垃圾渗滤液生物、物化处理工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾渗滤液是一种危害较大的高浓度有机废水,如不妥善处理,会对周围环境及地下水造成严重污染。但由于垃圾渗滤液的水质水量波动较大,垃圾渗滤液的处理工艺取决于垃圾的组成、垃圾渗滤液中有机物的降解特性以及垃圾的填埋年限和填埋方式等,采用单一的生物、物理化学处理方法都不理想。论文立足于垃圾渗滤液实际处理需要,以节约成本,提高垃圾渗滤液中有机物去除率,加快反应速率为目的,探索垃圾渗滤液处理新工艺。通过厌氧生物处理、吹脱、絮凝和高级氧化组合工艺处理垃圾渗滤液,研究不同工艺对垃圾渗滤液的处理效果,对工艺参数进行优化,分析有机物降解机理,建立动力学模型,并通过毒性生物检测,评价不同工艺处理后的垃圾渗滤液出水对环境的影响。
     垃圾渗滤液厌氧生物处理方面的研究:比较加入颗粒活性炭和粉末活性炭对垃圾渗滤液中COD、NH_3-N和金属离子的降解效果。结果表明,单独的颗粒活性炭和粉末活性炭对垃圾渗滤液中COD、NH_3-N和重金属的吸附作用不理想。厌氧生物处理中加入活性炭,能促进垃圾渗滤液中有机物的降解,加快垃圾渗滤液的产气速率,提高产气量,增加Fe、Zn、Cu、Cd四种金属元素的去除率;其中,加入颗粒活性炭的反应器,NH3-N、COD和金属元素的去除率最高,产气量也最高。主要原因是在厌氧反应器中加入颗粒活性炭,促进了厌氧颗粒污泥的形成。
     垃圾渗滤液吹脱及絮凝处理方面的研究:将厌氧生物处理后的垃圾渗滤液,通过吹脱预处理,COD和NH3-N浓度分别下降到2372mg/L和295.7mg/L。再将吹脱预处理的垃圾渗滤液通过絮凝处理,结果表明,硫酸铁、聚合硫酸铁和聚氯化铝铁三种絮凝剂能有效去除垃圾渗滤液的色度、浊度和COD,pH值为5的聚合硫酸铁对垃圾渗滤液的色度、浊度和COD去除效果最好;添加有机高分子阳离子絮凝剂聚丙烯酰胺(CPAM)作助凝剂,能提高垃圾渗滤液的色度、浊度和COD去除率。通过正交实验确定絮凝工艺处理垃圾渗滤液的优化条件是:pH值为5.2,PFS浓度为9.10 mmol/L,反应时间8 min,助凝剂CPAM浓度5 .00mg/L。在此优化实验条件下,垃圾渗滤液的色度去除率为75.6%,浊度去除率为93.6%,COD去除率为56.7%。
     垃圾渗滤液深度氧化处理方面的研究:将絮凝处理后的垃圾渗滤液分别进行UV/Fenton、US/Fenton和MV/Fenton高级氧化处理,确定这三种高级氧化技术的优化条件,比较他们在优化条件下对垃圾渗滤液COD和色度的去除效果,并对其相关机理进行研究。结果表明,UV/Fenton反应中,当pH值为2.5,Fe~(2+)浓度为5 .00mmol/L,H_2O_2浓度为5.70×10~2 mmol/L时,反应120 min,垃圾渗滤液的色度和COD去除率分别达到最高值99.1%和86.2%;在此条件下的表观动力学方程为:V=-dP/dt=2.6×10~(-8)×P~(1.92)×F~(1.79)×E~(1.67)。对于US/Fenton反应,当Fe~(2+)浓度为5.00 mmol/L,H_2O_2浓度为5.70×10~2 mmol/L,pH值为2.5,超声功率为100 W,超声频率为45 kHz时,反应90 min,垃圾渗滤液的色度和COD去除率分别达到最高值99.1%和83.4%;其表观动力学方程为:V=lg-(dP/dt)= 1.0×10~(-7)×P~(0.86)×F~(2.34)×E~(0.87)×H~(0.82)。对MV/Fenton反应,当Fe~(2+)浓度为15.00 mmol/L,H2O2浓度为5.70×10~2 mmol/L,pH值为2.5,微波功率为800 W时,反应120 s,垃圾渗滤液的色度和COD去除率分别达到最高值99.7%和79.2%;其表观动力学方程为:V=lg-(dP/dt)= 7.0×10~(-22)×P~(0.74)×F~(0.62)×E~(2.18)×H~(2.69)。这三种高级氧化处理技术对垃圾渗滤液的色度和COD去除率都高于单独的Fenton反应,而且,日光、超声波、微波三种催化诱导方式都与Fenton试剂存在协同作用。垃圾渗滤液经过这三种高级氧化技术处理后,大分子有机物都被氧化为小分子有机物及二氧化碳和水。三种高级氧化工艺中,UV/Fenton对垃圾渗滤液中的COD去除率最高(86.2%),但反应所用时间也最长(120 min),MV/Fenton对垃圾渗滤液中的COD去除率最低(79.2%),反应所用时间也最短(120 s);三种氧化处理工艺,不论其降解机理如何,垃圾渗滤液的降解产物都相似,三种处理工艺的降解产物的紫外吸收峰都在210~220nm。
     垃圾渗滤液急性毒性检测方面的研究:用不同工艺处理后的垃圾渗滤液培养甘蓝种子144 h,观察其种子萌发状况,检测垃圾渗滤液对甘蓝种子萌发的毒性作用。研究结果表明,垃圾渗滤液的浓度越低,对甘蓝种子萌发的毒性也越小,种子萌发率也越高。垃圾渗滤液原液对甘蓝种子萌发的毒性最大,经厌氧生物处理后,毒性有所降低,垃圾渗滤液经絮凝处理后,对甘蓝种子萌发的毒性明显降低。垃圾渗滤液经高级氧化技术处理后,对甘蓝种子萌发的毒害作用虽然降低,但毒害作用依然存在。三种高级氧化技术对垃圾渗滤液毒性的影响差别不大。随着垃圾渗滤液经厌氧生物处理、絮凝和高级氧化处理,垃圾渗滤液的毒性和GT50逐渐降低,EC50逐渐增加。
     垃圾渗滤液经厌氧生物处理后,再通过吹脱、絮凝和UV/Fenton后续物化处理,垃圾渗滤液的COD浓度由5.05×10~4 mg/L降低到142 mg/L,达到国家污水三级排放标准,色度和悬浮固体SS达到国家污水一级排放标准(GB18918-2002)。
