三相—三相双级矩阵变换器的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双级矩阵变换器(TSMC)因除具有矩阵变换器(MC)输入功率因数可控为1、输入输出正弦、输出频率调节范围宽和四象限运行等优良变频性能外,还具有简单的调制策略、换流策略和嵌位电路,而成为一种很有发展潜力的AC-AC直接功率变换器。本文围绕三相-三相TSMC的拓扑,以及三相-三相18开关TSMC的调制策略、共模电压抑制、仿真验证和3kw样机设计展开研究。
     双向开关是MC和TSMC发展的前提,对TSMC整流级使用不同结构的双向开关进行了对比分析,通过对MC和TSMC的传输矩阵推导得出二者具有等效性,证明TSMC和MC有着相同的变频性能。给出了不同约束条件下,TSMC在其基本拓扑、18开关、15开关、12开关和9开关拓扑之间的简化过程,并给出了其它逆变级结构的TSMC拓扑及其研究目的。
     分析了18开关TSMC的双空间矢量调制(DSVM)原理,包括整流级无零矢量DSVM和有零矢量DSVM,阐述了TSMC整流级和逆变级的双级协调调制和双级换流策略目的,是达到输出电压恒定和安全换流,双级换流采用整流级零电流换流和逆变级死区换流,给出了基于Matlab/Simulink的仿真模型和仿真波形。
     针对TSMC存在共模电压的问题,结合TSMC共模电压的分布规律,提出了改进的DSVM,在保证整流级零电流换流的基础上,达到了抑制共模电压的目的,给出了基于Matlab/Simulink的仿真验证。
     在理论分析的基础上,研制了基于整流级无零矢量DSVM的3kw18开关TSMC样机。详细介绍了主电路开关器件、缓冲电路、输入滤波器和嵌位电路的参数设计,以及基于DSP和CPLD组合的控制系统设计,其中DSP主要实现DSVM算法,CPLD主要完成信息译码、双级换流以及PWM驱动信号输出,给出了基于Quartus II的仿真波形。分析了软件设计过程中小占空比的产生原因、影响及其解决方法。在样机上得到了18开关TSMC的器件级和系统级实验波形,以及采用改进DSVM前后的共模电压波形。
     通过仿真和实验,验证了18开关TSMC具有优良的变频性能,采用改进的DSVM达到了抑制共模电压的效果。
Two-stage matrix converter(TSMC), due to, in addition to have controllable input power factor to be one, sinusoidal input and output, wide adjustment range of output frequency and four-quadrant operation as Matrix Converter(MC), but also have a simple modulation strategy, commutation strategy and clamp circuit, has become a great potential AC-AC direct power converter. This paper undertakes a study around the three-phase-three-phase TSMC topology, as well as modulation strategies, common-mode voltage restraining, simulation verification and 3kw prototype design of three-phase-three-phase 18 switches TSMC.
     Bi-direction switch is a premise for the development of MC and TSMC. The comparison of different bi-direction switch structures in TSMC’s rectifier-level are analysed. The equivalence of the MC and TSMC can be find by transfer matrix derivation, it has proved the MC and TSMC sharing the same frequency performance. Under the different constraints, the simplify process among the basic topology, 18 switches, 15 switches, 12 switches and 9 switches of TSMC are given, also the other inverter-level structure of the TSMC and their research purposes are given.
     The principle of doulbe space vector modulation(DSVM) with 18 switches TSMC is analysed, which contain the none-zero vector and zero vector in the rectifier-level. The purpose of the two-stage coordination modulation and two-stage commutation strategy with rectifier-level and inverter-level are to achieve the output voltage constant and safe commutation. The two-stage commutation contain the zero-current commutation of rectifier-level and dead commutation of inverter- level. The Matlab/Simulink simulation model and simulation waveforms are given. For the existence of common-mode voltage in TSMC, combining with the distribution of TSMC common-mode voltage, an improved DSVM is proposed, which has ensure the zero-current commtation of rectifier-level, and achieve the purpose of common-mode voltage suppression. The simulation verification with Matlab/Simulink is given.
     On the basis of the theoretical analyse, a 3kw 18 switches TSMC prototype which base on none-zero vector of rectifier-level is developed. Details of the main circuit switches device, snubber circuit, input filter and clamp circuit’s parameter design are introduced. The combination of DSP and CPLD control system design is given ,in which, the DSP realize the algorithm of DSVM, and the CPLD achieve the signal decoding, two-stage commutation and the PWM drive signal output. The simulation waveforms which base on Quartus II are obtained. The cause, effect and solution of little-duty within software design are analysed. The device-level, system-level, common-mode voltage with the unimproved and improve DSVM experiment waveforms are obtain from the prototype.
