1188-1194.
    [56]Chen, W., Arroyo, J.D., Timmons, J.C., Possemato, R., and Hahn, W.C. (2005).Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Res.65,8183-8192.
    [57]Calin, G.A., di Iasio, M.G., Caprini, E., Vorechovsky, I., Natali, P.G., Sozzi, G., Croce, C.M., Barbanti-Brodano, G., Russo, G., and Negrini, M. (2000). Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene 19,1191-1195.
    [58]Chien, Y., and White, M.A. (2003). RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep.4,800-806.
    [59]Ruediger, R., Pham, H.T., and Walter, G. (2001a). Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene 20,1892-1899.
    [60]Takagi, Y., Futamura, M., Yamaguchi, K., Aoki, S., Takahashi,T., and Saji, S. (2000). Alterations of the PPP2R1B gene located at Ilq23 in human colorectal cancers. Gut 47,268-271.
    [61]Tamaki, M., Goi, T., Hirono, Y., Katayama, K., and Yamaguchi, A.(2O04).PPP2R1B gene alterations inhibit interaction of PP2A-Abeta and PP2A-C proteins in colorectal cancers. Oncol. Rep.11,655-659.
    [62]Wang, S.S., Esplin, E.D., Li, J.L., Huang, L., Gazdar, A., Minna, J., and Evans, G.A. (1998). Alterations of the PPP2R1B gene in human lung and colon cancer. Science 282,284-287.
    [63]Baysal,B.E., Willett-Brozick, J.E., Taschner, P.E., Dauwerse, J.G., Devilee, P., and Devlin, B. (2001). A high-resolution integrated map spanning the SDHD gene at 11q23:a1.1-Mb BAC contig, a partial transcript map and 15 new repeat polymorphisms in a tumour-suppressor region. Eur. J. Hum. Genet.9,121-129.
    [64]Zhou, J., Pham, H.T., Ruediger, R., and Walter, G. (2003). Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A:differences in expression, subunit interaction, and evolution. Biochem. J.369,387-398.