基于PCH方法的永磁风力发电系统机侧控制器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁风力发电系统由于其没有齿轮箱等优点,成为学者们和工业界研究的热点。本文主要针对永磁风力发电系统的机侧整流环节,运用哈密尔顿系统理论中的互联和阻尼配置的无源性控制方法进行了端口受控哈密尔顿(Port-Controlled Hamiltonian,PCH)控制器的设计。
     本文首先介绍了端口受控哈密尔顿系统的一些理论知识,针对这个系统,为了控制的稳定,从能量成型的角度进行研究,分析了无源系统和耗散系统的稳定性条件。并对风力发电系统机侧拓扑结构进行了对比,分析了各自的优缺点,最后阐述了本文能量成型控制的整体思想。
     其次,基于能量的角度,对永磁风力发电系统进行了子系统划分,把系统划分为机械子系统和电磁子系统,并设计了能量传输结构,然后在永磁风力发电系统机侧d-q模型的基础上,利用端口受控哈密尔顿系统理论建立了被控系统的PCH系统模型。
     再次,根据我们所要实现的最大风能跟踪的目标设计了系统的平衡点,通过追踪最佳转速来追踪最大风能,同时解决了包括反对称矩阵,阻尼矩阵的配置,期望能量函数的选择等问题,设计了基于能量控制的PCH控制器来跟踪平衡点,实现最大风能跟踪。
     最后利用Matlab/Simulink仿真软件,对永磁风力发电系统机侧控制进行了仿真研究。通过仿真结果验证了所设计的PCH控制器的正确性。
Permanent-magnetic wind power system has drawn worldwide attention, due to its advantages such as no gear box. In this paper, we designed the Port-Controlled Hamiltonian(PCH) controller for the rectifier of permanent-magnetic wind power system, using the interconnection and damping assignment passivity-based control method in the theory of Hamiltonian system.
     At first, we introduced some basic informations of Hamiltonian system. We analysised the system using the method of energy shaping from the stabilization. We have given the stability condition of the passivity system and the dissipation system. After contrasting the advantages and disadvantages of various rectifier topologies, the overall design of energy shaping method was derived.
     Secondly, basing on the viewpoint of energy shaping, the wind power system was divided into the mechanical subsystem and the electromagnetic subsystem. Energy transmission structure was description on the basis of the two subsystems. Based on the d-q model of the controlled system, we established the model of wind power system in the theory of the port-controlled Hamiltonian system.
     Thirdly, the equilibrium point was designed in order to achieve the maximum wind energy tracking strategy. And we solved the problems such as collocating the skew-symmetric matrix and the damping matrix and choosing the desired closed- loop energy function. After that, the PCH controller of the system can track the equilibrium point of the system so as to capture the maximum power from the wind. Finally, the model of permanent-magnetic wind power system was established via Matlab/Simulink simulation. The results confirmed the effect of the PCH controller.
引文
1易跃春.风力发电现状、发展前景及市场分析.国际电力. 2004,8(4):18~22
    2李亚西,武鑫,赵斌.世界风力发电现状及发展趋势.太阳能学报. 2004,(1): 6~7
    3徐锋,王辉,杨韬仪.兆瓦级永磁直驱风力发电机组变流技术.电力自动化设备. 2007, 27(7) : 57-61
    4邓卫华,张波,丘东元.三相电压型PWM整流器状态反馈精确线性化解耦控制研究.中国电机工程学报.2005, 25(7) : 97~103
    5 Komurcugil H, Kukrer O. Lyapunov-based control for three-phase PWM AC/DC voltage-source converters. IEEE Transaction on Power Electronics. 1998, 13(5) : 1~3
    6杨威,王久和,宋小辉等.三相电压型PWM整流器无源控制策略.辽宁工程技术大学学报. 2007, 26 : 3~175
    7李胜茂. 2010-2015年中国风力发电行业投资分析及前景预测报告.中投顾问产业研究中心. 2010,29(4): 57~59
    8王久和等.电压型PWM整流器的非线性控制.机械工业出版社. 2008 : 127 ~170
    9陈忠维.垂直轴风力机叶尖速比分析研究.可再生能源. 2008: 53~55
    10 C.L.Kana, M.Thamodharan, A.Wolf. System Management of a Wind-energy Converter. IEEE Transaction on Power Electronics. 2001: 375–381.
    11 Chinchilla M, Arnaltes S, Burgos J C. Control of Permanent-magnet Generators Applied to Variable-speed Wind-energy Systems Connected to the Grid. IEEE Transaction on Power Electronics. 2006: 130-135.