Leachate, as a high concentration organic effluent that seeps from a landfill, will cause severe contamination to the surrounding environment and the groundwater if it is not properly treated. But, due to the greater fluctuations in the quantity and composition of landfill leachate, the treatability of landfill leachate depends on its composition and characteristics, the nature of the organic matter present as well as the age and structure of the landfill. None of the individual biological or physico-chemical techniques is highly effective for the treatment of landfill leachate. Thus, a new effective treatment technology of landfill leachate was explored to improve the removal of organics, accelerate reaction speed and reduce treatment costs. In this dissertation, the treatment efficiencies of different technologies by combining anaerobic biological treatment, stripping, flocculation and advanced oxidation processes were investigated. Various operational parameters affecting the degradation efficiency of landfill leachate were optimized. Meanwhile, for three advanced oxidation processes, the degradation mechanisms of organic matter were analyzed and reaction kinetic model were founded. In addition, the effects of landfill leachate after different treatments on the germination of Brassica oleracea seeds were evaluated by acute toxicity tests.
     A new combined treatment consisting of anaerobia biological treatment and granular activated carbon (GAC) or powder activated carbon (PAC) adsorption was developed to remove COD、NH3-N and heavy metals from landfill leachate. The results indicated that individual granular activated carbon (GAC) or powder activated carbon (PAC) adsorption has poor performance for the removal of COD、NH3-N and heavy metals. But added activated carbon into anaerobic reactor, the degradation efficiency of organic matter significantly improved, and gas-forming rate and biogas production of landfill leachate evidently increased, and the removal rate of Fe、Zn、Cu and Cd also enhanced. Moreover, in anaerobic reactor of supplied granular activated carbon, Maximal removal rate of COD、NH3-N and heavy metals were achieved, and maximum of biogas production were obtained. This is due to that the supplement of GAC can accelerate the form of anaerobic sludge granulation.
     After anaerobia biological treatment, ammonium tripping was employed to attain COD concentration of 2372mg/L and NH3-N concentration of 295.7mg/L, respectively. Subsequently, flocculation process was undertaken to remove color、turbidity and COD using ferric sulphate, polyferric sulphate(PFS) and polyaluminium ferric chloride (PAFC). The results showed that PFS was superior to the other coagulants for the removal of color、turbidity and COD at pH5. The addition of organic macromolecule flocculate polyacrylamide(CPAM) was found to be effective for the removal of color、turbidity and COD. The optimal conditions of flocculation process obtained by orthogonal experiment were 5.2 of pH value, 9.10 mmol/L of PFS and 5.00 mg/L of CPAM at 8 min. 75.6% of color removal rate and 93.6% of turbidity removal rate, as well as 56.7% of COD removal rate were attained in this condition.
