槲寄生质量控制和相关成分药代动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
槲寄生为桑寄生科植物槲寄生的干燥带叶茎枝,本研究以其为研究对象,对药材的化学成分,质量控制和体内药物动力学过程进行研究,并分析了槲寄生中活性成分高圣草素-7-O-β-D-葡萄糖苷的药代动力学过程。
     采用各种色谱技术从槲寄生中分离得到18个化合物,鉴定了15个。其中1个新化合物:1,7-二(4-羟基苯基)-庚烷-1,4-二烯-3-酮;1个新天然产物:5-羟基-3,7,3′-三甲氧基黄酮-4′-O-β-D-葡萄糖苷;1个槲寄生属植物首次分离:5,7,4′-三羟基-3,3′-二甲氧基黄酮。
     采用高效液相色谱法和毛细管气相色谱法,对不同产地和不同寄主的槲寄生进行指纹图谱研究。用系统聚类分析法将药材分类,结合分类结果,以相似度软件生成指纹图谱共有模式,分别以夹角余弦、相关系数为测度,计算样品与共有模式之间的相似度。研究发现不同寄主的槲寄生药材和不同产地的槲寄生药材指纹图谱相似度较好,但寄主与槲寄生之间指纹图谱存在较大差异,初步推断槲寄生药材指纹图谱受寄主的影响较小。槲寄生的HPLC指纹图谱和GC指纹图谱分别反映了药材不同化学部位的信息,对未知样品进行研究时,应根据临床应用而有所侧重。
     对槲寄生主要有效成分进行了定性定量分析。采用HPLC-UV方法,在280 nm波长条件下同时定量分析5个有效成分:紫丁香苷、高圣草素-7-O-β-D-芹菜糖(1→5)-β-D-芹菜糖(1→2)-β-D-葡萄糖苷、高圣草素-7-O-β-D-芹菜糖(1→2)-β-D-葡萄糖苷、高圣草素-7-O-β-D-葡萄糖苷和高圣草素,并应用于不同产地、不同寄主的槲寄生药材测定,结果发现不同产地的药材含量差异较大,槲寄生叶中5个成分的含量普遍高于茎枝中的。所建立的分析方法简单、准确,为槲寄生药材的质量控制提供了科学依据。采用气相色谱质谱联用法和已知物对照法对槲寄生的挥发油进行分析,鉴定了22个化学成分,为槲寄生挥发性成分的进一步研究提供依据。
     高圣草素-7-O-β-D-葡萄糖苷为槲寄生的有效成分,由于其较好的药理活性受到人们广泛关注。本研究以高圣草素-7-O-β-D-葡萄糖苷单体为研究对象,对其在大鼠体内的药代动力学过程进行研究。以香兰素为内标,建立了测定大鼠血浆中高圣草素-7-O-β-D-葡萄糖苷的HPLC分析方法。色谱柱Diamonsil C_(18)(200mm×4.6mm,I.D.5μm),流动相为甲醇-0.5%冰醋酸水溶液(45∶55,v/v)。日内和日间精密度(RSD)小于9.7%,准确度(RE)在-0.8%~5.4%之间范围内,提取回收率大于70.0%。利用所建立的分析方法对高圣草素-7-O-β-D-葡萄糖苷在大鼠体内的药动学行为进行研究,高圣草素-7-O-β-D-葡萄糖苷消除速率常数Ke为0.73 h~(-1),血浆中的半衰期t_(1/2)为1.56 h左右,AUC_(0~t)、AUC_(0~∞)分别为7.16、7.82μg·h/ml。对大鼠尿中代谢产物进行鉴定,发现高圣草素-7-O-β-D-葡萄糖苷进入体内后被代谢成苷元高圣草素。采用HPLC-MS法,以双氢杨梅黄素为内标,色谱柱为Luna C_(18)(150 mm×4.6 mm,I.D.5μm),流动相为甲醇-0.1%甲酸水溶液(70∶30,v/v),对高圣草素-7-O-β-D-葡萄糖苷及其代谢物高圣草素在大鼠体内的分布和排泄进行了研究。大鼠静脉注射高圣草素-7-O-β-D-葡萄糖苷后,迅速分布于各组织器官,小肠和肝脏浓度最高,分布量随时间的延长而下降。高圣草素-7-O-β-D-葡萄糖苷代谢物高圣草素,在多数组织中均能被检测到,其中肾脏的浓度最高。给药后60 h有相当于给药量的11.06%的原形药物和相当于给药量6.89%的苷元经尿液排泄。
     建立了同时测定大鼠血浆中紫丁香苷、高圣草素-7-O-β-D-芹菜糖(1→5)-β-D-芹菜糖(1→2)-β-D-葡萄糖苷、高圣草素-7-O-β-D-芹菜糖(1→2)-β-D-葡萄糖苷和高圣草素-7-O-β-D-葡萄糖苷的HPLC-UV分析方法,以葛根素为内标,色谱柱为Synergi C_(18)(250 mm×4.6 mm,I.D.4μm),流动相为乙腈和0.5%冰醋酸水溶液梯度洗脱。4个成分的日内和日间精密度(RSD)均小于11.6%,准确度(RE)在±8.9%范围内,提取回收率不低于70.0%。又建立了大鼠血浆样品中4个化学成分分别测定的HPLC-UV分析方法,均符合生物样品分析方法指导原则的有关要求。用所建立的分析方法研究了槲寄生提取液静脉给药、4个单体混合液静脉给药、4个单体溶液分别静脉给药后大鼠体内的药动学行为。结果表明上述三种情况下各成分的给药剂量相同,但药动学行为受不同存在形式的影响具有较大差异。
     本研究将中药化学、分析化学、生药学、药理学、药代动力学等手段相结合,研究了槲寄生的化学成分,建立了槲寄生药材的质量评价标准,探讨了相关活性成分的药代动力学过程,为中药现代化做了有意义的探索。
The branches with leaves of Viscum coloratum is a traditional Chinese medicine, named as Hujisheng in pharmacopoeia of PRC. The chemical constituents, quality control methods and the pharmacokinetics of Viscum coloratura were investigated in detail.
