特异性抗TRAIL受体单链抗体多聚化策略及在肿瘤治疗中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单链抗体(Single chain variable fragment)具有分子量小,容易穿透组织等优点。但是,单链抗体亲和力较低,在血清中容易被清除,这些不足限制了单链抗体在临床上的应用。本研究利用人软骨多聚基质蛋白的超卷曲螺旋结构域(coiled coil domain, COMP48)可以形成五聚体的特点,将TRAIL死亡受体4(death receptor4, DR4)和死亡受体5(death receptor5, DR5)的单链抗体进行五聚化,以期延长单链抗体在体内的半衰期,提高单链抗体的亲合力和生物学效应,诱导肿瘤细胞发生凋亡,达到治疗肿瘤的目的。
     单链抗体可以利用COMP48结构域进行多聚化。单链抗体转化成五聚体后,亲和力得到加大增强。通过BIAcore仪器测量,单链抗体五聚体的亲合力常数KD值可达10-10M,而对应单链抗体的约为10-7M,亲和力提高近一千倍。ELISA分析结果表明,五聚体抗体分别特异识别其对应的受体,未见交叉反应。体外诱导凋亡和细胞抑制实验结果均表明,五聚体抗体与单链抗体相比具有更明显的肿瘤细胞(A54、colo205、HCT-116)杀伤效果,但是对正常细胞如PBMC及人慢性白血病细胞系K562没有杀伤作用,表明正常细胞及部分肿瘤细胞对抗体具有不敏感性。裸鼠荷瘤模型(人结肠癌colo205)结果显示,单链抗体和五聚体抗体均有不同程度的抑瘤效果。针对DR5的五聚体抗体8fcomp治疗效果最好,与其单链抗体形式相比具有显著性差异,但针对DR4的单链抗体4cmono的抑瘤效果好于其五聚体4ccomp,其原因还有待于进一步探讨。
Single chain variable fragment (scFv) antibody has relativly small molecular size and is easy to penetrate into solid tumor. However, due to its low affinity and rapid clearance in blood, the usage of scFv is limited. In this study, we utilized COMP48, a coiled coil domain of human cartilage oligomerization protein, to pentamerize a group of agonistic scFv to TRAIL receptors DR4and DR5. As expected, the affinity of scFv increased, half life extended, and finally, efficacy to kill tumor greatly improved.
     After fusion with COMP48, pentavelant scFv has been successfully formed. The pentavalent scFvs (combody),4ccomp and8fcomp have great improvement in affinity in BIAcore assay. The KD value of4ccomp and8fcomp is about10-10M, while that of the monomeric scFv,4cmono and8fmono is about10-M. ELISA data showed that4ccomp and8fcomp specifically bind to respective receptor without showing apparent cross reactivity. In apoptosis and cell inhibition assays it is indicated that pentavalent scFvs have stronger toxicity on tumor cell lines, such as A549, colo205and HCT-116. In the xenograft tumor model,8fcomp showed best efficacy, but4cmono was better than4ccomp in therapy, which demonstrates that both affinity and penetration efficiency are important for a protein agonist drug against tumor.
引文
1. Wagner, K.S., et al., A review of the international issues surrounding the availability and demand for diphtheria antitoxin for therapeutic use. Vaccine,2009.28(1):p.14-20.
    2. stiftelsen, N., Serum therapy in therapeutics and medical science.Physiology or Medicine:1901-1921 (Nobel lectures) 1999:World Scientific Pub Co Inc (June 1999).
    3. Kohler, G. and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature,1975.256(5517):p.495-7.
    4. Emmons, C. and L.G. Hunsicker, Muromonab-CD3 (Orthoclone OKT3):the first monoclonal antibody approved for therapeutic use. Iowa Med,1987.77(2):p.78-82.
    5. Sgro, C., Side-effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: bibliographic review. Toxicology,1995.105(1):p.23-9.
    6. Verhoeyen, M.E., et al., Reshaping human monoclonal antibodies for imaging and therapy. Dis Markers,1991.9(3-4):p.197-203.
    7. Riechmann, L., et al., Reshaping human antibodies for therapy. Nature,1988.332(6162): p.323-7.
    8. Staelens, S., et al., Humanization by variable domain resurfacing and grafting on a human IgG4, using a new approach for determination of non-human like surface accessible framework residues based on homology modelling of variable domains. Mol Immunol,2006.43(8):p.1243-57.