     After flocculation treatment of landfill leachate, Advanced oxidation processes (AOPs), such as UV/Fenton、US/Fenton or MV/Fenton process, were carried out to attain their optimal conditions. Color and COD removal efficiency of three AOPs were compared, and their degradation mechanisms were further investigated in optimal conditions. The results suggested that 99.1% color and 86.2% COD removal were achieved by using 5.00 mmol/L of Fe~(2+) and 5.70×10~2 mmol/L of H_2O_2 at pH2.5 in 120 min in UV/Fenton process. Under the optimal conditions, apparent kinetics equation of landfill leachate was V=-dP/dt=2.6×10~(-8)×P~(1.92)×F~(1.79)×E~(1.67). For US/Fenton process, the optimal conditions of landfill leachate were ultrasonic frequency of 45 kHz, power input of 100 W, Fe~(2+) concentration of 5.00 mmol/L, H_2O_2 concentration of 5.70×10~2 mmol/L and pH value of 2.5. Under this condition, maximum color and COD removal of 99.1% and 83.4% were achieved in 90 min, and its apparent kinetics equation was V=lg-(dP/dt)=1.0×10~(-7)×P0.86×F~(2.34)×E~(0.87)×H~(0.82). For MV/Fenton process, the optimal conditions of landfill leachate were microwave power input of 800 W, Fe~(2+) concentration of 15.00 mmol/L, H_2O_2 concentration of 5.70×10~2 mmol/L and pH value of 2.5. Under this condition, maximum color and COD removal of 99.7% and 79.2% were achieved in 120 s, and its apparent kinetics equation was V=lg-(dP/dt)=7.0×10~(-22)×P~(0.74)×F~(0.62)×E~(2.18)×H~(2.69). A comparative study of three AOPs indicated that UV/Fenton, US/Fenton and MV/Fenton attained more color and COD removal rate than Fenton process, and one of three catalytic induced mode, UV、ultrasonic or microwave, has synergistic effect with Fenton reagent. The UV-vis spectrum of landfill leachate reveals that high molecular mass compounds can be oxidized into biodegradable compounds or CO_2 and H_2O after UV/Fenton, US/Fenton or MV/Fenton treatment, and UV-vis absorption peak of degradation product ranges from 210 nm to 220 nm regardless of their different degradation mechanisms. UV/Fenton process achieved maximum COD removal of 86.2% and the longest react time of 120 min, while MV/Fenton process attained minimum COD removal of 79.2% and the shortest react time of 120 s among three AOPs.
     Brassica oleracea seeds were cultivate with the raw landfill leachate and the effluents produced by different treatment techniques, and their germination percentage were observed in 144 h to determine the acute toxicity parameters EC50 and GT50. The results shows that lower landfill leachate concentration resulted in less toxic to Brassica oleracea seeds and higher germination percentage of Brassica oleracea seeds. The raw landfill leachate was higher toxicity to all seeds tested, but the effluent from anaerobic biological treatment was less toxic than the crude leachate to Brassica oleracea seeds. A greatly reduction in toxicity to Brassica oleracea seeds was observed after flocculation process. However, the toxicity of three post-AOPs effluents was still existed. Three AOPs had little toxic diffience on the germination of Brassica oleracea seeds. Toxicity of Brassica oleracea seeds germination and GT50 values would gradually reduce and EC50 values would gradually increase when landfill leachate were treated by anaerobic biological treatment followed by flocculation and AOPs.
     After landfill leachate were treated by anaerobic biological treatment followed by trip, flocculation and UV/Fenton process, COD removal rate was degraded from 5.05×10~4 mg/L to 142 mg/L, and its COD effluents meets third-grade national discharge standard. Furthermore, chroma and SS meet first-grade national discharge standard.
引文
[1]陈玉成,李章平.城市生活垃圾渗沥水的污染及全过程控制[J].环境科学动态, 1995, 4: 15-17.
    [2]王宗平,陶涛,金儒霖.垃圾渗滤液处理研究进展[J].环境科学进展, 1999, 7(3): 32-39.
    [3]李广科.生活垃圾填埋场渗滤液生物毒效应研究.博士论文,同济大学, 2003环境工程.
    [4]唐家福李国建.城市垃圾填埋场渗滤液处理工艺比较[J].环境卫生工程, 1992, 2: 15-19
    [5] F. Wang, D. W. Smith, G. M. El-Din. Application of advanced oxidation methods for landfill leachate treatment-a review[J]. Environment Engineering Science, 2003, 2: 413-427.
    [6]张望军,王国生.城市垃圾卫生填埋场浸出液的处理[J].重庆环境科学, 1995, 4, 44-47
    [7]李庭刚,李秀芬,陈坚.渗滤液中有机化合物在电化学氧化和厌氧生物组合系统中的降解[J].环境科学, 2004, 25(5): 172-176.
    [8]刘军,鲍林发,汪苹.运用GC-MS联用技术对垃圾渗滤液中有机污染物成分的分析[J].环境污染治理技术与设备, 2003, 4(8): 31-33.
    [9]刘疆鹰,赵由才,赵爱华,黄仁华.大型垃圾填埋场渗滤液COD的衰减规律[J].同济大学学报, 2000, 28(3): 328-332.
    [10]黄立南,林里,陈月琴,等.藻类对垃圾填埋场渗滤液的净化[J].生态学报, 2002, 22(2): 253-258.
    [11] H. Alvarez-Vazquez, B. Jefferson, S. J. Judd. Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review[J]. Journal Chemistry Technology Biotechnology, 2004, 79: 1043-1049.
    [12]陈卫国,徐涛,彭玉凡,等.电催化系统-电生物炭接触氧化床处理垃圾渗滤液[J].中国环境科学, 2002, 22(2): 146-149.
    [13]王罗春,赵由才,陆雍森.大型垃圾填埋场垃圾稳定化研究[J].环境污染治理技术与设备, 2001, 2(4): 15-17.
    [14]蒋海涛,周恭明,高廷耀.城市垃圾填埋场渗滤液的水质特性[J].环境保护科学, 2002, 28(111): 11-13.
