水稻稻瘟病害拮抗链霉菌原生质体融合育种研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病对水稻生产危害极大,传统上化学防治已不能适应绿色农业发展要求,近年采用生物防治己成为主要研究方向。除了从土壤等环境中筛选稻瘟病菌的拮抗菌外,对已有拮抗菌株通过基因重组方法实现菌种改良也成为重要的研究方向。原生质体融合技术在细胞水平上进行微生物菌种改良。其理论基础是基因重组。近年来利用该技术,有效选育到许多抗生素生产菌。其优点是不受亲缘关系影响,遗传信息传递量大,不需要了解双亲菌株详细遗传背景,可以有目的的选择亲株以选育理想菌株。
     刺孢吸水链霉菌北京变种(streptomyces hygrospinosus var.beijingensis),由中国农科院从棉花根部土壤分离。其所产抗生素农抗120,是一种广谱性抗真菌的核苷类抗生素,对花卉、经济农作物真菌病害有较好的防治效果。淡紫灰链霉菌(streptomyce lavendule)产N-糖苷类抗生素——中生菌素,对农作物真菌病害也有广谱性防治效果。采用原生质体融合技术融合这两个母本菌株优良特性,筛选稻瘟病强拮抗菌。
     通过对甘氨酸浓度、酶解温度、酶浓度、酶解时间等影响因素考察,及正交试验优化,确定了刺孢吸水链霉菌和淡紫灰链霉菌原生质体制备的最佳条件。实验结果表明,刺孢吸水链霉菌最佳原生质体制备条件是:甘氨酸浓度为0.5%,酶解温度28℃,溶菌酶浓度为3 mg/ml,酶作用时间60min;淡紫灰链霉菌:甘氨酸浓度为1.0%,酶解温度32℃,溶菌酶浓度4 mg/ml,酶作用时间60min。有效的原生质体保存条件是:-20℃,在5天内,原生质体再生率在15%以上。
     通过原生质体融合育种方法,刺孢吸水链霉菌和淡紫灰链霉菌原生质体融合,经染色体融合重组得到一批稳定的重组体,从中筛选强拮抗稻瘟菌菌株。融合体筛选标记,刺孢吸水链霉菌一方选择抗链霉素性,其链霉素最小抑制浓度(MIC)是33μg/mL;淡紫灰链霉菌原生质体选择原生质体灭活法,设置紫外灭活组和热灭活组,其中紫外辐射灭活最低时间选择60S,热灭活选择55℃水浴下的最小时间是105min,得到100%致死原生质体。两亲本菌株原生质体经40%PEG促融,紫外灭活组得到融合体381株,热灭活组得到78株。相比较,紫外灭活组比热灭活组得到更多抗链霉素融合体。随机选择50株融合体经自然分离得到557株较稳定重组子。平板对峙实验表明,重组子中拮抗稻瘟病菌的能力是亲本菌株刺孢吸水链霉菌拮抗能力的30%~60%的,占总分离子的0.16;60%~110%的占0.69;在110%以上的占0.15。其中,编号RH103菌,相对拮抗能力在167%以上。其拮抗稻瘟病菌菌丝扩散生长、稻瘟菌孢子萌发,稻瘟菌丝黑色素化的提早,均比亲本显著。
     对通过原生质体融合筛选的重组菌株和亲本菌株生理生化特性研究结果表明:重组菌株在PDA、高氏一号、和葡萄糖天门冬素培养基上的培养特征近似亲本刺孢吸水链霉菌,但其菌丝相比亲本不太茂盛,产孢子量少。在不同培养基上发酵液效价存在差别,但差别不大。相比发酵成本考虑,发酵培养基3性价比高。重组菌株相比亲本刺孢吸水链霉菌,效价提升30%以上。组分分析结果表明:重组菌株发酵液组分与亲本菌株存在差异,最明显的表现在薄层层析点A(0.62),很值得深入研究。
In production agriculture of rice, Fungal pathogen of Magnaporthegriseainfects plants and crops easily and often seriously, causing millions of dollars worthof economic damage each year. So, how to control this disease and maintain thenormal growth of rice is always the highlight. Application of chemical pesticides isthe effective measure to control the fungal and bacterial infection and plays animportant role in preventive defence. With the further knowledge to chemicalpesticides, however, many concerns, such as the pollution of soil, water andatmosphere, the increase of the leftover of germicides in produce which imperilshuman health and life directly, ecological environment resulting from thepesticides, phytopathogenic fungi and bacteria to germicides, the agriculturalunbalance of and resistance of have caused the withdrawal of many of them. So,new and safe alternative control measures are much sought after. Biologicalcontrol by natural antagonistic organisms is a potential nonchemical tool for cropprotection against phytopathogenic fungi and bacteria and offers a promising alternative to synthetic pesticides, in part because it is perceived as safe to theenvironment and human health and can avoid the appearance of drug-resistance.