     The chemical constituents of Viscum coloratum were systematically studied and 18 compounds were purified with silica gel, polyamide, sephadex LH-20 and ODS column chromatography. Utilizing chemical and spectroscopic methods (UV, NMR, MS), the structures of 15 compounds were fully characterized. One of these constituents was a novel compound: 1, 7-di- (4-hydroxybenzic)- heptane-1,4- diene-3- ketone; one of them was new nature product: 5-hydroxy- 3, 7, 3'- trimethoxyflavone -4'-O-β-D- glucoside; and one of these constituents was isolated from Viscum for the first time: 5, 7, 4'- trihydroxy-3, 3'-dimethoxyflavone.
     The methods of HPLC and GC fingerprint analysis were established for the quality control of Viscum coloratum after investigating chromatographic and extracting condition. The samples from different origins and different hosts were analyzed with cluster analysis, and the data were used for similarity evaluation with angle cosine and correlation coefficient as measurement. There was significant difference between herb and their hosts while dependability of herb from different hosts or from different origins was high, which might be the results that effects of hosts on the fingerprints of herb were negligible. Dependability between HPLC fingerprints and GC fingerprints was small because information was different from different constituents. So these methods should be lay particular emphasis on according to clinical application during evaluating the quality of unknown samples.
     The quality control methods of Viscum coloratum were studies. An HPLC-UV method was developed for the simultaneous quantification of those five constituents: syringin, homoeriodictyol -7-O-β-D- apiose (1→5)-β-D- apiose (1→2)-β-D- glucoside, homoeriodictyol -7-O-β-D- apiose (1→2)-β-D- glucoside, homoeriodictyol -7-O-β-D-glucoside and homoeriodictyol, in Viscum coloratum. The samples from different original area and different hosts were detected, with the results that there were evident differences from different origins and that content in the leaves were higher than that of branches. This method for analysis was simple and accurate, and was basics of quality control for Viscum coloratum. 22 essential oil of Viscum coloratum were identified with Gas Chromatography tandem Mass Spectrum comparing with standard substances, which supply the base for advanced research on essential oil of Viscum coloratum.