    [15] Lee, G. F. , Jones, R. A. Landfills and groundwater quality. Groundwater[J], 1991, 29(4): 482-486.
    [16]陈家军,张俊丽,裴照滨.垃圾填埋二次污染的危害与防治[J].安全与环境学报, 2002, 2(3): 27-30.
    [17]张祥丹,王家民.城市垃圾渗滤液处理工艺介绍[J].给水排水, 2000, 26(10): 9-14
    [18]高庭耀主编.水污染控制工程[M].北京:高等教育出版社, 1993.
    [19] Trebouet D, Schlumpf J P, Jaouen P, et al . Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes [J] . Water Research, 2001, 35(2): 2935-2942.
    [20]柯水洲,欧阳衡.城市垃圾填埋场渗滤液处理工艺及其研究进展[J].给水排水, 2004, 30(11): 25-32..
    [21]沈耀良.垃圾填埋场渗滤液处理技术研究进展[J].苏州城建环保学院学报, 2001, 14(4): 6-15.
    [22]申欢,金奇庭,崔喜勤,李明波,蒋欣.上流式厌氧污泥床处理城市垃圾渗沥液的试验研究[J].环境污染治理技术与设备, 2004, 5(4): 35-39.
    [23] H. timur, I. Oèzturk. Anaerobic sequencing batch reactor treatment of landfill leachate[J]. Water Research, 1999, 33(15): 3225-3230.
    [24] K. J. Kennedy, E. M. Lenta. Treatment of landfill leachate using sequencing batch and continuous flow upflow anaerobic sludge blanket (UASB)reactors[J]. Water Research, 2000, 34(14): 3640-3656.
    [25]申欢,金奇庭.高氨氮对厌氧生物法处理城市垃圾渗沥液的影响[J].环境污染治理技术与设备, 2005, 6(7): 40-43.
    [26]曹占峰,何品晶,邵立明,李国建. SBR法处理垃圾填埋场新鲜渗滤液的实验研究[J].环境污染治理技术与设备, 2005, 6(2): 33-35.
    [27]郑淑文,王淑莹,张树军,彭永臻.两级UASB与好氧组合工艺处理城市生活垃圾渗滤液的启动研究[J].环境污染治理技术与设备, 2006, 7(10): 88-92.
    [28] Osman Nuri A?da?, Delia Teresa Sponza. Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems[J]. Process Biochemistry, 2005, 40: 895-902.
    [29] M. Altinbas, C. Yangin, I. Ozturk. Struvite precipitation from anaerobically treated municipal and landfill wastewaters[J]. Water Science Technology, 2002, 46: 271-278.
    [30] Fikret Kargi, M. Yunus Pamukoglu. Aerobic biological treatment of pre-treated landfill leachate by fed-batch operation[J]. Enzyme and Microbial Technology, 2003, 33: 588-595.
    [31] G. Baumgarten, C. F. Seyfried. Experiences and new developments in biological pre-treatment and physical post-treatment of landfill leachate[J]. Water Science Technology, 1996, 34: 445-453.
    [32] N. Schwarzenbeck, K. Leonhard, P. A. Wilderer. Treatment of landfill leachate-high tech or low tech[J]. Water Science Technology, 2003, 48: 277-284.
    [33]钱伯兔.混凝沉淀-SBR-活性炭过滤处理垃圾渗滤液[J].环境污染治理技术与设备, 2005, 6(6): 66-68.
    [34]高艳娇,黄继国,张勇,宋铁红.生物接触氧化-电凝聚复合工艺处理垃圾渗滤液[J].环境污染治理技术与设备, 2006, 7(8): 44-46.
    [35] A. Amokrane, C. Comel, J. Veron, Landfill leachates pretreatment by coagulation– flocculation[J]. Water Research, 1997, 31: 2775-2782.
    [36] A. A. Tatsi, A. I. Zouboulis, K. A. Matis, P. Samaras. Coagulation–flocculation pretreatment of sanitary landfill leachates[J]. Chemosphere, 2003, 53: 737-744.
    [37]潘云霞,郑怀礼,李丹丹,等.絮凝法处理垃圾填埋场渗滤液的研究[J].环境工程学报, 2007, 1(7): 97-100.
    [38] I. Ozturk, M. Altinbas, I. Koyuncu, O. Arikan, C. Gomec-? Yangin. Advanced physico- chemical treatment experiences on young municipal landfill leachates[J]. Waste Management, 2003, 23: 441-446.
    [39]尚爱安,赵庆祥,徐美燕,孙贤波,张辰.垃圾渗滤液的磷酸铵镁沉淀法预处理技术研究[J].给水排水, 2004, 30(11): 22-25.
    [40] Baris Calli, Bulent Mertoglu, Bulent Inanc. Landfill leachate management in Istanbul: applications and alternatives[J]. Chemosphere, 2005, 59: 819-829.
    [41] S. K. Marttinen, R. H. Kettunen, K. M. Sormunen, R. M. Soimasuo, J. A. Rintala. Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachate[J]. Chemosphere, 2002, 46: 851-858.