     Protoplast fusion is in the level of cell, which can breed industrial bacterium.lots of heredity message are transferred by Protoplast fusion. It does not need toknow the heredity background of candidacy bacteriums. There is an aim to getpotential industrial bacterium.
     Agricultural antibiotic 120, being from streptomyces hygrospinosusvar. beijingensis is often used to control the fungal and bacterial infection in plantand flowers. Streptomyce lavendule is also an impotant bacterium which produceantibiotic 751. By the method of protoplast fusion, two kinds of streptomyces canbe fused to get a new streptomyce which is used to restrain Fungal pathogen ofMagnaporthegrisea efficiently.
     Conditions about protoplast optimum preparation of S. hygrospinousvar. Beijingensis and S. lavendule were studied by orthogonal test, including theconditions of concentration of Gly, lytic temperature, lysozyme concentration andlytic time. Experimental results indicated that the conditions of optimum preparationof S. hygrospinous var. Beijingensis are as following: gly 0.5%, lytic temperature28℃, lysozyme 3 mg/ml, lytic time 60 min. Those of S. lavendule are as following:gly 1.0%, lyric temperature 32℃, lysozyme 4mg/ml, lytic time 60 min. Theregenerated frequency of protoplasts could reach up to above 15% in the conditionsof -20℃, 5 days.
     The MIC of S. hygrospinosus was about 33μg/mL(streptomycin). The minimumUV lethal time of S. lavendule' protoplast was about 60S. Two kings of protoplastswere fused by 40% PEG. There were 381 colonies in the culture medium platescontaining streptomycin 33μg/mL. The regenerated rate was about 1.0*10~(-2)%. 50colonies were selected randomly and planted in the basic mediums and selectedones according to the methodology of natural isolation. There were 15heterocaryons, 30%. The stable haploid fusions was about 15% against Magnaporthegrisea remarkably. RH103, it was as 200% as S. hygrospinosus against Magnaporthe grisea remarkably.
     The physicochemical characteristics of the recombinant RH103 screened fromregenerated strains of fusiants between producing strains S. hygrospinosus andS. lavendule were studied. Through analysis the cultural characteristics of therecombinants in different medium in the process of culture, components andinhibition of its fermentation liquor to yeasts, the results showed that therecombinant RH103 is similarto the S. hygrospinosus. There are also differentfrom the original strains. Its mycelia are white color and produce little spores.
引文
[1] 汪天虹.微生物分子育种原理与技术[M].北京:化学工业出版社,2005.6:2
    [2] 罗立新.细胞融合技术与应用[M].北京:化学工业出版社,2003.12:70
    [3] 王学士.中国生物防治[J].1995,11(3):106~110.