    9. Pedersen, J.T., et al., Comparison of surface accessible residues in human and murine immunoglobulin Fv domains. Implication for humanization of murine antibodies. J Mol Biol,1994.235(3):p.959-73.
    10. Faulds, D. and E.M. Sorkin, Abciximab (c7E3 Fab). A review of its pharmacology and therapeutic potential in ischaemic heart disease. Drugs,1994.48(4):p.583-98.
    11. Vincenti, F., et al., Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med,1998.338(3):p.161-5.
    12. Machold, K.P. and J.S. Smolen, Adalimumab-a new TNF-alpha antibody for treatment of inflammatory joint disease. Expert Opin Biol Ther,2003.3(2):p.351-60.
    13. Goldenberg, D.M., Radiolabelled monoclonal antibodies in the treatment of metastatic cancer. Curr Oncol,2007.14(1):p.39-42.
    14. Wu, L., et al., Hepatic arterial iodine-131-labeled metuximab injection combined with chemoembolization for unresectable hepatocellular carcinoma:interim safety and survival data from 110 patients. Cancer Biother Radiopharm,2010.25(6):p.657-63.
    15. Chen, Z.N., et al., Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (1311) metuximab injection:clinical phase Ⅰ/Ⅱ trials. Int J Radiat Oncol Biol Phys, 2006.65(2):p.435-44.
    16. Zhang, Z., et al., Biodistribution and localization of iodine-131-labeled metuximab in patients with hepatocellular carcinoma. Cancer Biol Ther,2006.5(3):p.318-22.
    17. Yu, L., et al.,1311-chTNT radioimmunotherapy of 43 patients with, advanced lung cancer. Cancer Biother Radiopharm,2006.21(1):p.5-14.
    18. Arbabi Ghahroudi, M., et al., Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett,1997.414(3):p.521-6.
    19. Le Gall, F., et al., Di-, tri-and tetrameric single chain Fv antibody fragments against human CD19:effect of valency on cell binding. FEBS Lett,1999.453(1-2):p.164-8.
    20. Linke, R., A. Klein, and D. Seimetz, Catumaxomab:clinical development and future directions. MAbs,2010.2(2):p.129-36.
    21. Kiewe, P., et al., Phase I trial of the trifunctional anti-HER2 x anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin Cancer Res,2006.12(10):p.3085-91.
    22. Boehrer, S., et al., Cytotoxic effects of the trifunctional bispecific antibody FBTA05 in ex-vivo cells of chronic lymphocytic leukaemia depend on immune-mediated mechanism. Anticancer Drugs,2011.22(6):p.519-30.
    23. Stanghnaier, M., et al., Bi20 (fBTA05), a novel trifunctional bispecific antibody (anti-CD20 x anti-CD3), mediates efficient killing of B-cell lymphoma cells even with very low CD20 expression levels. Int J Cancer,2008.123(5):p.1181-9.
    24. Advani, A.S., Blinatumomab:a novel agent to treat minimal residual disease in patients with acute lymphoblastic leukemia. Clin Adv Hematol Oncol,2011.9(10):p.776-7.
    25. Topp, M.S., et al., Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol,2011.29(18):p.2493-8.
    26. Cioffi, M., et al., EpCAM/CD3-Bispecific T-cell engaging antibody MT110 eliminates primary human pancreatic cancer stem cells. Clin Cancer Res,2012.18(2):p.465-74.
    27. Brischwein, K., et al., MT110:a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol Immunol,2006.43(8):p.1129-43.
    28. Li, S., et al., Efalizumab binding to the LFA-1 alphaL I domain blocks ICAM-1 binding via steric hindrance. Proc Natl Acad Sci U S A,2009.106(11):p.4349-54.
    29. Engelhardt, B. and L. Kappos, Natalizumab:targeting alpha4-integrins in multiple sclerosis. Neurodegener Dis,2008.5(1):p.16-22.
    30. Smith, M.R., Rituximab (monoclonal anti-CD20 antibody):mechanisms of action and resistance. Oncogene,2003.22(47):p.7359-68.
    31. Clynes, R.A., et al., Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med,2000.6(4):p.443-6.
    32. Di Gaetano, N., et al., Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol,2003.171(3):p.1581-7.
    33. Golay, J., et al., CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia:further regulation by CD55 and CD59. Blood,2001.98(12):p.3383-9.