     Homoeriodictyol -7-O-β-D- glucoside, possessing various pharmacological effects, was paid close attention to. A specific, reproducible, and accurate method was developed for the determination of homoeriodictyol =7-O-β-D- glucoside in rat plasma with vanillin as internal standard. The HPLC separation was achieved on a Diamonsil C_(18) (200 mm×4.6 mm, I.D. 5μm) column. The mobile phase consisted of methanol - 0.5 % glacial ethanol acid solution (45:55, v/v) with a flow rate of 1.0 ml/min. The UV detection wavelength was set at 280 nm. The extraction recoveries exceeded 70.0 %. Intra-day RSD and inter-day RSD were both less than 9.7 %. Accuracy (RE) ranged from -0.8 % to 5.4 %. This method was applied to the pharmacokinetic study of it in rat plasma with the parameters: Ke 0.73 h~(-1), t_(1/2) 1.56 h, AUC_(0~t) 7.16μg-h/ml, AUC_(0~∞) 7.82μg.h/ml. Homoeriodictyol -7-O-β-D- glucoside was found to be metabolized into aglycone, homoeriodictyol, in rat urine after i.v. administration. So another method with HPLC-MS was developed to study the distribution and excretion of homoeriodictyol -7=O-β-D-glucoside and its active metabolite homoeriodictyol. The HPLC separation was achieved on a Luna C_(18) (150mm×4.6mm, I.D. 5μm) column. The mobile phase was a methanol-water mixture (70:30, v/v) containing 0.1% of formic acid at a flow rate of 0.8 ml/min. Homoeriodictyol -7-O-β-D- glucoside showed a quick distribution into rat tissues with the dosage of intravenous injection of homoeriodictyol -7-O-β-D- glucoside. The contents of it in small intestine and liver were higher than others, and decrease with the prolongation of time in almost all tissues. Homoeriodictyol -7-O-β-D- glucoside was metabolized to homoeriodictyol which could be detected in most of tissues, and the content of kidney was the highest. After intravenous injection of homoeriodictyol -7-O-β-D-glucoside, 11.06 % of administration dosage as original glucoside and 5.73 % as aglycone were detected in urine.
     An HPLC-UV method was developed for the simultaneous quantification of those four constituents: syringin, homoeriodictyol -7-O-β-D- apiose (1→5)-β-D- apiose (1→2)-β-D- glucoside, homoeriodictyol -7-O-β-D- apiose (1→2)-β-D- glucoside, homoeriodictyol -7-O-β-D- glucoside, in rat plasma with puerarin as internal standard. The HPLC separation was achieved on a Synergi C_(18) (250 mm×4.6 mm, I. D. 4μm, Phenonex) column. The mobile phase consisted of acetonitrile - 0.5 % glacial ethanol acid with gradient elution at a flow rate of 1.0 ml/min The UV detection wavelength was set at 280 nm. Intra-day RSD and inter-day RSD were both less than 11.6 % for these constituents. Accuracy ranged from -7.9 % to 5.6 % indicated with relative error (RE). The extraction recoveries exceeded 70.0 %. Another four HPLC-UV methods were developed to determine these four constituents respectively and all these methods were consistent with the guide for analysis of biological samples. They were applied to pharmacokinetic research after intravenous administration of monomers, mixed liquor of four monomers and Viscum coloratum extracts. The pharmacokinetic characteristics were significantly different because of the effects of co-existing compounds and different confirmation even with the same dosages.
     Combining the utilization of phytochemistry, pharmaceutical analysis, pharmacognosy, pharmacology and pharmacokinetics, the constituents and quality assessment standards for Viscum coloratum were studied, and the metabolism of this medicinal herb and its active constituents were also investigated. This research provided a beneficial exploration for the modernization of traditional Chinese medcine.
引文
[1] 国家药典委员会,中华人民共和国药典(一部).2005,258
    [2] 黄泰康.现代本草纲目.北京中国医药科技出版社.2001:2683
    [3] 中华本草.1981:1258~1259
    [4] 王惠民,郝俊.桑寄生的本草考证.中药材.2000,32(10):649-651
    [5] Wien D, Barlow B A, Translocation heterozygosity and the origin of dioecy in viscum. Heredity. 1979, 42: 201-202
    [6] 钟国跃.川产槲寄生的显微鉴定研究.药物分析杂志.1995,15(1):15-20
    [7] Barlow B A. Classification of the Loranthacese and Viscaceae and Viscaceae. Proc Linn Soc NSW. 1964, 89: 268-272
    [8] Wien D, Barlow B A. The cytogegraphy and relationships of the viscaceous and eremolepidaceous mistletoes. Taxon. 1971, 20: 313-332
    [9] Kuijt J. The Biology of parasitic Flowering Plants. Berkeley: University of California Press. 1969.