    12杨金明,吴捷杨,俊华.基于自寻优控制器的风力发电系统的最大风能捕获控制.太阳能学报. 2004, 25(4): 525-529
    13 Ortega R,Loria A,Nicklasson P J. Passibity-based control of Euler-Lagrnage systems. Communications and Control Engineering. 1998
    14 Van der Sehaft A J. Port-Hamiltonian systems:a theory for modeling, simulation and control of complex physical systems. 2002
    15 Arjanvander Schaft. L2-Gain and passivity techniques in nonlinear control. Springer-Verlag, 2000
    16 Petrovie V, Ortega R, Aleksandar, Stankovie M. Interconnection and damping assignment approach to control of PM synchronous motors. IEEE Transactions on Control Systems Technology, 2001, 9(6): 811~820
    17 Ortega R, Van der Schaft A,Maschke B. Stabilization of port-controlled Hamiltonian systems:Energy-balancing and passivation. Automatica, 2002,38(4)
    18 Rodrlguez H, Ortega R. Stabilization of electromechanieal systems via interconnection and damping assignment. Int. J. Robust Nonlinear Control. 2003, 13(12):1095~1111
    19 Hung J Y, Gao W, and Hung J C. Variable structure control:a survey. IEEE Transaction on Power Electronics. 1993, 40(1): 2~22
    20 EI-Abiad A, Nagappan H K. Transient stability regions of multimachines Power system. IEEE Transactions on Power Apparatus and Systems. 1996: 169~178
    21王玉振,李春文,程代展.非线性自治系统的广义Hamilton实现新方法.中国科学, 2003,33(4): 313~324
    22王玉振,程代展,李春文. .广义Hanilton实现及其在电力系统中的应用.自动化学报, 2002,28(5): 745~75
    23申铁龙,机器人鲁棒控制基础.清华大学出版社,2000: 78~81
    24梅生伟,申铁龙,刘康志,现代鲁棒控制理论与应用.清华大学出版社,2003: 23~30
    25 J. C. wi1lems. Dissipative dynamical systems-partⅠ:GeneralTheory. Arehive for Rational Meehanics and Analysis, 1972, 45:321~351.
    26贾要勤.风力发电实验用模拟风力机.太阳能学报, 2004, 25(6): 735-739
    27 K. C. Kim, S. B. Lim, K. Jang. Analysis on the Direct-Driven High Power Permanent Magnet Generator for Wind Turbine. IEEE Transaction on Power Electronics, 2005 : 243~247
    28 F. X. Wang, Q. M. Hou. Study on Control System of Low Speed PM Generator Direct Driven by Wind Turbine. IEEE Transaction on Power Electronics, 2005 : 1009~1012
    29 M.Chinchilla, S.Arnaltes, J.C.Burgos. Control of Permanent Magnet GeneratorsApplied to Variable-Speed Wind Energy Systems Connected to the Grid.IEEE Transaction on Energy Conversion, 2006, 21(1) : 130~135
    30蔺红,晃勤.并网型风力发电机的建模与仿真.可再生能源. 2006, (4) : 63~65
    31张崇巍,张兴. PWM整流器及其控制.机械工业出版社, 2003 : 2~12,112~117, 134~148
    32 Zhou Keliang , Wang Danwei. Relationship between Space-vector Modulation and Three-phase Carrier-based PWM: A Comprehensive Analysis . IEEE Transactions on Industrial Electronics, 2002 , 49 (1) : 186~196
    33 Z. Lubosny. Wind Turbine Operation in Electric Power Systems. Berlin: Springer, 2003
    34 T. Ackermann. Wind Power in Power Systems. New York: John Wiley and Sons, 2005
    35 1. L. Rodriguez, 1.C. Burgos and L. Amalte. Sistemas E6licos de Produccion de Energia Electrica. Madrid: Editorial Rueda S.L, 2003
    36 I. Boldea. Synchronous Generators. United States of America: Taylor and Francis, 2006
    37 Cao Yongjuan, Li Qiang, Yu Li , Analysis and Calculation of the Electromagnetic Field in Permanent Magnet Synchronous Motor Based on ANSYS. Information Science and Engineering, 2009(1): 133~136
    38李宏,张勇,王晓娟,王文初.永磁同步电机SVPWM控制策略仿真研究.微电机, 2009, 42(1): 86~97
    39 Damien Grenier, L.A.Dessaint, Ouassima Akhrif, Yvan Bonnassieux, Bruno Le Pioufle. Passivity-based control of three phase voltage source PWM rectifiers based on PCHD model. Electrical Machines and Systems, 2008(10): 1126 ~1130
    40王久和,李华德.一种新的电压型PWM整流器直接功率控制策略.中国电机工程学报.2005, 25(6): 47~53
    41孙元章,刘前进,杨新林译.非线性控制中的L:增益和无源化方法.北京:清华大学出版社, 2002: 78~91
    42孙元章,彭疆南.基于Hamihon理论的受控电力系统暂态稳定分析方法.电网技术. 2002, 126(9): 34~38
    43马如云著.非线性常微分方程局部问题.科学出版社, 2004: 54~85
    44倪受元.风力机的原理及气动力特性.太阳能学报,2001(1): 12~16
    45张波.永磁同步电机低脉动直接转矩控制建模与仿真.电机与控制学报, 2007, 11(3): 221~226
    46 Yu H S, Wang H L, Zhao K Y. Energy-shaping control of PM synchronous motor based on Hamiltonian system theory. The Eighth International Conference on Electrical Machines and Systems, 2005: 27~29
    47于海生,王海亮,赵克友.负载恒定未知时永磁同步电机的哈密顿控制方法,中南大学学报, 2005, 36(1): 194~198
    48刘白雁.机电系统动态仿真——基于MATLAB/Simulink.机械工业出版社,2005: 23~54
    49王正林,郭阳宽.过程控制与Simulink应用电子工业出版社,2006: 36~65
    50 Dong-chong Lee AC Voltage and Current sensorless Control of Three-phase PWM Rectifiers. IEEE Transaction on Power Electronics, 2002, 17(6): 154~161