单核细胞增多性李斯特菌检测试剂盒优化及其表面蛋白的免疫反应性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
李斯特菌属包括七个种,其中单核细胞增多性李斯特菌(Listeria monocytogenes,以下简称Lm或单增李斯特菌)是能引起人畜共患病的食源性致病菌。单增李斯特菌为短小的革兰氏阳性无芽胞杆菌,能引起人的败血症、脑炎、脑膜炎和胃肠炎,在主要食源性致病菌中引起的死亡率最高。该菌在食品加工过程中可以通过多种途径污染食品,对消费者健康构成潜在威胁。在食品中发现任何一种李斯特菌都被认为是卫生状况不良。因此,建立敏感、特异的方法用于食品中李斯特菌属细菌的快速检测,对控制和提高食品的卫生质量具有重要意义。
     本实验室研制了李斯特菌种别检测试剂盒,通过多重PCR快速鉴别李斯特菌属细菌并区分单增李斯特菌毒力强弱。本研究优化该试剂盒后进行冻干,同时每个月进行特异性,敏感性及稳定性试验,结果表明冻干试剂盒具有良好的特异性,只有李斯特菌属细菌可以扩增出相应条带,而马链球菌兽疫亚种、金黄色葡萄球菌、多杀性巴氏杆菌、猪胸膜肺炎放线杆菌、支气管败血博代氏菌、大肠杆菌O157:H7等不能扩增出相应的条带。冻干试剂盒对单增李斯特菌的最低检测下限2.58×103CFU,而未冻干试剂盒的检测下限为102CFU。将冻干试剂盒用于人工污染牛奶的模拟试验,当牛奶中含有约1.43×102CFU/ml的Lm时可以通过直接预增菌6h检出。冻干试剂盒在-20℃保存八个月后依然保持稳定。
     本试验选择单增李斯特菌胞内感染相关毒力基因plcB和mpl为研究对象,设计其编码基因的特异性引物,PCR扩增目的片段后插入原核表达载体pET30a,重组质粒分别命名为pET30a-mpl和pET30a-plcB。重组质粒转化大肠杆菌BL21感受态细胞,筛选阳性克隆,诱导表达并分析其产物。结果表明,plcB和mpl基因片段获得了融合表达。可溶性分析发现该蛋白以包涵体形式存在。以纯化的Mpl和PlcB蛋白作为包被抗原,鼠源抗单增李斯特菌全菌多抗作为一抗,ELISA和免疫印迹试验结果显示PlcB蛋白与全菌多抗具有良好的免疫反应性,而Mpl不能与抗Lm阳性血清反应。
     本研究为开发Lm PCR快速检测冻干试剂盒、建立基于PlcB蛋白抗体的免疫磁珠集菌方法提供了基础。
The genus Listeria consists of seven species, one of which named Listeria monocytogenes, short for Lm, is a zoonosis pathogen. Listeria monocytogenes is a Gram-positive, rod-shaped, facultative anaerobic, non-spore-forming bacterium. It can cause septicaemia, encephalitis, meningitis and gastroenteritis in humans. Listeia monocytogenes was reported to cause the highest mortality among the food-borne pathogens.Lm can contaminate food through many routes along the processing line, thus becoming a potential hazard to the consumers. Any Listeia spp. found in foods is a index of disqualification. Thus, it is important to set up a rapid, sensitive, and differential detection method to supervise and elevate the hygienic quality of food.
     Our laboratory estabished a PCR Identification Kit for Listeria species. In This study the PCR components were determined after the PCR amplification conditions were serially optimized. Then the PCR Identification Kit was freeze dried and stored at -20℃. A series of tests were conducted to assess its specificity, sensitivity, stability and reproducibility of freeze-dried PCR component. The results showed that DNA products was amplified from Listeria species, while Streptococcus equi subsp, zooepidemicus, Staphylococcus aureus, Pasteurellamul tocida, Actnobacillus suis, Bordetella bronchiseptica,E. coli etc. were not. 2.58×103 of Lm was the lowest number that could be detected by freeze dried Kit while102 CFU for unfreeze-dried Kit.Lower level of L.monocytogenes cell in milk(1.43×102 CFU/ml) could be detectable after cultured directly at 30℃for 6hrs. The PCR component still worked efficiently for the amplification after being stored at -20℃for eight months.