    34. Edwards, J.C., et al., Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med,2004.350(25):p.2572-81.
    35. Tak, P.P. and J.R. Kalden, Advances in rheumatology:new targeted therapeutics. Arthritis Res Ther,2011.13 Suppl 1:p. S5.
    36. Tan, A.R. and S.M. Swain, Ongoing adjuvant trials with trastuzumab in breast cancer. Semin Oncol,2003.30(5 Suppl 16):p.54-64.
    37. Nahta, R. and F.J. Esteva, HER-2-targeted therapy:lessons learned and future directions. Clin Cancer Res,2003.9(14):p.5078-84.
    38. Yonesaka, K., et al., Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med,2011.3(99):p.99ra86.
    39. Coiffier, B., et al., Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia:a phase 1-2 study. Blood,2008.111(3):p.1094-100.
    40. Du, J., et al., Structural basis for recognition of CD20 by therapeutic antibody Rituximab. J Biol Chem,2007.282(20):p.15073-80.
    41. Tarhini, A.A. and F. Iqbal, CTLA-4 blockade:therapeutic potential in cancer treatments. Onco Targets Ther,2010.3:p.15-25.
    42. Francisco, J.A., et al., cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood,2003.102(4):p.1458-65.
    43. Keane, J., et al., Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med,2001.345(15):p.1098-104.
    44. http://en.wikipedia.org/wiki/Nomenclature_of_monoclonal_antibodies.
    45. An, Z., Therapeutic Monoclonal Antibodies:From Bench to Clinic2009.4.
    1. Lewit-Bentley, A., et al., Structure of tumour necrosis factor by X-ray solution scattering and preliminary studies by single crystal X-ray diffraction. J Mol Biol,1988.199(2):p. 389-92.
    2. Karpusas, M., et al.,2 A crystal structure of an extracellular fragment of human CD40 ligand. Structure,1995.3(12):p.1426.
    3. Karpusas, M., et al.,2 A crystal structure of an extracellular fragment of human CD40 ligand. Structure,1995.3(10):p.1031-9.
    4. Cha, S.S., et al.,2.8 A resolution crystal structure of human TRAIL, a cytokine with selective antitumor activity. Immunity,1999.11(2):p.253-61.
    5. Cha, S.S., et al., Expression, purification and crystallization of recombinant human TRAIL. Acta Crystallogr D Biol Crystallogr,1999.55(Pt 5):p.1101-4.
    6. Liu, C., et al., Structural and functional insights of RANKL-RANK interaction and signaling. J Immunol,2010.184(12):p.6910-9.
    7. Won, E.Y., et al., The structure of the trimer of human 4-1BB ligand is unique among members of the tumor necrosis factor superfamily. J Biol Chem,2010.285(12):p. 9202-10.
    8. Browning, J.L., et al., Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell,1993.72(6):p. 847-56.
    9. McDonald, N.Q., et al., New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature,1991.354(6352):p.411-4.
    10. Marsters, S.A., et al., A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol,1997.7(12):p.1003-6.
    11. Grewal, I.S., Overview of TNF superfamily:a chest full of potential therapeutic targets. Adv Exp Med Biol,2009.647:p.1-7.
    12. McDermott, M.F., et al., Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell,1999.97(1):p.133-44.
    13. Straus, S.E., et al., The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood,2001.98(1):p.194-200.
    14. Ramesh, N., et al., The hyper-IgM (HIM) syndrome. Springer Semin Immunopathol, 1998.19(4):p.383-99.
    15. Hollenbaugh, D., et al., The random inactivation of the X chromosome carrying the defective gene responsible for X-linked hyper IgM syndrome (X-HIM) in female carriers of HIGM1. J Clin Invest,1994.94(2):p.616-22.
    16. Hughes, A.E., et al., Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet,2000.24(1):p.45-8.
    17. Feinberg, B., et al., A phase I trial of intravenously-administered recombinant tumor necrosis factor-alpha in cancer patients. J Clin Oncol,1988.6(8):p.1328-34.
    18. Wielockx, B., et al., Inhibition of matrix metalloproteinases blocks lethal hepatitis and apoptosis induced by tumor necrosis factor and allows safe antitumor therapy. Nat Med, 2001.7(11):p.1202-8.
    19. Eggermont, A.M., J.H. de Wilt, and T.L. ten Hagen, Current uses of isolated limb perfusion in the clinic and a model system for new strategies. Lancet Oncol,2003.4(7): p.429-37.