    [42] T. Urase, M. Salequzzaman, S. Kobayashi, T. Matsuo, K. Yamamoto, N. Suzuki. Effect of high concentration of organic and inorganic matters in landfill leachate on the treatment of heavy metals in very low concentration level[J]. Water Science Technolology, 1997, 36: 349-356.
    [43] K. Linde, A. S. J?nsson. Nanofiltration of salt solution and landfil leachate[J]. Desalination, 1995, 103: 223-232.
    [44] J. Bohdziewicz, M. Bodzek, J. G′orska. Application of pressure driven membrane techniques to biological treatment of landfill leachate[J]. Process Biochemistry, 2001, 36: 641-646.
    [45] K. Ushikoshi, T. Kobayashi, K. Uematsu, A. Toji, D. Kojima, K. Matsumoto. Leachatetreatment by the reverse osmosis system[J]. Desalination, 2002, 150: 121-129.
    [46] A. Chianese, R. Ranauro, N. Verdone. Treatment of landfill leachate by reverse osmosis [J]. Water Research, 1999, 33: 647-652.
    [47] L. Th?rneby, W. Hogland, J. Stenis, L. Mathiasson, P. Somogyi. Design of a reverse osmosis plant for leachate treatment aiming for safe disposal[J]. Waste Management Research, 2003, 21: 424-435.
    [48] T. A. Peters. Purification of landfill leachate with reverse osmosis and nanofiltration[J]. Desalination, 1998, 119: 289-293.
    [49] S. A. Wasay, S. Barrington, S. Tokunaga. Efficiency of GAC for treatment of leachate from soil washing process[J]. Water Air Soil Pollution, 1999, 116: 449-460.
    [50] H. A. Aziz, M. N. Adlan, M. S. M. Zahari, S. Alias. Removal of ammoniacal–nitrogen (N–NH3) from municipal solid waste leachate by using activated carbon and lime stone[J]. Waste Management, 2004, 22: 371-375.
    [51] F. Karg?, M. Y. Pamukoglu. Adsorbent supplemented biological treatment of pre-treated landfill leachate by fed-batch operation[J]. Bioresourch. Technology, 2004, 94: 285-291.
    [52]黄报远,金腊华,卢显妍,刘慧璇,唐崇杰.臭氧化对垃圾填埋场后期渗滤液的预处理研究[J].环境污染治理技术与设备, 2006, 7(4): 103-106.
    [53] A. C. Silva, M. Dezotti, G. L. Sant’Anna Jr. . Treatment and detoxification of a sanitary landfill leachate[J]. Chemosphere, 2004, 55 : 207-214.
    [54] Daniele M. Bila, A. Filipe Montalv?o, Alessandra C. Silva, M′arcia Dezotti. Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement [J]. Journal of Hazardous Materials B, 2005, 117: 235-242.
    [55] I. Monje-Ramirez, O. Vel′asquez. Removal of transformation of recalcitrant organic matter from stabilized saline landfill leachate by coagulation–ozonation coupling process[J]. Water Research, 2004, 38: 2359-2367.
    [56] F. J. Rivas, F. Beltr′an, O. Gimeno, B. Acedo, F. Carvalho. Stabilized leachates: ozone-activated carbon treatment and kinetics[J]. Water Research, 2003, 37: 4823-4834.
    [57] Hung-Yee Shu, Hung-Jung Fan, Ming-Chin Chang, Wen-Pin Hsieh. Treatment of MSW landfill leachate by a thin gap annular UV/H2O2 photoreactor with multi-UV lamps[J]. Journal of Hazardous Materials, 2006, 129: 73-79.
    [58] Josmaria Lopes de Morais, Patricio Peralta Zamora. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates[J]. Journal of Hazardous Materials B, 2005, 123: 181-186.
    [59] Z. P. Wang, Z. Zhang, Y. J. Lin, N. S. Deng, T. Tao, K. Zhuo. Landfill leachate treatmentby a coagulation–photooxidation process[J]. Journal of Hazardous Materials B, 2002, 95: 153-159.
    [60] Hui Zhang, Heung Jin Choi, Chin-Pao Huang. Treatment of landfill leachate by Fenton’s reagent in a continuous stirred tank reactor[J]. Journal of Hazardous Materials, 2006, 136: 618-523.
    [61] Hui Zhang, Heung Jin Choi, Chin-Pao Huang. Optimization of Fenton process for the treatment of landfill leachate[J]. Journal of Hazardous Materials B, 2005, 125: 166-174.
    [62] Yang Deng. Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate[J]. Journal of Hazardous Materials, 2007, 146: 334-340.
    [63]陈卫国,徐涛,彭玉凡,瞿俊雄,朱锡海,郑曼英.电催化系统-电生物炭接触氧化床处理垃圾渗滤液[J].中国环境科学, 2002, 22(2): 146-149.
    [64]王锋,周恭明.铁-碳微电解法预处理老龄垃圾填埋场渗滤液的研究[J].环境污染治理技术与设备, 2004, 5(3): 63-65.
    [65] Hui Zhang, Daobin Zhang, Jiayong Zhou. Removal of COD from landfill leachate by electro-Fenton method[J]. Journal of Hazardous Materials B, 2006, 136 : 106-111.