     In this study, we selected two of genes which mediating listerial intracellular infection cycle, PlcB and Mpl, as the targets based. The gene fragments of plcB and mpl were amplified from Listeia monocytogenes genome and were inserted between EcoR I and Xho I sites of prokaryotic expression vector pET30a to construct the recombinant plasmids named pET30a-mpl and pET30a-plcB. Then they were transferred into E.coli BL21. Expression of the recombinant proteins were induced by IPTG and analysed by SDS-PAGE. Prokaryotic expression product PlcB reacted with the antibody of the whole Listeria monocytogenes from mice, but not Mpl. The result indicated PlcB had immunoreactivity.
     Our study provides some foundations for development of a freeze-dried PCR Identification Kit for Listeria species and enrichment of listerial cells using specific antibodies based on PlcB for quick identification of Listeria monocytogenes.
引文
1. Hain T, Steinweg C, Kuenne C T, et al. Whole genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes. J Bacteriol,2006,188(21):7405-7415.
    2. Rocourt J, Cossart P. Listeria monocytogenes. Washington D.C:ASM Press,1997,337-352.
    3. Lecuit M, Cossart P. Genetically-modified-animal models for human infections:the Listeria paradigm. Trends Mol Med,2002,8(11):537-542.
    4. Low J C, Donachie W. A review of Listeria monocytogenes and listeriosis. Vet J,1997,153 (1):9-29.
    5. 杨振泉.焦新安.单核细胞增生李斯特菌快速检测的靶基因及其生物学特性.中国卫生检验杂志,2007,17(2):373-375.
    6. 陆承平.兽医微生物学.中国农业出版社.2005年1月第六次印刷:301-305.
    7. Schleeh W F. Foodborne listeriosis. Clin. Infect,2000,31:770-775.
    8. Wiedmann M, Bruce J L, Keating C, et al. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immune,1997,65:2707-2716.
    9. WHO Informal working Group. Foodborne Listeria. Bull World Health Origan.1998,66: 421-428.
    10.戴建华,乔昕,袁宝君.江苏省2001-2006年食源性致病菌监测分析.苏预防医学2006,17(3):50-51.
    11.谢茂慧,马戈,杨晓敏,等.湖北省食源性致病菌和耐药性监测.公共卫生和预防医学,2006,17(2):31-33.
    12.张秀丽,廖兴广,张丁,等.2005年河南省食源性致病菌和耐药物监测.中国卫生检验杂志,2006,16(7):842-844.
    13.崔京辉,李达,王永全,等.2004-2005年北京市食品中单核细胞增生性李斯特菌的污染状况调查.中国卫生检验杂志,2006,16(12):1508-1509.
    14.赵晋,杨小蓉,薛晴.四川省食品单核细胞增生性李斯特监测.预防医学情报杂志,2006,22(3):256-258.
    15. Farber J M, Peterkin P I. Listeria monocytogenes a Food-Borne Pathogen. Microbiol. Rev, 1991,55(3):476-511.
    16.吴清明.兽医传染病学.北京:中国农业出版社,2001,205-208
    17. Schuchat A, Deaver K A, Wenger J D, et al. Role of foods in sporadic Listeriosis. Case-control study of dietary risk factors. JAMA 1992,267:2041-2045.
    18.肖方震,邓艳琴.美国(Emerging Infectious Diseases) 2008年第5期有关人兽共患病论文摘译.中国人兽共患病学报,2008,24(7):F0002-F0002,F0003.
    19. Schlech W F, Lavigne P M, Bortolussi R A, et al. Epidemic listeriosis:Evidence for transmission by food. N. Enql. J.Med.1983,308:203-206.
    20. Fleming D W, Cochi S L, MacDonald K L, et al. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N. Engl. J. Med.1985,312:404-407.
    21. Linnan M J, Mascola L, Lou X D, et al. Epidemic listeriosis associated with Mexican-style cheese. N Engl J Med.1988,319:823-828.
    22. Goulet V, Rocourt J, Rebiere 1, et al. Listeriosis outbreak associated with the consumption of rillettes in France in 1993. J Infect Dis.1998,177:155-60.