    [4] 孔健.农业微生物技术[M].北京:化学工业出版社,2005.2:46~48
    [5] 诸葛健,李华钟.微生物学[M].北京:科学出版社,2004.9:377
    [6] 刘志恒,姜成林.放线菌现代生物学与生物技术[M].北京:科学出版社,2004.1:296
    [7] 罗立新.细胞融合技术与应用[M].北京:化学工业出版社,2004.1:74
    [8] 顾觉奋.获取抗生素的新途径—沉默基因的激活.国外医药抗生素分册2003年9月第24卷第5期
    [9] 刘志恒.放线菌基因组与生物技术.微生物学通报,2004,31(1)
    [10] Hopwood D A, Chater K F. Fresh approaches to antibiotic production [J]. Philos Trans R Soc Lond B Biol Sci, 1980,290 (1040):313
    [11] Hopwood D A. Antibiotics: opportunities for genetic manipulation[J]. Philos Trans R Soc Lond B Biol Sci, 1989,324(1224):549
    [12] Hopwood D A. Towards on understanding of gene switching in Streptomyces, the basis of sporulation and antibiotics production [J]. Proc R Soc Lond (Biol),1988,235:121
    [13] Yamashita F, Hotta K, karasance S, et al. New antibiotic-producing Streptomyces selected by antibiotic resistance as a maker. I.New antibiotic production generated by protoplast fusion treatmentbetween Streptomyces griseus and Streptomyces tenjimariensis [J]. J Antibiot,1985;38(1):58.
    [14] Hutchinson C R, Borell C W, Otten S L, et al. Drug discoveryand development through the genetic engineering of antibiotic—production microorganisms [J]. J Med Chem,1989,32(5):929
    [15] Chater K F, Bruton C J1EMBOJ, 1985,4: 1893~1897
    [16] 林稚兰,黄秀梨.现代微生物学与实验技术[M].北京:科学出版社,2000.6:112
    [17] 赵凯,周东坡,平文祥 等.生物工程学报,2005,21(5):848-851
    [18] 罗立新.细胞融合技术与应用[M].北京:化学工业出版社,2003.12:78
    [19] 刘志恒,姜成林.放线菌现代生物学与生物技术[M].北京:科学出版社,2004.1:119-128
    [20] 曹志艳.微生物学通报.2006,33(1)
    [21] 刘志恒.放线菌基因组与生物技术.微生物学通报,2004,31(1):140-143
    [22] 汪天虹.微生物分子育种原理与技术[M].北京:化学工业出版社,2005.6:190
    [23] Hopwood D A等著.邓子新等翻译.链霉菌遗传操作手册.湖南:湖南科技出版社,1998,76—84
    [1] Baker B, P Zambryski, B Staskawicz, SP Dinesh-Kumar, 1997. Signaling in Plant-Microbe Interactions. Science. 276:726-733.
    [2] Sesma A and AE Osbourn, 2004. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431(7008):582-586.
    [3] 柴荣耀,金敏忠.水稻稻瘟病形成有性世代的培养条件初步研究.浙江农业科学[3].1992-(3):140-141.
    [4] 李成云,李家瑞,岩野正敬,等.云南省稻瘟病菌的交配型.西南农业学报[J].1991 4(1):69-72.
    [5] 肖爱萍,游养平,唐祥宁,等.江西稻瘟病菌有性态及其适生性的研究.江西农业大学学报[[J]2002,24(2):220-222.
    [6] Dean RA, Talbot NJ, Ebbole DJ, et al. The genome sequence of the rice blast fungusgrisea. Nature. 2005,434:980-986.
    [7] Dean RA. Signaling Pathways and appressorium morphogenesis. Ann Rev Phytopathol.1997,35:211-234.