    [10] 孙艳秋,刘珂,王守愚等.槲寄生的研究进展.中草药.2000,3l(6):471-474
    [11] 龚祝南,王铮涛,徐珞珊等.中国桑寄生科Loranthaceae药用植物研究.中国野生植物资源.1996,(1):11-15
    [12] 龚祝南,王峥涛,徐洛珊等.桑寄生的本草考证研究.时珍国医国药.1997,8(2):99-101
    [13] 龚祝南.桑寄生的民族植物学研究.中国医学生物技术应用.2002,(3):46-51
    [14] 陈刚,徐晓玉,严鹏科.川芎嗪和丹参对小鼠Lewis肺癌生长的抑制作用与抑制血管生成的关系.中草药.2004,35(3):296-300
    [15] 孔德云,罗思齐,李惠庭等.槲寄生化学成分的研究Ⅱ~△.中国医药工业杂志.1987,(3):123-127
    [16] 孔德云,罗思齐,李惠庭等.槲寄生化学成分的研究Ⅱ.中国医药工业杂志.1987,(10):123-125
    [17] 孔德云,罗思齐,李惠庭等.槲寄生化学成分的研究——Ⅲ.槲寄生新甙Ⅲ,Ⅴ,Ⅵ的结构.药学学报.1988,(8):593-600
    [18] 孔德云,罗思齐,李惠庭等.槲寄生化学成分的研究——Ⅳ.槲寄生新甙Ⅳ的结构.药学 学报.1988,(9):707-710
    [19] 孔德云,罗思齐,李惠庭等.槲寄生化学成分的研究Ⅴ.中国医药工业杂志.1989,(3):108-109
    [20] 何晓树,雷兴翰,杨福秋.槲寄生甙甲化学结构修饰及心血管活性研究.中国医药工业杂志.1989,20(3):173
    [21] 孔德云,李惠庭,罗思齐等.槲寄生化学成分的研——Ⅵ.槲寄生新甙Ⅵ中手性碳的绝对构型测定.药学学报.1990,(5):349-352
    [22] 孔德云,李惠庭,罗思齐.槲寄生化学成分的研究Ⅶ.槲寄生新甙Ⅶ的分离和结构.药学学报.1990,(8):608-611
    [23] 徐健富,杜秀宝,范崇旭.传统中药槲寄生的化学与药理研究,防化研究.2004,4,14
    [24] 郑友兰,张崇禧.西洋参化学研究的新进展.中国药学杂志.1989,9:524-526
    [25] 许益民,吴启南,陈建伟等.桑、槲寄生磷脂成分的分析研究.中国中药杂志.1990,15(4):36
    [26] 侯冬岩,李铁纯,佟健等.槲寄生枝芽挥发油成份分析.辽宁大学学报(自然科学版).1996,(1):18-21
    [27] 高玉琼,刘建华,赵德刚等.槲寄生挥发性成分研究.生物技术.2005,(6):61-63
    [28] 陈柏年,杨官娥,漆小梅等.槲寄生抗肿瘤有效成分研究进展.中国新药杂志.2005,(10):1131-1136
    [29] 刘石磊,杜秀宝,范崇旭.槲寄生毒素研究进展.中草药.2006,(4):619-622
    [30] Shilei L, Xiubao D, Jinglin K. New Polypeptides from Chinese Mistletoe, V-scum coloratum (Kom.) Nakai. Chinese Chemical Letters. 2006, 17(1): 41-44
    [31] 姜店春,刘传玲,陈蓉等.槲寄生与扁枝槲寄生的薄层和紫外光谱鉴别.中药材.1995,18(11):559-561
    [32] 张建英,李玉芝.槲寄生与扁枝槲寄生的鉴别.中国现代应用药学.1997,14(2):19-20
    [33] 李红兵,马占春,韩其昌.薄层比色法测定槲寄生、连翘中齐墩果酸的含量.中成药.1989,11(6):33-34
    [34] 鱼慧颦,高珠凤.槲寄生注射剂中双氢黄酮苷分析方法研究.中国医药工业杂志.1981,(3):51-52
    [35] 黄剑林,周秦,马润梅.薄层法对比两种颜色槲寄生的成分.陕西中医.2006,(10):1286
    [36] 漆小梅,陈志果,陈柏年等.酸性染料比色法测定槲寄生总生物碱的含量.山西医科大学学报.2006,37(4):384-385
    [37] 郑庆红,禹洁,杨官娥等.光合细菌转化槲寄生培养液中多糖的含量测定.临床医药实践杂志.2006,15(12):883-884
    [38] 徐健富,杜秀宝,孔景临等.RP-HPLC测定槲寄生中紫丁香苷的含量.中国中医药信息杂志.2004,11(2):49-50
    [39] 吴冬梅.反相高效色谱法测定紫丁香苷的含量.中国实验方剂学杂志.2006,12(2):71
    [40] 董政起,朱静,金光株.HPLC指纹图谱鉴别桑寄生和槲寄生.吉林中医药.2007,(2):56-57
    [41] Shuichi Hayashi, Emiko miyamoto, koichiro kud et al. Comparsion of the volatile components of Three mistletoes J Essent. Oil Res. 1996, (8): 619-626
    [42] 徐勤.活血平肝益肾治疗高血压病55例疗效观察.上海中医药杂志.1995,(7):17
    [43] 张维忠,邱喜盛,潘卫华.槲寄生对实验性脱氧皮质酮盐性高血压逆传后的大鼠脑区脑啡肽含量观察.中药药理与临床.1985,17(8):27
    [44] 吴继雄,俞国瑞,王彬尧等.槲寄生黄酮甙对心脏快反应动作电位的效应.中国药理学报.1994,(2):169-172
    [45] 吴继雄,俞国瑞,王彬尧等.槲寄生黄酮甙抗快速心律失常的细胞电生理研究.中国中西医结合杂志.1994,(7):421-423
    [46] 顾天华,顾德官,茅守玉等.槲寄生抗心律失常作用的观察.中国医药工业杂志.1983,14(5):9