    23.肖义泽,任丽娟,王金玉,等.云南省首次动物性李斯特菌病暴发的流行病学调查.中华流行病学杂志.2000,21:236.
    24. Makinoa S I, Kawamotoa K, Takeshib, et al. An outbreak of foodborne listeriosis due to cheese in Japan during 2001.International Journal of Food Microbio,2005(104):189-196.
    25. Gottlieb S. L, Newbern E. C, Griffin P. M., et al. Multistate outbreak of Listeriosis Linked to turkey deli meat and subsequent changes in US regulatory policy. Clin Infect Dis.2006, 42(1):29-36.
    26.无.质检总局采取紧急措施防止加拿大污染肉品入境.肉类工业,2008(9):35-35.
    27. Poysky F T, Paranjpy R N, Peterson M E, et al. Inactivation of Listeria monocytogenes on hot-smoked salmon by interaction of heat and smoke or liquid smoke. J.Food.Prot.1997,60: 649-654.
    28. Rorvik L M, Yndestad M, Skjerve E. Growth of Listeria monocytogenes in vacuum-packed, smoked salmon, during storage at 4 degrees C. Int J Food Microbiol.1991,14:111-118.
    29. Loncarevic S., Tham W, Danielsson Tham M. L. Prevalence of Listeria monocytogenes and other Listeria spp.in smoked and'gravad'fish. Acta Vet Scand.1996,37:13-18.
    30. Churchill R LT, Lee H, Hall J C. Detection of Listeria monocytogenes and the toxin listeriolysin O in food. J Microbiol Methods,2006,64 (2):141-170
    31.程洁,张晓峰.单增李斯特菌选择性增菌培养和分离方法的比较研究.检验检疫科学,2003,13(6):36-38
    32. Restaino L, Frampton E W, Schabe G. Isolation and detection of Listeria monoeytogenes using fluormogenic substrates for phosphatidylinositol specific phospholipase C.Food prot, 1999,62(3):244-248.
    33. Chemboro S, Wilkins E, Abdel-Hamid I. Detection of pathogenic bacteria in food samples using highly- disperse carbon particles. Biosen Bioelectron,2005,21 (3):492-499
    34. Datta A R, Wentz B A, Shook D, et al. Synthetic oligodeoxyribonucleotide probes for detection of Listeria monocytogenes. Appl Environ Microbiol,1988,54:2933-2937.
    35. Roger S, Sandra S, Marzena A Z. The VITR technology for rapid detection of Listeria monocytogenes and other Listeria spp. Int J Food Microbiol,2003,89:287-290.
    36. Sergeev N, Distler M, Courtney S, et al. Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens Bioelectron,2004,20 (4):684-698
    37. Steven K A, Jaykus L A. Direct detection of bacterial pathogens in representative dairy products using a combined bacterial concentration-PCR approach. App. Microbiol,2004, 97(6):1115-1112.
    38. Koo K, Jaykus L A. Detection of Listeria monocytogenes from a model food by fluorescence resonance energy transferbased PCR with an asymmetric fluorogenic probe set. Appl Environ Microbiol,2003,69 (2):1082-1088
    39.李雅静吴绍强.免疫磁性分离技术在食源性疾病检测中的应用.食品工业科技,2008(12):248-251.
    40. Fluit A C. Detection of Listeria monocytogenes in cheese with the magnetic immuno-polymerase chain reaction assay. Appl Environ Microbiol.1993,59 (5):1289.
    41.华晓芳,黄雪松.食品中单增李斯特菌的检测新技术.食品科技,2007,(6):230-33
    42. Bhagwat A A. Simultaneous detection of Escherichia coliO157:H7, Listeria m-onocytogenes and Salmonella strains by real time PCR. Int J Food Micriobiol,2003, 84(2):217-224
    1. Farber J M., Peterkin P I, Listeria monocytogenes, a food-borne pathogen, Microbiol. Rev. 1991,55(3):476-511.
    2. Vazquez-Boland J A, Kuhn M, Berche P, et al. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev,2001,14 (3):584-640.
    3. Lecuit M, Cossart P. Genetically-modified-animal models for human infections:the Listeria paradigm. Trends Mol Med,2002,8(11):537-542.