    20. Ashkenazi, A., Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer,2002.2(6):p.420-30.
    21. Kelley, S.K. and A. Ashkenazi, Targeting death receptors in cancer with Apo2L/TRAIL. Curr Opin Pharmacol,2004.4(4):p.333-9.
    22. Wiley, S.R., et al., Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity,1995.3(6):p.673-82.
    23. Pan, G, et al., The receptor for the cytotoxic ligand TRAIL. Science,1997.276(5309):p. 111-3.
    24. Walczak, H., et al., TRAIL-R2:a novel apoptosis-mediating receptor for TRAIL. EMBO J,1997.16(17):p.5386-97.
    25. Chaudhary, P.M., et al., Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity, 1997.7(6):p.821-30.
    26. MacFarlane, M., et al., Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem,1997.272(41):p.25417-20.
    27. Pan, G, et al., An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science,1997.277(5327):p.815-8.
    28. Emery, J.G., et al., Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem,1998.273(23):p.14363-7.
    29. Liu, Y., et al., Crystal structure of sTALL-1 reveals a virus-like assembly of TNF family ligands. Cell,2002.108(3):p.383-94.
    30. Grass, H.J., Molecular, structural, and biological characteristics of the tumor necrosis factor ligand superfamily. International Journal of Clinical and Laboratory Research, 1996.26(3):p.143-59.
    31. Ashkenazi, A. and R.S. Herbst, To kill a tumor cell:the potential of proapoptotic receptor agonists. J Clin Invest,2008.118(6):p.1979-90.
    32. Pan, Y., et al., Evaluation of pharmacodynamic biomarkers in a Phase la trial of dulanermin (rhApo2L/TRAIL) in patients with advanced tumours. Br J Cancer,2011. 105(12):p.1830-8.
    33. Soria, J.C., et al., Phase lb study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer. J Clin Oncol,2010.28(9):p.1527-33.
    34. Soria, J.C., et al., Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol,2011.29(33):p.4442-51.
    35. Tolcher, A.W., et al., Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. J Clin Oncol,2007.25(11): p.1390-5.
    36. Younes, A., et al., A Phase 1b/2 trial of mapatumumab in patients with relapsed/refractory non-Hodgkin's lymphoma. Br J Cancer,2010.103(12):p.1783-7.
    37. Greco, F.A., et al., Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer,2008.61(1):p.82-90.
    38. Trarbach, T., et al., Phase Ⅱ trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer,2010. 102(3):p.506-12.
    39. Leong, S., et al., Mapatumumab, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies:results of a phase I and pharmacokinetic study. J Clin Oncol,2009.27(26):p.4413-21.
    40. Mom, C.H., et al., Mapatumumab, a fully human agonistic monoclonal antibody that targets TRAIL-R1, in combination with gemcitabine and cisplatin:a phase I study. Clin Cancer Res,2009.15(17):p.5584-90.
    41. Luster, T.A., et al., Mapatumumab and lexatumumab induce apoptosis in TRAIL-R1 and TRAIL-R2 antibody-resistant NSCLC cell lines when treated in combination with bortezomib. Mol Cancer Ther2009.8(2):p.292-302.
    42. Plummer, R., et al., Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clin Cancer Res,2007.13(20):p.6187-94.
    43. Wakelee, H.A., et al., Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors. Ann Oncol,2010.21(2):p. 376-81.
    44. Adams, C., et al., Structural and functional analysis of the interaction between the agonistic monoclonal antibody Apomab and the proapoptotic receptor DR5. Cell Death Differ,2008.15(4):p.751-61.
    45. Jin, H., et al., Cooperation of the agonistic DR5 antibody apomab with chemotherapy to inhibit orthotopic lung tumor growth and improve survival. Clin Cancer Res,2008. 14(23):p.7733-40.
    46. Zinonos, I., et al., Apomab, a fully human agonistic antibody to DR5, exhibits potent antitumor activity against primary and metastatic breast cancer. Mol Cancer Ther,2009. 8(10):p.2969-80.
    47. Herbst, R.S., et al., A first-in-human study of conatumumab in adult patients with advanced solid tumors. Clin Cancer Res,2010.16(23):p.5883-91.
    48. Doi, T., et al., Phase 1 study of conatumumab, a pro-apoptotic death receptor 5 agonist antibody, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol,2011.68(3):p.733-41.