    [47] 上海槲寄生研究协作组.槲寄生治疗冠心病心绞痛有效成份研究.中国医药工业杂志.1977,(3):39-54
    [48] 上海市槲寄生协作组.槲寄生有效成份治疗冠心病心绞痛、心律失常.上海医学.1978,(2):38
    [49] 吴继雄,俞国瑞,王彬尧等.槲寄生抗心律失常作用的细胞电生理研究.中国医药工业杂志.1993,(10):457-460
    [50] 阮连生,吴继雄,俞国瑞.槲寄生总甙对心肌细胞电生理的作用.中国循环杂志.1993,(12):740-743
    [51] 朴贤美,初文峰,乔国芬等.槲寄生总黄酮苷对缺氧、心肌缺血及心律失常的预防作用 的研究.哈尔滨医科大学学报.2006,(1):20-22
    [52] 荆雪梅,李定格,林清义等.槲寄生抗心室颤动作用及其机理研究.中药药理与临床.1998,(1):34-35
    [53] 韩建敏,韩春云,林淑英等.淫羊藿制剂对心血管系统的药理作用.中成药.1981,12(12):9
    [54] 陈曙霞,常佩伦,郑新娟等.中药槲寄生对冠心病患者血小板聚集率和心功能的影响.上海第二医科大学学报.1987,(3):254-258
    [55] 上海槲寄生研究协作组.槲寄生治疗冠心病心绞痛临床报告.中国医药工业杂志.1977,(3):39-54
    [56] 朱为敏,潘咸新,郑绳一.槲寄生抑制血小板聚集作用的机理探讨.中国医药工业杂志.1985,(6):257-258
    [57] 谢霖,潘咸新.槲寄生抗血小板聚集的药理作用.中国医药工业杂志.1984,(1)
    [58] 蔡伟菁,龚兰生,丁怀翌等.中药槲寄生、川芎嗪对体外人血管内皮细胞的影响.上海医学.1991,(8):462-463
    [59] 徐从高.AP921抗炎机制研究.山东医科大学学报.2001,39(6):520-523
    [60] 万鼎铭,徐从高,张茂宏.高圣草素-7-O-β-D-葡萄糖甙抗血小板活化因子的竞争抑制实验[J].郑州大学学报(医学版).2005,(3):398-400
    [61] 万鼎铭,徐从高,张茂宏.槲寄生中血小板活化因子拮抗剂有效成分的纯化及鉴定.郑州大学学报(医学版).2005,(3):396-398
    [62] 万鼎铭,徐从高,张茂宏.槲寄生不同溶剂提取物对血小板活化因子的拮抗作用观察.郑州大学学报(医学版).2005,(3):394-396
    [63] 管增伟,刘雪辉,刘海新等.槲寄生抗血小板激活因子活性成分的研究(英文).Journal of Chinese Pharmaceutical Sciences.2000,(2):76-79
    [64] 徐从高,张茂宏,李同一等.AP921拮抗血小板活化因子的研究.山东医科大学学报.1997,35(4):310-312
    [65] 杜新,华静,徐从高等.中药AP921对缺血性心脏病患者血小板活化因子拮抗作用的研究.山西临床医药杂志.2001,10(7):499-502
    [66] Doser C, Doser M, Huelsen, H, et. al Influence of carbohydrates on the cytotoxicity of an aqueous mistletoe drug and of purified mistletoe lectins tested on human T-leukemia cells. Arzneimittel-Forschung. 1989, 39(6): 647-51
    [67] Hulsen H, Mechelke F. The influence of a mistletoe preparation on suspension cell cultures of human leukemia and human myeloma cells. Arzneimittel-Forschung 19 82, 32(9): 1126-1127
    [68] Klett, C Y, Anderer, F. A. Activation of natural killer cell cytotoxicity of human blood monocytes by a low molecular weight component from Viscum album extract. Arzneimittel-Forschung. 1989, 39 (12): 1580-1585
    [69] Rita L. Brit Homeopathic J. 1978, (3): 167
    [70] Franz H, Ziska P, Kindt A. Isolation and properties of three lectins from mistletoe (Viscum albumL.). Biochem J. 1981, 195 (5): 481-484
    [71] Li YC, Pfullcr U, Larsson EL, et al. Separation of mistletoe lectins based on the degree of glycosylation using boronate affinity chromatography. J Chromatogr A. 2001, 925 (1-2): 115-121
    [72] Vcrveckcn W, Kleff S, Pfuller U, et al. Induction of apoptosis by mistletoe lectin I and its subunits. No evidence for cytotoxic effects caused by isolated A-and B-chains. Int J Biochem Cell B. 2000, 32(3): 317-326