    4. Gellin B G, Broome C V. Listeriosis. Jama,1989,261(9):1313-1320.
    5. Cossart P, Pizarro-Cerda J, Lecuit M. Invasion of mammalian cells by Listeria monocytogenes:functional mimicry to subvert cellular functions. Trends Cell Biol,2003, 13(1):23-31.
    6. Drevets D A, Leenen P J, Greenfield R A. Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev,2004,17(2):323-347.
    7. Alvarez-Dominguez C, Roberts R, Stahl P D. Internalized Listeria monocytogenes modulates intracellular trafficking and delays maturation of the phagosome. J Cell Sci,1997,110(Pt6): 731-743.
    8. Marquis H, Goldfine H, Portnoy D A. Proteolytic pathways of activation and degradation of a bacterial phospholipase C during intracellular infection by Listeria monocytogenes. J Cell Biol,1997,137(6):1381-1392.
    9. Chico-Calero I, Suarez M, Gonzalez-Zorn, et al. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc
    Natl Acad Sci USA,2002,99(1):431-436.
    10. Dramsi S, Cossart P. Intracellular pathogens and the actin cytoskeleton. Annu Rev Cell Dev Biol,1998,14:137-166.
    11. Vazquez-Boland J A., Domi'nguez-Bernal G., Gonza'lez-Zorn B, et al.Pathogenicity islands and virulence evolution in Listeria, Microb. Infect.2001.3(7):571-584.
    12. Kreft J, et al. Pathogenicity islands and other mobile virulence elements. Am.Soc. Microbiol, Washington DC,1999,219-232.
    13. Goebel W, Kreft J, Bockmann R, et al. Gram-Positive Pathogens, Am.Soc. Microbiol, Washington DC,2000, pp.499-506.
    14. Kreft J, Va'zquez-Boland J A, Regulation of virulence genes in Listeria, Int. J. Med. Microbiol.2001,291 (2) 145-157.
    15. Eiting M, Hageluken G, Schubert WD, et al. The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increase DNA-binding affinity by stabilizing the HTH motif, Mol.Microbiol.2005,56 (2):433-466.
    16. Vega Y,Rauch M,Banfield M, et al. New Listeria monocytogenes prfA* mutants, transcriptionalproperties of PrfA* proteins, and structure-function of the virulence regulator PrfA, Mol. Microbiol.2004,52 (6):1553-1565.
    17. Green J, Scott C, Guest J R, Functional versatility in the CRP-FNR superfamily of transcription factors:FNR and FLP, Adv. Microb. Physiol.2001,44:1-34.
    18. Kolb A, Busby S, Buc H., et al. Transcriptional regulation by cAMP and its receptor protein, Annu. Rev. Biochem.1993,62:749-795.
    19. Shetron-Rama L M, Mueller K, Bravo J M, et al. Isolation of Listeria monocytogenes mutants with high-levelin vitro expression of host cytosol-induced gene products, Mol.Microbiol.2003,48 (6):153-1551.
    20. Vega Y, Dickneite C, Ripio M T, et al. Functional similarities between the Listeria monocytogenes virulence regulator PrfA and cyclic AMP receptor protein:the PrfA* (Gly145Ser) mutation increases binding affinity for target DNA, J. Bacteriol.1998,180 (24) 6655-6660.
    21. Passner J M, Schultz S C, Steitz T A., Modeling the cAMP-induced allosterictransition using the crystal structure of CAP-cAMP at 2.1 A resolution, J. Mol. Biol.2000,304 (5) 847-859.
    22. Boeckmann R, Dickneite C,Goebel W, et al. PrfA mediates specific binding to RNA polymerase of Listeria monocytogenes to PrfA-dependent viruelence gene promoters resulting in a transcriptionally active complex. Mol. Microbiol,2000,36(2):487-497.
    23. Mariela Scortti, He'ctor J. Monzo', Lizeth Lacharme-Lora, et al. The PrfA virulence regulon. Microbes and Infection,2007,9:1196-1207.
    24. Ripio M T, Dominquez-Bernal, G Lara M, et al.A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. J Bacteriol,1997,179(5):1533-1540
    25. Sheehan B, Klarsfeld A, Msadek T, et al. Diferential activation of virulence gene expression by PrfA the Listeria monocytogenes virulence regulator. J.Bacter,1995,177(22):6469-6476.