    [8] 陈利锋,徐敬友,梁继农等.农业植物病理学南方本北京:中国农业出版社,2001:102
    [9] 蒋培余.稻瘟病自述.湖南农业,1994 (4):15
    [10] 刘志恒,俞孕珍,魏松红等.1991-1995年辽宁省稻瘟病菌种群动态分析.植物保护,1998(4):4—7
    [11] 杨正峰,戴新铭,王九发.稻瘟病的识别、预测与防治.江西农业科技,2000(4):39
    [12] 丰泉.早稻稻瘟病流行原因及对策.安徽科技,1998(4):38
    [13] 董国.影响早稻稻瘟病发生的气象特点及流行条件分析.植保技术与推广,1996,15(5):3-5
    [14] 陈小宇.闽北山区单晚稻瘟病高发原因及防治对策.农资咨询,2005(7):39
    [15] 孙振东,张丽娟,王玉东等.丹东地区稻瘟病的发生与综合防治技术.粮食作物,2006(2):17
    [16] 李洪刚.稻瘟病发生原因及综合防治.农村经济与科技,2000,11(8):41
    [17] 王彬,李明强,陈兴明等.不同育秧方式对稻瘟病发生为害的影响.中国植保导刊,2006(2):8—10
    [18] 宋世枝,方玲,段斌等.调整播期对豫南粳稻稻瘟病及纹枯病发病条件的影响.中国农学通报,2005,21(4):276-278
    [19] 于雷,张景媛,范维君.气象因子对稻瘟病的影响及预报.黑龙江气象,1994(2):35-36
    [20] 詹沛刚.安顺1999年水稻稻瘟病发生的气象条件分析.贵州气象,2000,24(3):37-38
    [21] 何明,卢代华,毛建辉.影响稻瘟病灾变的关键生态因子研究.西南农业学报,1998,20(5):392-396
    [22] Bechinger C, Glebel KF, Schnell M. et al. Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science, 1999, 285: 1896-1899.
    [23] Talbot NJ, Ebbole DJ, Hamer JE. Identification and characterization of MPGI, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. The Plant Cell.1993,5, 1575-1590.
    [24] Lau, G and architecture and 228-239. Hamer, JE. Acropetal: a genetic locus required for conidiophorepathogenicity in the rice blast fungus. Genet. Biol. 1998 (24):
    [25] 王洪凯,林福呈,李德葆。稻瘟菌致病相关基因研究进展。菌物系统,2002,21(3):459-464。
    [26] Villalba F, Lebrun MH, Hua-Van A, et al. sposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea. Mol. Plant Microbe Interact. 2001(14),308-315.
    [27] Jong JC, Mccormack B J, Smirnoff N, et al., Glycerol generates tugor in rice blast Nature. 1996,389-244.
    [28] 山崎羲人,高坂卓雨编著(1980,凌忠专,孙昌其译).稻瘟病与抗病育种[M].农业出版社,1990,pp.19-31,88-134,170-224,352-482,507-550.
    [29] 伍尚忠,罗林,张少红,等.广东稻瘟病菌DNA指纹分析及谱型结构.植物病理学报[[J].1998,28(4):323-330.
    [30] 伍尚忠,朱小源,杨祁云,等.应用分子标记技术鉴证稻瘟病菌宗谱与寄土遗传背景的亲缘关系.中国农业科学[J].1999,32(6):56-62.
    [31] 王云月,范静华,汪安云等.稻瘟病菌rep-PCR分子指纹聚类分析.植物病理学研究进展[M].云南科技出版社,1999,101-102
    [32] 刘一明.水稻品种与稻瘟病菌的遗传多样性及稻瘟病持续控制研究.博士学位论文[D].云南农业人学,2000.
    [33] 程兆榜,周益军,陆凡,等.1999年江苏省稻瘟病菌群体遗传结构分析.江苏农业学报[J].2001,17(4):23-226
    [34] 沈瑛,李成云,袁筱萍等.稻瘟病菌的菌丝融和现象及其后代的致病性变异.中国农业科学[J],1997,30(6):16-22.
    [35] 张止光,郑小波.稻瘟病菌不同小种菌株间无性重组的研究[[J].植物病理学报[J].2000,30(4):312-318
    [36] 肖爱萍,游养平,唐祥宁,等.江西稻瘟病菌有性态及其适生性的研究.江西农业大学学报[J]2002,24(2):220-222.