     Through the simulation and experiment, they are verify the 18 switches TSMC has an excellent frequency performance, and the adoption of improved DSVM reaches the purpose of common-mode voltage suppression.
引文
[1]孙凯,周大宁,梅杨.矩阵式变换器技术及其应用[M].机械工业出版社,2007.
    [2]邵桂萍,李建林,赵斌,等.兆瓦级变速恒频风电机组变速控制策略的研究[J].太阳能学报,2008,29(9):1167-1171.
    [3]陈伯时,陆海慧.矩阵式交-交变换器及其控制[J].电力电子技术,1999, 33(1):8-11.
    [4]陈伯时.矩阵变流器:技术述评[J].电力电子,2003,1(1):42-56.
    [5] P W Wheeler,J Rodríguez,J C Clare,et al. Matrix converters:A Technology Review[J]. IEEE Transactions on Industrial Electronics,2002,49(2):276-288.
    [6] L Gyugyi,B R Pelly. Static Power Frequency Changers:Theory,Performance,and App- lication[M]. New York:Wiley,1976.
    [7] M Venturini. A New High Switching Rate Direct Frequency Converter[P]. Italian Pat- ent. 1979,207:70-79.
    [8] M Venturini,A Alesina. The generalized transformer:A new bi-directional sinusoidal waveform frequency converter with continuously adjustable input power factor[C]. Proceedings IEEE PESC’80,1980:242-252.
    [9] J Rodriguez. A new control technique for AC-AC converters[C]. Proceeding IFAC Control Power Electronics and Eletrical Drives Conference,1983:203-208.
    [10] J Oyama,T Higuchi,E Yamada,et al. New control strategy for matrix converter[C]. Proceedings IEEE PESC’89,1:360-367.
    [11]穆新华,庄心复.交-交型矩阵变换器的双电压控制原理及波形合成[J].南京航空航天大学学报,1997,29(2):151-157.
    [12] N Burany. Safe control for four-quadrant switches[C]. Proceedings IEEE IAS’89, 1989:1190-1194.
    [13] L Empringham,P W Wheeler,J C Clare. A matrix converter induction motor drive using intelligent gate drive level current commutaion techniques[C]. Proceedings IEEE IAS’00,2000:1936-1941.
    [14] M Bruckmann,O Simon,W Springmann,et al. Application of a new IGBT Module for matrix converter[C]. Proceedings IEEE EPE’01,2001:00416.
    [15] M Takei,T Naito, K Ueno. The Reverse Blocking IGBT for Matrix Converter With Ultra-Thin Wafer Technology[C]. Proceedings ISPSD’03,2003:156-159.
    [16] D Domes,W Hofnann,J Luti. A First Loss Evaluation using a vertical SiC-JFET and a Conventional Si-IGBT in the Bidirectional Matrix Converter Switch Topology[C]. Proceedings IEEE EPE’05,2005:P.1-P.10.
    [17] J Itoh,I Sato,A Odaka,et al. A novel approach to practical matrix converter motor drivesystem with reverse blocking IGBT[C]. Proceedings IEEE PESC’04, 2004,3:2380- 2385.
    [18] P W Wheeler,J C Clare,D Katsis,et al. Design and construction of a 150 KVA matrix converter induction motor drive[C]. Proceedings PEMD’04,2004:719-723.
    [19] C Klumpner,F Blaabjerg. Experimental evaluation of ride-through capabilities for a matrix converter under short power interruptions[J]. IEEE Transaction on Industrial Electronics,2002,49(2):315-324.
    [20]孙凯,周大宁,黄立培,等.矩阵式变换器在电源异常时的运行性能分析[J].电工电能新技术,2004,23(2):9-12,55.
    [21] L Wei,T A Lipo. A Novel Matrix Converter Topology with Simple Commutation[C]. Proceedings IEEE IAS’01,2001,3:1749-1754.
    [22] L Wei,T A Lipo,H Chan. Matrix Converter Topologies With Reduced Number of Swit- ches[C]. Proceedings IEEE PESC’02,2002,1:57-63.
    [23] P Zwimpfer, H Stemmler. Modulation and realization of a novel two-stage matrix converter[C]. Proceedings of the 6th Brazilian Power Electronics Conference,Florian-óplis Brazil,Nov.11-14,2001:485-490.
    [24] P D Ziogas,Y Kang,V R Stefanovic. Rectifier-Inverter Frequency Changers with Supp- ressed DC Link Components[J]. IEEE Transactions on Industry Applications,1986,IA- 22 (6):1027-1036.