    26. Bohne J, Kestler H, Uebele C, et al. Diferential regulation of the virulence genes of Listeria monocytogenes. Mol Microbiol,1996,20(2):1189-1198.
    27. Mengaud J, Dramsi S, Gouin E, et al. Pleiotropic control of Listeria monocytogenes virulence factors by a gene which is autoregulated, Mol. Microbiol.1991,5 (9):2273-2283.
    28. Freitag N E, Rong L, Portnoy D A. Regulation of the prfA transcriptional activator of Listeria monocytogenes:multiple promoter elements contribute to intracellular growth and cell-to-cell spread, Infect. Immun.1993,61(6) 2537-2544.
    29. Camilli A, Tilney L, Portnoy D A, Dual roles of PlcA in Listeria monocytogenes pathogenesis, Mol. Microbiol.1993,8 (1):143-157.
    30. Freitag N E, Portnoy D A, Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essential in vitro but are redundant in vivo, Mol. Microbiol.1994,12 (5):845-853.
    31. Johansson J, Mandin P, Renzoni A, et al, An RNA thermosensor controls the expression of virulence genes in Listeria monocytogenes, Cell,2002,110 (5):551-561.
    32. Schwab U, Bowen B, Nadon C, et al The Listeria monocytogenes prfAP2 promoter is regulated by sigma B in a growth phase dependent manner, FEMS Microbiol. Lett.2005,245 (2) 329-336.
    33. Mengaud J, Dramsi S, Gouin E, et al. Pleiotropic control of Listeria monocytogenes virulence factors by a gene which is autoregulated, Mol. Microbiol.1991,5 (9):2273-2283.
    34. Camilli A, Tilney L, Portnoy D A, Dual roles of PlcA in Listeria monocytogenes pathogenesis, Mol. Microbiol.1993,8 (1):143-157.
    35. Yamamoto K, Kawamura I, Tominaga T, et al. Listeriolysin O derived from Listeria monocytogenes inhibits the effector phase of an experimental allergic rhinitis induced by ovalbumin in mice. Clin Exp Immunol,2006,144(3):475-484.
    36. Bielecki J, Youngman P, Connelly P, et al. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature,1990, 345(6271):175-176.
    37. Shaughnessy L M, Hoppe A D, Christensen K A, et al. Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol,2006,8(5):781-792.
    38. Glomski 1 J, Decatur A L, Portnoy D A. Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun,2003,71(12):6754-6765.
    39. Decatur A L, Portnoy D A. A PEST-like sequence in Listeriolysin O essential for Listeria monocytogenes pathogenicity. Science,2000,290 (5493):992-995.
    40. Lety M A, Frehel C, Beretti J L, et al. Modification of the signal sequence cleavage site of listeriolysin O does not affect protein secretion but impairs the virulence of Listeria monocytogenes.Microbiology,2003,149(Pt 5):1249-1255.
    41. Singh R, Jamieson A, Cresswell P. GILT is a critical host factor for Listeria monocytogenes infection.GILT is a critical host factor for Listeria monocytogenes infection. Nature.2008, 455(7217):1186-7
    42. Roe.S. Protein purification application:A practical approach. Oxford University Press,2001, 19-27.
    43.陈希徐亮胡格等.产单核细胞李斯特菌溶血素的纯化.中国预防兽医学报,2008,30(8):605-607.
    44. Goldfine H, Wadsworth S J. Macrophage intracellular signaling induced by Listeria monocytogenes. Microbes Infect,2002,4(13):1335-1343.
    45. Mengaud J, Braun-Breton C, Cossart P. Identification of phosphatidylinositol- specific phospholipase C activity in Listeria monocytogenes:a novel type of virulence factor? Mol.Microbiol,1991,5(2):367-372.
    46. Wadsworth S J, Goldfine H. Mobilization of protein kinase C in macrophages induced by Listeria monocytogenes affects its internalization and escape from the phagosome. Infect Immun,2002,70(8):4650-4660.
    47. Aleksandra S, Helene M. Restricted translocation across the cell wall regulates secretion of the broad- range phospholipase C of Listeria monocytogenes. J Bacteriol,2003,185:5953-5958.