    [73] Schumachcr U, Valcntincr U. Current understanding of mistletoe lectins. Drug Discov Today. 2003, 8(1): 17
    [74] Soler MH, Stocva S, Voelter W. Complete amino acid sequence of the B chain of mistletoe lectin I. Biochem Biophys Res Commun. 1998, 246 (3): 596-601
    [75] 孔景临,杜秀宝,范崇旭等.一种槲寄生多肽的一级结构分析和抗肿瘤活性.药学学报.2004,(10):813-817.
    [76] Krauspenhaar R, Eschenburg S, PerbandtM, et al. Crystal Structure of mistletoe lectin I from Viscum album. Biochem Biophys Res Commun. 1999, 257(2): 418-424
    [77] Eschenburg S, Krauspenhaar R, Mikhailov A, et al. Primary Structure and molecular modeling of mistletoe Lectin I fromViscum album. Biochem Bioph Res Co. 1998, 247 (2): 367-372
    [78] Lutsch G, Nell F, Ziska P, et al. Electron microscopic investigations on the structure of lectin I fromViscum albumL. FEBS Lett 1984, 170(2): 335-338
    [79] Sweeney EC, Tonevitsky AG, Palmer RA, et al. Mistletoe lectin I forms a double trefoil structure. FEBSLett. 1998, 431(3): 367-370
    [80] Stoeva S, Franz M, Wacker R, et al. Primary structure, isoforms, and molecular modeling of a chitin-binding mistletoe lectin. Arch Biochem Biophys. 2001, 392(1): 23-31
    [81] BOssing A, Suzart K, Bergmann J, et al. induction of apoptosis in human lymphocytes treated with Viscum album L. is mediated by the mistletoe lectins. CancerLett. 1996, 99(1): 59-72
    [82] Kiene H. EORTC mistletoe study. Lancet Oncol. 2001, 2 (6): 332-333
    [83] Galm O, Fabry U, Efferth T, et al. Synergism between rViscumin and cisplatin is not dependent onERCC-1 expression. Cancer Lett. 2002, 187 (1-2): 143-151
    [84] Ribereau-Gayon G, Dumont S, Muller C, et al. Mistletoe lectinsl, Ⅱ and Ⅲ induce the production of cytokines by cultured human monocytes. CancerLett. 1996, 109 (1-2): 33-38
    [85] Bussing A. Induction of apoptosis by the mistletoe lectins: Areviewon themechanisms of cytctoxicity mediated byViscum albumL. Apoptosis (HistoricalArchive). 1996, 1(1): 25-32
    [86] Li SS. Mistletoe lectins: telomerase inhibitors in alternative cancer therapy. Drug Discov Today. 2002, 7(17): 896-897
    [87] 吴勇,何承敏,王雅等.槲寄生多糖对巨噬细胞分泌TNF-α和IL-1的影响.湖北中医杂志.2003,(4):48-49
    [88] 王庆瑞,刘梅筠,王东阳等.槲寄生总生物碱的抗肿瘤作用.中国中药杂志.1994,19(1):45-47
    [89] 陈世伟,李俊峰,胡家会等.槲寄生碱的提取纯化及抗肿瘤研究.山东中医药大学学报.2001,25(5):373-375
    [90] 彭海燕,章永红,韩英等.槲寄生碱抗肿瘤作用的研究.中国中药杂志.2005,30 (5):381-382
    [91] 彭海燕,章永红,韩英等.槲寄生碱抗肝癌作用实验研究.实用中医药杂志.2004,(5):227
    [92] 彭海燕,章永红,韩英等.槲寄生碱对小鼠移植胃癌的作用.黑龙江中医药.2003,(6):41
    [93] 彭海燕,章永红,韩英等.槲寄生碱对乳腺癌细胞抑制作用的实验研究.吉林中医药.2003,(9):50-51