    [66] P. B. Moraes, R. Bertazzoli. Electrodegradation of landfill leachate in a flow electrochemical reactor[J]. Chemosphere, 2005, 58: 41-46.
    [67] Evelyne Gonze, Nadine Commenges, Yves Gonthier, Alain Bernis. High frequency ultrasound as a pre- or a post-oxidation for paper mill wastewaters and landfill leachate treatment[J]. Chemical Engineering Journal, 2003, 92: 215-225.
    [68] Bade, Buying-U K, et al. Treatment of landfill leachate using activated sludge process and electron-beam radiation[J]. Water Research, 1999, 33(11): 2669-2675.
    [69]周爱姣,陶涛.高压脉冲放电等离子体处理垃圾渗滤液[J].武汉城市建设学院学报, 2001, 18(4): 44-47.
    [70] Alberto Pivato, Lorenzo Gaspari. Acute toxicity test of leachates from traditional and sustainable landfills using luminescent bacteria[J]. Waste Management, 2006, 26: 1148-1155.
    [71]景欣悦,康维钧,张宏伟.环境污染物的生物测试方法[J].国外医学卫生学分册, 2005, 32(3): 167-170.
    [72]黄先玉,刘沛然.水体污染生物检测的研究进展[J].环境科学进展, 1999, 7(4): 14-18.
    [73] W. F. Grant. Higher plant assays for the detection of chromosomal aberrations and gene mutations-a brief historical background on their use for screening and monitoringenvironmental chemicals[J]. Mutatant Research, 1999, 426: 107-112.
    [74] W. F. Grant. Chromosome aberration assays in Allium. A report of the U. S. Environmental Protection Agency Gene-Tox program[J]. Mutatant Research, 1982, 99: 273-291.
    [75] T. H. Ma. The international program on plant bioassays and the report of the follow-up study after the hands-on workshop in China[J]. Mutatant Research, 1999, 426: 103-106.
    [76] T. H. Ma. Vicia cytogenetic tests for environmental mutagens. A report of the U. S. Environmental Protection Agency Gene-Tox program[J], Mutatant Research, 1982, 99: 257-271.
    [77]国家环境保护总局《水和废水监测分析方法》编委会编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002.
    [78] S. C. Shrive, R. A. McBride, A. M. Gordon. Photosynthetic and growth responses of two broad-leaf tree species to irrigation with municipal landfill leachate[J]. Environment Quality, 1994, 23: 534-542.
    [79] Y. S. G. Chan, M. H. Wong, B. A. Whitton. Effects of landfill leachate on growth and nitrogen fixation of two leguminous trees (Acacia confusa, Leucaena leucocephala) [J]. Water Air Soil Pollution, 1999, 113: 29-40.
    [80]陈晓倩.应用蚕豆根尖细胞微核技术检测上海给排水系统中的致突变情况[J].癌变·畸变·突变, 2000, 12(4): 214-215.
    [81]刘和,王晓云. Lux基因及其在环境检测中的应用[J].环境与健康杂志, 2001, 18(4): 253-256.
    [82]阎鹏,孙礼,李百祥.利用发光菌快速检测环境污染物急性毒性的研究概况[J].环境与健康杂志, 2001, 18(4); 250-253.
    [83]郭亚丽,徐迪民,赵由才.现代微生物遗传学技术在环境保护领域中的应用[J].新疆环境保护, 2001, 23(4) : 13-16.
    [84]王跃华,廖科伟,白晓兰.垃圾渗滤液的遗传毒性研究[J].安全与环境学报, 2007, 7(2): 1-4.
    [85] C. Y. Cheng, L. M. Chu. Phytotoxicity data safeguard the performance of the recipient plants in leachate irrigation[J]. Environmental Pollution, 2007, 145(1): 195-202.
    [86] Assmuth T, Penttila S. Characterstics, determinants and interpretations of acute lethality in daphnids exposed to complex waste leachates[J]. Aquatic Toxicology, 1995, 31: 125-141.
    [87] Marina Isidori, Margherita Lavorgna, Angela Nardelli, Alfredo Parrella. Toxicity identification evaluation of leachates from municipal solid waste landfills: a multispeciesapproach[J]. Chemosphere, 2003, 52: 85-94.
    [88] Takashi Yamamoto, Akio Yasuhara, Hiroaki Shiraishi, Osami Nakasugi. Bisphenol A in hazardous waste landfill leachates[J]. Chemosphere, 2001, 42: 415-418.
    [89]李广科,赵由才.生活垃圾填埋场渗滤液生物毒性效应研究[J].给水排水, 2004, 30(6): 115-115.
    [90]楼紫阳,赵由才,柴晓利,牛冬杰.垃圾填埋场渗滤液性质研究进展[J].环境污染与防治, 2005, 27(5): 358-362.
    [91]李广科,赵由才.垃圾填埋场渗滤液诱发小鼠骨髓细胞微核效应[J].中国环境科学2004, 24(1): 37-40.
    [92] Nan Sang, Guangke Li. Genotoxicity of municipal landfill leachate on root tips of Vicia faba[J]. Mutation Research, 2004, 560: 159-165.