    [37] 何明,卢代华,毛见辉.影响稻瘟病灾变的关键生态因子研究.西南农业大学学报[[J].1998,20(5):392-396.
    [38] 何月秋,Leng H,Zeigler RS等.稻瘟病菌变异菌株的AFLP分析.菌物系统[J].2002,21(3):363-369
    [39] 戈峰,曹东风,李典漠.我国化学农药使用现状、问题及其减少对策.中国无公害农业的发展策略和途径.北京:中国农业出版社,1998 39-45.
    [40] Handelsman J., and E. V. Stabb. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869
    [41] Baker KF. 1987. Evolving concepts of biological Control of plant pathogens. Ann. Rev. Phytopathol. 26:67-85.
    [42] Cook RJ, and Backer KF 1983. The role of bacteria in the biological control of plant pathogens. Ann. Phytopathol. Soc. St. Paul. MN
    [43] Tang W, Cook RJ, and Rovira A. 1996. Advances in biological control of plant disease. China Agricultural. University Press.
    [44] 唐文华,曾广然.1998.植物病害的生物防治.见中国生物防治(主编:包建中、古德 样),pp493-570.山西科学技术出版社.
    [45] Tanaka, Y. T., and S. Omura. Agroactive compounds of microbial origin. Annu. Rev. Microbiol. 1993.47:57-87
    [46] Okami, Y., and K. Hotta. 1988. Search and discovery of new antibiotics, p 33-67. in M. Goodfellow, S. T. Williams, and M. Mordaski (ed)Actinomycetes in biotechnology. Academic Press, London, United Kingdom.
    [47] Hayakawa, MK. Ishizawa, and H. Nonomura. 1988. Distribution of rare actinomycetes in Japanese soils. J. Ferment. Technol. 66:367-373.
    [48] Jiang, C. L., and L.H. Xu. 1996. Diversity of aquatic actinomycetes in lakes of the middle plateau, Yunnan, China. Appl. Environ. Microbiol. 62:249-253
    [49] El-Tarabily-KA;Hardy-GE-St-J;Sivasithamparam-K:Hussein-AM; Kurtboke-DI. The potential for the biological control of cavity—spot disease of carrots, Caused thium coloratura, by streptomycete and non-streptomycete actinomycetes. New—Phytologist. 1997, 137:3, 495-507.
    [50] 谢德龄,倪楚芳,朱昌雄等.中生菌素(农抗751)防治白菜软腐病的效果试验初报.生物防治通报.1990.6(2):74-75.
    [51] 刘大群,Neil A.Anderson,Linda L.Kinkel.拮抗链霉菌防治马铃薯疮痴病的大田试验研究.植物病理学报.2000,30(3):237-244.
    [52] 宗兆锋,乔宏萍,何祀真.2株重寄生菌的分离和对靶标菌的抑制作用.西北农业学报 2002,11(4):1-3.
    [53] Yamaguchi Isamu,微生物来源农药的最新进展,国外医药抗生素分册,1990 11(2):137-140
    [54] 沈寅初.井岗霉素研究开发25年.植物保护.1996(4):44-45
    [55] 周启,王道本.农用抗生素和微生物杀虫剂.北京:中国农业出版社.1995.
    [56] 沈萍.微生物学.北京:高等教育出版社,2000:231。
    [57] 周得庆.微生物学教程.北京:高等教育出版社,2002,5:188
    [58] 金志华,林建平,梅乐和.工业微生物遗传育种学原理与应用。化学工业出版社.2005,9.7
    [59] 曲音波.微生物技术开发原理.北京:化学工业出版社,2005.1:46
    [60]Distler, T., Ebert, A., et al. Nucleic Acids Res. 1987, 15:8041 — 8056 [61]Gomi, S., Ikeda,D., et al, J. Antibiot. 1984,196:513-520