    [94] 彭海燕,章永红,韩英等.槲寄生碱对食管癌细胞生长的抑制作用.现代中医药.2003, (6): 15-16
    [95] Jung M L, Baudino S, Ribereau-Gayon G, et al. Characterization of cytotoxic proteins from mistletoe (Viscum albumL.) .Cancer Lett. 1990, 51: 103-108
    [96] Konopa J, Woynarowski J M, Lewandowska-Gumieniak M. Isolation of viscotoxins, cytotoxic basic polypeptides from Viscum albumL. Hoppe Seylers Z Physiol Chem. 1980, 361 (10): 1525-1533
    [97] Kovacs E. Thein vitroeffect ofViscum album(VA) extracon DNA repair of peripheral blood mononuclear cells (PBMC) in cancer patients. Phytother Res. 2002, 16: 143-147
    [98] Stein G B, Schalle G, Pfuller U, et al. Characterisation of granulocyte stimulation by thionins from European mistletoe and from wheat [J]. Biochim Biophys Acta. 1999, 1426: 80-90
    [99] 杨官娥,张肇铭.光合细菌转化槲寄生制剂抗肿瘤活性初步研究.微生物学通报.2006,(2):40-43
    [100] 朱佳,胡旭姣,陈炎伟等.槲寄生内生真菌发酵产物抗肿瘤作用的初步研究.中药材.2006,(10):1080-1082
    [101] 陈炎伟,胡旭姣,朱佳等.槲寄生内生菌发酵产物抗平滑肌细胞增殖和抗菌作用初步研究.中医药学刊.2006,(8):1541-1543
    [102] 于超,郭辉.中草药提取物体外抑制HBV的筛选实验.中药药理与临床.2001,17(1):23-24
    [103] 宰学明,吴国荣.槲寄生抗氧化的研究.中草药.2001,32(12):1081-1082
    [104] 李丽,梁再赋,姜弈.槲寄生提取物的免疫调节作用.国外医药.植物药分册.2003,(1):12-15
    [105] 殷军,王大为,李发美等.几种生药的提取部位对成骨样细胞的增殖作用.沈阳药科大学学报.2001,18 (4):279-282
    [106] Hoerhammer L, Wagner H, Kraemer H, Farkas L. Structure of synthetic and natural eriodictyol glycosides. Tetrahedron Letters. 1966, (42): 5133-5136
    [107] Li M. H., Chin. Traditional and Herbal Drugs. 1985, (1-2): 16
    [108] Fukunaga T, Kajikawa I, Nishiya K, Watanabe Y, Suzuki N, Takeya K, Itokawa H. Studies on the constituents of the European mistletoe, Viscum album L. Ⅱ. Chemical & Pharmaceutical Bulletin. 1988, 36(3): 1185-1189
    [109] M. Baggiolini., B. Dewald, Stimulus amplification by PAF and LTB4 in human neutrophils. Pharmacol. Res. Commun. 1986, 18: 51-59
    [110] D. Sandoval, A. Gukovskays., P. Reavey., The role of neutrophils and platelet-activating factor in mediating experimental pancreatitis. Gastroenterology. 1996, 111(4): 1081-1091
    [111] Yao H, Liao Z X, Wu Q, Lei G-Q, Liu Z J, Chen D F, Chen J K, Zhou T S. Antioxidative flavanone glycosides from the branches and leaves of Viscum coloratum. Chemical & Pharmaceutical Bulletin. 2006, 54 (1): 133-135
    [112] 何晓树,杨福秋.高圣草素及其B环异构物的合成和结构特征.中国医药工业杂志.1987,18(12):534-536
    [113] A. Mori, C. Nishino, N. Enoki, S. Tawata, Phytochemistry. 1988, 27: 1017-1020
    [114] E. Garo, M. Maillard, S. Antus, S. Mavi, K. Hostettmann. Five flavans from madscus psilostachys. Phytochemistry. 1996, 43 (6): 1265-1269.