    [25] J Holtz,U Boelkens. Direct frequency convertor with sinusoidal line currents for speed-variable AC motors[J]. IEEE Trans.on Industrial Electronics,1989,36(4):475- 479.
    [26] K Shinohara,Y Minari,T Irisa. Analysis and Fundamental Characteristics of Induction Motor Driven by Voltage Source Inverter without DC Link Components[J]. Electrical Engineering in Japan,1989,109(9):637-644.
    [27] Y Minari,K Shinohara,R Ueda. PWM-rectifier/voltage-source inverter without DC link components for induction motor drive[C]. IEE Proceedings-B,1993,140(6):363-368.
    [28] K Iimori,K Shinohara,O Tarumi,et al. New current-contorlled PWM rectifier-voltage source inverter without DC link components[C]. Proceedings PCC-Nagaoka’97,1997, 11:783-786.
    [29] L Wei,Y Matsushita,T A Lipo. Investigation of dual-bridge matrix converter operating under unbalanced source voltages[C]. Proceedings IEEE PESC’03,2003,3:1293-1298.
    [30] L Wei,Y Matsushita,T A Lipo. A compensation method for dual-bridge matrix convert- ers operating under distorted source voltages[C]. Proceedings IEEE IECON’03,2003,3: 2078- 2084.
    [31] L Wei,T A Lipo. Investigation of 9-switch dual-bridge matrix converter operatingunder low output power factor[C]. Proceedings IEEE IAS’03,2003,1:176-181.
    [32] L Wei,T A Lipo,R A Lukaszewski. Comparison of IGBT Cycling Capabilities for Different AC/AC Topologies[C]. Proceedings IEEE ECCE’09,2009: 3298-3305.
    [33] J W Kolar,M Baumann,F Schafmeister,et al. Novel Three-Phase AC-DC-AC Sparse Matrix Converter[C]. Proceedings IEEE APEC’02,2002,2:777-791.
    [34] F Schafmeister,S Herold,J W Kolar. Evaluation of 1200 V-Si-IGBTs and 1300 V-SiC- JFETs for application in three-phase very sparse matrix AC-AC converter systems[C]. Proceedings IEEE APEC’03,2003,1: 241-255.
    [35] T Friedli,S D Round,J W Kolar. A 100 kHz SiC Sparse Matrix Converter[C]. Procee- dings IEEE PESC’07,2007: 2148-2154.
    [36] T. Friedli,M L Heldwein,F Giezendanner,J W Kolar. A high efficiency indirect matrix converter utilizing rb-igbts[C]. Proceedings IEEE PESC’06,2006:1-7.
    [37] A Müsing,M L Heldwein,T Friedli,J W Kolar. Steps Towards Prediction of Conducted Emission Levels of an RB-IGBT Indirect Matrix Converter[C]. Proceedings IEEE PCC’07,2007:1181-1188.
    [38] M L Heldwein,T Nussbaumer,J W Kolar. Differential mode EMC input filter design for three-phase AC-DC-AC sparse matrix PWM converters[C]. Proceedings IEEE PESC’04,2004,1:284-291.
    [39] C Klumpner,F Blaabjerg. A new cost-effective multi-drive solution based on a two- stage direct power electronic conversion topology[C]. Proceedings IEEE IAS’02,2002, 1:444-452.
    [40] C Klumpner,F Blaabjerg. Two stage direct power converters:an alternative to the matrix converter[C]. Proceedings IEE Seminar on Matrix Converter,2003:7/1-7/9.
    [41] C Klumpner, F Blaabjerg, P Th?gersen. Evaluation of the converter topologies suited for integrated motor drives[C]. Proceedings IEEE IAS’03,2003,2:890-897.
    [42] C Klumpner,M Lee,P W Wheeler. A New Three-Level Sparse Indirect Matrix Conver- ter[C]. Proceedings IEEE IECON’06,2006:1902-1907.
    [43] C Klumpner,M Lee,C Pitic,et al. A New Three-Level Indirect Matrix Converter with Reduced Number of Switches[C]. Proceedings IEEE IAS’07,2007:186-193.
    [44] C Klumpner. A hybrid indirect matrix converter immune to unbalanced voltage supply, with reduced switching losses and improved voltage transfer ratio[C]. Proceedings IEEE APEC’06,2006:133-139.
    [45] T Wijekoon,C Klumpner,P Zanchetta,et al. Implementation of a Hybrid AC–AC Direct Power Converter With Unity Voltage Transfer[J]. Power Electronics,IEEE Transacti- ons on,2008,23(4): 1918-1926.