    [93]杨晓忠,张黎军,李杰.卫生填埋场垃圾渗滤液对蚕豆根尖细胞及小鼠早期精细胞微核的影响[J].环境与健康杂志, 2006, 23(1): 61-62.
    [94]方满,刘东,匡毅.垃圾渗滤液对蚕豆根尖细胞微核效应的研究[J].应用与环境生物学报, 1999, 5(6): 574-577.
    [95]江娟,刘婷,徐丽丽,谢文刚,陈朱蕾.厌氧垃圾填埋系统渗滤液的生物毒性研究[J].中国给水排水, 2007, 7: 51-54
    [96]何品晶,王如意,邵立明,李国建.渗滤液场内处理的有机物去除特征和植物毒性评价[J].环境科学, 2007, 28(1): 215-219.
    [97] M. C. Bloor, C. J. Banks. Acute and sub-lethal toxicity of landfill leachate towards two aquatic macro-invertebrates: Demonstrating the remediation potential of air stripping[J]. Environment International, 2005, 31: 1114-1122.
    [98] A. C. Silva, M. Dezotti, G. L. Sant’Anna Jr. Treatment and detoxification of a sanitary landfill leachate[J]. Chemosphere, 2004, 55: 207-214.
    [99] Daniele M. Bila, A. Filipe Montalv?o, Alessandra C. Silva, Márcia Dezotti. Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement[J]. Journal of Hazardous Materials, 2005, B117: 235-242.
    [100]朱凡,李平,吴锦华,谭展机,韦朝海.铁炭微电解法削减老龄垃圾渗滤液的毒性研究[J].中国给水排水, 2006, 11: 83-86.
    [101]赵一章,张辉,唐一,等.高活性厌氧颗粒污泥微生物学特性和形成机理研究[J].微生物学报, 1994, 34(1): 45-54.
    [102]李宗义,王海磊,程彦伟,等.成熟厌氧颗粒污泥的结构及其特征[J].微生物通报, 2003, 30 (3): 56-59.
    [103]江瀚,王凯军,石宪奎,陈淑祥.一种新型颗粒污泥—无机核颗粒污泥的形成和机理探讨[J].微生物学报, 2005, 45(6): 925-929.
    [104]初里冰,张兴文,杨凤林,李晓惠. UASB启动过程中污泥颗粒化的形成机制[J].环境科学与技术, 2005, 28(2): 22-23.
    [105] El-Mamouni R, Leduc R. , Guiot S R. Influence of synthetic and natural polymers on the anaerobic granultion process[J]. Water Science Technology, 1998, 38: 341-347.
    [106] Kalogo Y, Seka A M, Verstraete W. Enhancing the start-up of a UASB reactor treating demestic wastewater by adding a water extract of Moringa oleifera seeds[J]. Appl Microbiol Biotech, 2001, 55: 651-664.
    [107]王劲松,胡勇有.微生物絮凝剂促进厌氧污泥颗粒化及其机制的研究[J].环境科学学报, 2005, 25(3): 361-366.
    [108]吴允,王育红,王林山. UASB反应器中加入膨润土和聚丙烯酰胺培养颗粒污泥[J].环境保护科学, 1997, 23(6): 13-15.
    [109]李伟光,时文歆,赵庆良.固定化生物活性炭处理低浓度甲醇废水的工程应用[J].给水排水, 2003, 29(12): 47-49.
    [110]刘红,李安婕,全向春,孔祥辉,云影.生物活性炭降解2 , 4-二氯酚的特性[J].环境科学, 2004, 25(6): 80-84.
    [111]田晴,陈季华. BAC生物活性炭法及其在水处理中的应用[J].环境工程, 2006, 24(1);84-86.
    [112]周律,王宝泉,于泮池.投加颗粒活性炭加快UASB反应器内颗粒化进程的研究[J].中国给水排水, 1996, 12(5): 16-19.
    [113] Veiga M C, et al. Composition and role of extracellular polymers in methanogenic granules[J]. Apply Environment. Microbiology, 1997, 63 (2): 403.
    [114] Morgan J M, Forster C F, Evison L. A comparative study of the nature of biopolymers extracted from anaerobic and activatied Sludges[J]. Water Research, 1990, 6 : 743.
    [115]陈坚.厌氧颗粒污泥的形成机制[J].中国环境科学, 1993 , 13(5): 334.
    [116]郭晓磊,胡勇有,高孔荣.厌氧颗粒污泥及其形成机理[J].给水排水, 2000, 26 (1): 33-38.
    [117]刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展[J].环境科学, 1996, 17(1): 89-92.
    [118]彭永臻,张树军,郑淑文,王淑莹.城市生活垃圾填埋场渗滤液生化处理过程中重金属离子问题[J].环境污染治理技术与设备, 2006, 7(1): 1-5.
    [119]胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术[J].北京:中国建筑工业出版社, 2003.
    [120]王菊思.高浓度有机废水厌氧生物处理过程中重金属离子抑制作用的研究[J].国家环境保护局编,水污染防治及城市污水资源化技术.北京:科学出版社, 1993, 133-143.