    48. Vazquez-Boland J A, Kocks C, Dramsi S, et al. Nucleotide sequence of the lecithinaseoperon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun,1992,60(1):219-230.
    49. Poyart C, Abachin E, Razafimanantsoa I, et al. The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C:direct evidence obtained by gene complementation. Infect Immun,1993,61(4):1576-1580.
    50. Grundling A, Gonzalez M D, Higgins D E. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J Bacteriol, 2003,185(21):6295-307.
    51. Marie Yeung P S. Nicholas Zagorski, et al. The Metall oprotease of Listeria monocytogenes Controls Cell Wall Translocation of the Broad-Range Phospholipase. J Bacteriol,2005, 187(8):2601-2608.
    52. Mounier J, Ryter A, Coquis-Rondon M, et al. Intracellular and cell-to- cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2. Infect Immun,1990,58(4):1048-1058.
    53. Geese M, Loureiro J J, Bear J E, et al. Contribution of Ena/VASP proteins to intracellular motility of Listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization. Mol Biol Cell,2002,13 (7):2383-2396.
    54. Kocks C, Gouin E, Tabouret M, et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell,1992,68(3):521-531.
    55. Lasa I, Gouin E, Goethals M, et al. Identification of two regions in the N-terminal domain of
    ActA involved in the actin comet tail formation by Listeria monocytogenes. Embo J,1997, 16(7):1531-1540.
    56. Suarez M, Gonzalez-Zorn B, VegaY, et al. A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell Microbiol,2001,3(12):853-864.
    57. Alvarez-Dominguez C, Vazquez-Boland J A, Carrasco-Marin E, et al. Host cell heparin sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun,1997,65(1):78-88.
    58. Dussurget O, Pizarro-Cerda J, Cossart P. Molecular determinants of Listeria monocytogenes virulence. Annu Rev Microbiol,2004,58:587-610.
    1. Hain T, Steinweg C, Kuenne C T, et al. Whole -genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes. J Bacteriol,2006,188(21):7405-7415.
    2. Rocourt J, Cossart P. Listeria monocytogenes. Washington D.C:ASM Press,1997,337-352.
    3. Vazquez-Boland J A, Kuhn M, Berche P, et al. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev,2001,14(548):584-640.
    4. Dominguez-Bernal Gustavo, Muller-Altrock Stefanie, Gonzalez-Zorn Bruno, et al. A spontaneous genomic deletion in Listeria ivanovii identifies LIPI-2, a species-specific pathogenicity island encoding sphingomyelinase and numerous internalins. Mol Microbiol, 2006,59(2):415-432.
    5. Chen J, Jiang L, Chen Q, et al. lmo0038 is involved in acid and heat stress responses and specific for Listeria monocytogenes lineages Ⅰ and Ⅱ, and Listeria ivanovii. Foodborne Pathog Dis,2009,6(3):365-376.
    6. WHO Informal working Group.Foodborne Listeria.Bull World Health Origan.1998,66: 421-428.
    7. Low J C, Donachie W. A review of Listeria monocytogenes and listeriosis. Vet J,1997, 153(1):9-29.
    8. McLauchlin J. The identification of Listeria species. Int J Food Microbiol,1997.38(1): 77-81.
    9. 陆承平,黄青云,吴润,等.兽医微生物学.第三版,北京:中国农业出版社,2001.7
    10. Gellin BG, Broome CV. Listeriosis. Jama,1989,261(9):1313-1320.
    11.无.质检总局采取紧急措施防止加拿大污染肉品入境.肉类工业,2008(9):35-35.
    12. Dussurget O, Pizarro-Cerda J, Cossart P.Molecular determinants of Listeria monocytogenes virulence. Annu Rev Microbiol.2004,58:587-610.
    13. Poyart C, Abachin E, Razafimanantsoa I, et al. The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C:direct evidence obtained by gene complementation. Infect Immun,1993,61(4):1576-1580.
    14. Grundling A, Gonzalez MD, Higgins DE. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells.J Bacteriol, 2003,185(21):6295-307.
    15. Marie Yeung P S, Nicholas Zagorski, et al. The Metall oprotease of Listeria monocytogenes Controls Cell Wall Translocation of the Broad-Range Phospholipase. J Bacteriol,2005, 187(8):2601-2608.