    49. Demetri, G.D., et al., First-line treatment of metastatic or locally advanced unresectable soft tissue sarcomas with conatumumab in combination with doxorubicin or doxorubicin alone:a phase Ⅰ/Ⅱ open-label and double-blind study. Eur J Cancer,2012.48(4):p. 547-63.
    50. Yada, A., et al., A novel humanized anti-human death receptor 5 antibody CS-1008 induces apoptosis in tumor cells without toxicity in hepatocytes. Ann Oncol,2008.19(6): p.1060-7.
    51. Forero-Torres, A., et al., Phase I trial of weekly tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5). Cancer Biother Radiopharm, 2010.25(1):p.13-9.
    52. Buchsbaum, D.J., et al., Antitumor efficacy of TRA-8 anti-DR5 monoclonal antibody alone or in combination with chemotherapy and/or radiation therapy in a human breast cancer model. Clin Cancer Res,2003.9(10 Pt 1):p.3731-41.
    53. Kaliberov, S., et al., Enhanced apoptosis following treatment with TRA-8 anti-human DR5 monoclonal antibody and overexpression of exogenous Bax in human glioma cells. Gene Ther,2004.11(8):p.658-67.
    54. DeRosier, L.C., et al., Treatment with gemcitabine and TRA-8 anti-death receptor-5 mAb reduces pancreatic adenocarcinoma cell viability in vitro and growth in vivo. J Gastrointest Surg2006.10(9):p.1291-300; discussion 1300.
    55. DeRosier, L.C., et al., Combination treatment with TRA-8 anti death receptor 5 antibody and CPT-11 induces tumor regression in an orthotopic model of pancreatic cancer. Clin Cancer Res,2007.13(18 Pt2):p.5535s-5543s.
    56. Kendrick, J.E., et al., Anti-tumor activity of the TRA-8 anti-DR5 antibody in combination with cisplatin in an ex vivo human cervical cancer model. Gynecol Oncol, 2008.108(3):p.591-7.
    57. Oliver, P.G, et al., Treatment of human colon cancer xenografts with TRA-8 anti-death receptor 5 antibody alone or in combination with CPT-11. Clin Cancer Res,2008.14(7): p.2180-9.
    58. Wiezorek, J., P. Holland, and J. Graves, Death receptor agonists as a targeted therapy for cancer. Clin Cancer Res,2010.16(6):p.1701-8.
    59. Advani, R., et al., Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin's lymphoma. J Clin Oncol,2009. 27(26):p.4371-7.
    60. Hussein, M., et al., A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica, 2010.95(5):p.845-8.
    61. Furman, R.R., et al., A phase I study of dacetuzumab (SGN-40, a humanized anti-CD40 monoclonal antibody) in patients with chronic lymphocytic leukemia. Leuk Lymphoma, 2010.51(2):p.228-35.
    62. Byrd, J.C., et al., Phase 1 Study of the anti-CD40 Humanized Monoclonal antibody lucatumumab (HCD122) in Relapsed Chronic Lymphocytic Leukemia. Leuk Lymphoma, 2012.
    63. Tai, Y.T., et al., Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res,2005.65(13):p.5898-906.
    64. Ferrant, J.L., et al., The contribution of Fc effector mechanisms in the efficacy of anti-CD 154 immunotherapy depends on the nature of the immune challenge. Int Immunol,2004.16(11):p.1583-94.
    65. Law, C.L. and I.S. Grewal, Therapeutic interventions targeting CD40L (CD 154) and CD40:the opportunities and challenges. Adv Exp Med Biol,2009.647:p.8-36.
    66. Schuler, W., et al., Efficacy and safety of ABI793, a novel human anti-human CD154 monoclonal antibody, in cynomolgus monkey renal allotransplantation. Transplantation, 2004.77(5):p.717-26.
    67. Dougall, W.C., et al., RANK is essential for osteoclast and lymph node development. Genes Dev,1999.13(18):p.2412-24.
    68. Kong, Y.Y., et al., OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature,1999.397(6717):p.315-23.
    69. Li, J., et al., RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A,2000.97(4):p.1566-71.
    70. Pageau, S.C., Denosumab. MAbs,2009.1(3):p.210-5.
    71. McClung, M.R., et al., Denosumab in postmenopausal women with low bone mineral density. N Engl J Med,2006.354(8):p.821-31.
    72. Ellis, GK., et al., Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol,2008.26(30):p. 4875-82.
    73. Dempster, D.W., et al., Role of RANK Ligand and Denosumab, a Targeted RANK Ligand Inhibitor, in Bone Health and Osteoporosis:A Review of Preclinical and Clinical Data. Clin Ther,2012.34(3):p.521-36.