    [121] Anastasios I. Zouboulis, Xiao Li Chai, Ioannis A. Katsoyiannis. The application of bioflocculant for the removal of humic acids from stabilized landfill leachates[J]. Journal of Environmental Management, 2004, 70: 35-41.
    [122]吴少林,谢四才,李明俊. Fe3+草酸盐络合物/H2O2/日光体系对垃圾渗滤液的处理[J].环境科学研究, 2005, 18(3): 29-32.
    [123]陈芳艳,唐玉斌. UV/Fe3+草酸盐配合物对偶氮染料废水的脱色处理[J].净水技术, 2005, 24(3): 21-23.
    [124]姜聚慧,娄向东,席国喜,赵录庆. UV/ H2O2/草酸铁络合物光降解偶氮蓝染料的研究[J].化学研究与应用, 2004, 16(3): 406-408.
    [125]张乃东,郑威. UV-vis/H2O2/草酸铁络合物法光解难降解有机物的研究述评[J].化学工程师, 2001, 86(15): 42-43.
    [126]程丽华,黄君礼,王丽.草酸铁芬顿、UV/芬顿、暗芬顿降解对硝基酚的效果研究[J].哈尔滨建筑大学学报, 2001, 34(2): 74-78.
    [127] M. Muruganandham, M. Swaminathan. Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology[J]. Dyes and Pigments, 2004, 63: 315-321.
    [128]吴跃辉,李明俊,唐星华,钟学明.光助芬顿法处理苯酚废水研究[J].南昌航空工业学院学报, 2004, 18(4): 54-56.
    [129]郭新超,金奇庭,王艳芳,孙长顺,薛峰.光助芬顿法降解印制电路板脱膜废液[J].重庆建筑大学学报, 2005, 27(5): 91-95.
    [130] LAU Ivan W. C. , WANG Peng, CHIU Stella S. T. , FANG Herbert H. P. Photoassisted fenton oxidation of refractory organics in UASB-pretreated leachate[J]. Journal of Environmental Sciences, 2002, 14(3): 388 -392.
    [131]邹长伟,万金保,彭希珑,黄虹. Fenton试剂和UV-Fenton试剂深度处理垃圾渗滤液[J].江西科学, 2004, 22(4): 246-249.
    [132] Huaili Zheng, Yunxia Pan, Xinyi Xiang. Oxidation of acidic dye Eosin Y by the solar photo-Fenton processes [J]. Journal of Hazardous Materials, 2007, (141): 457-464.
    [133]张光明,周吉全,张锡辉,等.超声波处理难降解有机物影响参数研究[J].环境污染治理技术与设备, 2005, 6(5): 43-45.
    [134]马前,梅滨,庄琳懿,等.超声辅助电催化氧化降解苯酚的研究[J].环境污染治理技术与设备, 2006, 7(10): 51-54.
    [135] Talal F. Yusaf, David R. Buttsworth. Characterisation of mixing rate due to high power ultrasound[J]. Ultrasonics Sonochemistry, 2007, (14): 266-274.
    [136]陶长元,刘作华,李晓红.等.超声波促进Fenton法脱色甲基橙溶液的研究[J].环境科学, 2005, 26(5): 111-114.
    [137] Jian-Hui Sun, Sheng-Peng Sun, Jing-Yu Sun, et al. Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2007, (14): 761-766.
    [138] Marcio Inoue, Fumio Okada, Akihiko Sakurai, et al. A new development of dyestuffs degradation system using ultrasound[J]. Ultrasonics Sonochemistry, 2006(13): 313-320.
    [139]宫福强,刘志斌,黄宝龙.微波法处理高浓度有机废水可行性实验[J].辽宁工程技术大学学报, 2005, 24增刊: 247-249.
    [140]孙萍.微波技术在环保领域的应用[J].化工环保, 2002, 22(2): 53-55.
    [141]肖新荣,杨江柳,黄增勇,赵成祥.微波辐射Fenton试剂-活性炭催化氧化体系降解水中苯酚[J].南华大学学报, 2004, 18(4): 22-25.
    [142] Polaert I, Estel L, Ledoux A. Microwave - assisted remediation of phenol wastewater on activated charcoal [J]. Chemical engineering science, 2005, 60(22): 6354 - 6359.
    [143] Jong Yeol Jeon, Hee Young Kim. Microwave irradiation effect on diffusion of organic molecules in polymer [J]. European Polymer Journal, 2000, 36: 895-899.
    [144]陶长元,刘作华,李晓红,等.微波促进H2O2脱色甲基橙溶液的研究[J].压电与声光, 2005, 27(6): 682 - 684.
    [145] Rudolph A A. In situ remediation of soils contaminated with toxic metal ions using microwave energy [J]. Chemosphere, 2003 , 53: 1077-1085.
    [146] Jones D A, Lelyveld T P, Mavrofidis S D. Microwave heating applications in environmental engineering-a review [J] . Resources , conservation and recycling , 2002 , 34 : 75 - 90.
    [147]陶长元,刘仁龙,孙大贵,刘作华.微波和微波Fenton组合法处理渗滤液的对比[J].辽宁石油化工大学学报, 2006, 26(4): 18-25.
    [148]王鹏.环境微波化学技术[M].北京:化学工业出版社, 2004. 37-70.