    [115] Doostdar H, Burke MD, Mayer RT. Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. Toxicology. 2000, 144 (1-3): 31-38
    [116] Ishitsuka, Hideo; Shirai, Haruyoshi; Umeda, Isao; Suhara, Yasuji. Flavone derivatives as antiviral agents, and pharmaceutical compositions containing them. Eur. Pat. Appl. 1980, 32
    [117] 杜树山,张文生,吴晨等.毛蕊老鹳草化学成分研究.中国中药杂志.2003,28(7):625-626
    [118] Wagner H, Chad VM, Sonnenbichler J. Carbon-13 NMR spectra of naturally occurring flavonoids. Tetrahedron Letters 1976, (21): 1799-802
    [119] 戴好富,梅文莉,吴娇等.红树植物瓶花木的化学成分研究.中国药学杂志.2006,41(19):1452-1454
    [120] 孙艳秋,刘珂,张振学.槲寄生化学成分的研究.中药材.2000,23 (1):29-30
    [121] Kumari, G. N. Krishna; Rao, L. Rao, N. S, et al. Prakasa. Carbon-13 NMR data of flavonol methyl ethers of Solanum pubescens. Proceedings - Indian Academy of Sciences, Chemical Sciences. 1986, 97(2): 171-176
    [122] 徐国钧.中国药材学.北京:中国医药科学技术出版社.1996:1358-1361
    [123] 邹玉繁,汪小根.跌打止痛巴布剂体外透皮吸收实验.中国医院药学杂志.2006,26(11):1327-1329
    [124] 罗嵩,朱英,杨艳伟.漱口水中桉叶油素等物质的气相色谱法测定.中国公共卫生.2006, 22(4):503-504
    [125] 钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题.药物分析杂志.1996,16:343-346
    [126] 萧参,陈坚行.生物药及分析方法的认证.中国药学杂志.1993,24:425-426
    [127] Shah VP, Midha KK, Findlay JW, Hill HM, Hulse JD, MeGilveray IJ, Mckay G. Bioanalytieal method validation A revisit with a decade of progress. Pharm. Res. 2000, 17: 1551-1557
    [128] Karnes HT, March C. Precision, accuracy and data acceptance criteria in biopharmaeentieal analysis. Pharm. Res. 1993, 10: 1420-1422
    [129] 梁克军.黄酮类化合物的代谢.中草药通讯.1976,(3):39-43
    [130] 赤尾光昭,服部征雄,难波恒雄等.肠道内酵素生药成分代谢活化.和汉医药学会会志.1992,9:1-13
    [131] Erlund I, Alfthan G, Siren H, et al. Validated method for the quantitation of quereetin form human plasma using high-performance liquid chromatography with electrochemical detection. JChroma B. 1999, 727: 179-189
    [132] Ishii K, Furuta T, Kasuya Y. Mass spectrometric identification and high-performance liquid chromatographic determination of a flavonoid glycoside naringin in human urine. J Agrie Food Chem. 2000, 48: 56-59
    [133] 黄青,苏兴国.刺五加化学药理研究的新进展.中草药.1999,30 (3):234-236
    [134] 聂淑琴.紫丁香苷对半乳糖胺致肝毒性的防护作用.国外医学·中医中药分册.2000(6):346.