    74. Gardam, M.A., et al., Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect Dis,2003.3(3):p. 148-55.
    1. Kubetzko, S., et al., PEGylation and multimerization of the anti-p185HER-2 single chain Fv fragment 4D5:effects on tumor targeting. J Biol Chem,2006.281(46):p. 35186-201.
    2. Schellinger, J.G, et al., A general chemical synthesis platform for crosslinking multivalent single chain variable fragments. Org Biomol Chem,2012.10(8):p.1521-6.
    3. Atwell, J.L., et al., scFv multimers of the anti-neuraminidase antibody NC10:length of the linker between VH and VL domains dictates precisely the transition between diabodies and triabodies. Protein Eng,1999.12(7):p.597-604.
    4. Hudson, P.J. and A.A. Kortt, High avidity scFv multimers; diabodies and triabodies. J Immunol Methods,1999.231(1-2):p.177-89.
    5. Le Gall, F., et al., Di-, tri-and tetrameric single chain Fv antibody fragments against human CD19:effect of valency on cell binding. FEBS Lett,1999.453(1-2):p.164-8.
    6. Dolezal, O., et al., ScFv multimers of the anti-neuraminidase antibody NC10:shortening of the linker in single-chain Fv fragment assembled in V(L) to V(H) orientation drives the formation of dimers, trimers, tetramers and higher molecular mass multimers. Protein Eng,2000.13(8):p.565-74.
    7. Weber-Bornhauser, S., et al., Thermodynamics and kinetics of the reaction of a single-chain antibody fragment (scFv) with the leucine zipper domain of transcription factor GCN4. Biochemistry,1998.37(37):p.13011-20.
    8. Lee, S.H., et al., Humanization of an agonistic anti-death receptor 4 single chain variable fragment antibody and avidity-mediated enhancement of its cell death-inducing activity. Mol Immunol,2010.47(4):p.816-24.
    9. Schoonooghe, S., et al., Efficient production of human bivalent and trivalent anti-MUC1 Fab-scFv antibodies in Pichia pastoris. BMC Biotechnol,2009.9:p.70.
    10. Pluckthun, A. and P. Pack, New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology,1997.3(2):p.83-105.
    11. Cloutier, S.M., et al., Streptabody, a high avidity molecule made by tetramerization of in vivo biotinylated, phage display-selected scFv fragments on streptavidin. Mol Immunol, 2000.37(17):p.1067-77.
    12. Zhang, J., et al., Pentamerization of single-domain antibodies from phage libraries:a novel strategy for the rapid generation of high-avidity antibody reagents. J Mol Biol, 2004.335(1):p.49-56.
    13. Fattah, O.M., et al., Peptabody-EGF:a novel apoptosis inducer targeting ErbBl receptor overexpressing cancer cells. Int J Cancer,2006.119(10):p.2455-63.
    14. Houimel, M., et al., Selection of peptides and synthesis of pentameric peptabody molecules reacting specifically with ErbB-2 receptor. Int J Cancer,2001.92(5):p. 748-55.
    15. Terskikh, A.V., et al., "Peptabody":a new type of high avidity binding protein. Proc Natl Acad Sci U S A,1997.94(5):p.1663-8.
    16. Zhu, X., et al., COMBODY:one-domain antibody multimer with improved avidity. Immunol Cell Biol,2010.88(6):p.667-75.
    17. Desplancq, D., et al., Multimerization behaviour of single chain Fv variants for the tumour-binding antibody B72.3. Protein Eng,1994.7(8):p.1027-33.
    18. Zhuang, H., et al., Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis. Lung Cancer,2010.68(1):p.27-38.
    19. Dhir, V., et al., A predictive biomimetic model of cytokine release induced by TGN1412 and other therapeutic monoclonal antibodies. J Immunotoxicol,2012.9(1):p.34-42.
    20. Ponce, R., Adverse consequences of immunostimulation. J Immunotoxicol,2008.5(1):p. 33-41.
    21. Kenanova, V., et al., Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res,2005.65(2):p.622-31.
    22. Robinson, M.K., et al., Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res,2005.65(4):p.1471-8.
    23. Holliger, P. and P.J. Hudson, Engineered antibody fragments and the rise of single domains. Nat Biotechnol,2005.23(9):p.1126-36.