    [46] F Yue,P W Wheeler,J C Clare. A Novel Four-leg Matrix Converter[C]. ProceedingsIEEE IECON’06,2006:2694-2699.
    [47] M Jussila,M Salo,H Tuusa. Realization of a Three-phase Indirect Matrix Converter with an Indirect Vector Modulation Method[C]. Proceedings IEEE PESC’03,2003,2:689- 694.
    [48] M Jussila,M Eskola,H Tuusa. Analysis of Non-Idealities in Direct and Indirect Matrix Converters[C]. Proceedings IEEE EPE’05,2005:P.1-P.10.
    [49] M Jussila,H Tuusa. Semiconductor Power Loss Comparison of Space-Vector Modulat- ed Direct and Indirect Matrix Converter[C]. Proceedings IEEE PCC’07,2007:831-838.
    [50] M Jussila,H Tuusa. Illustration of Relation between Load and Supply Current Distorti- ons in Direct and Indirect Matrix Converters[C]. Proceedings IEEE PESC’07,2007: 2522-2528.
    [51] M Hamouda,F Fnaiech,K AL-Haddad. Space vector modulation scheme for dual- bridge matrix converters using safe-commutation strategy[C]. Proceedings IEEE IECON’05,2005:1060-1065.
    [52] M Hamouda,F Fnaiech,K AL-Haddad. Control of the line current provided by Dual-Bridge Matrix Converters using a discrete-time sliding mode control approa- ch[C]. Proceedings IEEE IECON’06,2006:1727-1732.
    [53] M Hamouda,F Fnaiech,K AL-Haddad. Control of the reactive line current provided by a Dual-Bridge Matrix Converter using the input-output feedback linearization approach[C]. Proceedings IEEE ISIE’06,2006:803-808.
    [54] M Hamouda,F Fnaiech,K AL-Haddad. Input filter design for SVM Dual-Bridge Matrix Converters[C]. Proceedings IEEE ISIE’06,2006:797-802.
    [55]邓文浪,杨欣荣,朱建林,等. 18开关双级矩阵变换器的空间矢量调制策略及其仿真研究[J].中国电机工程学报,2005,25(15):84-90.
    [56]粟梅,许新东,李丹云,等.双级矩阵变换器驱动异步电动机的特性分析[J].中南大学学报(自然科学版),2005,36(4):658-663.
    [57]邓文浪,杨欣荣,朱建林,等.无功功率可控的双级矩阵变换器空间矢量调制策略[J].电力系统自动化,2005,29(18):33-38.
    [58]邓文浪,杨欣荣,朱建林.不平衡负载情况下基于双序dq坐标系双级矩阵变换器的闭环控制研究[J].中国电机工程学报,2006,26(19):70-75.
    [59]邓文浪,杨欣荣,朱建林,等.非正常输入情况下双级矩阵变换器调制策略的改进[J].电工技术学报,2007,22(1):96-102,107.
    [60]邓文浪,杨欣荣,廖力清.基于复合控制器的双级矩阵变换器闭环控制[J].中南大学学报(自然科学版),2007,38(6):1179-1185.
    [61]邓文浪,朱建林,易灵芝.基于改进型重复控制器的双级矩阵变换器闭环控制研究[J].湘潭大学自然科学学报,2008,29(4):117-122.
    [62] Tianxiang Wen,Wenlang Deng,Jianlin Zhu. Study of closed-loop control of two-stage matrix converter based on expert control[C]. Proceedings IEEE CCDC’08,2008:2941- 2945.
    [63]邓文浪,令弧文娟,朱建林.应用自抗扰控制器的双级矩阵变换器闭环控制[J].中国电机工程学报,2008,28(13):13-19.
    [64] Mei SU,Lixun XIA,Yao SUN,et al. Carrier modulation of four-leg matrix converter based on FPGA[C]. Proceedings IEEE ICEMS’08,2008:1247-1250.
    [65] SUN Yao,SU Mei,XIA Lixun,et al. Randomized carrier modulation for four-leg matrix converter based on optimal Markov chain[C]. Proceedings IEEE ICIT’08,2008:1-6.
    [66]孙尧,粟梅,夏立勋.基于载波调制的双级四脚矩阵变换器研究[J].系统仿真学报, 2009,21(18):5783-5788.
    [67]孙尧,粟梅,夏立勋,等.基于最优马尔可夫链的双级四脚矩阵变换器随机载波调制策略[J].中国电机工程学报,2009,29(6):8-14.
    [68] Xu Xin-dong,Su Mei,Sun Yao,et al. Two New Modulation Strategies for Two-Stage Matrix Converter under Nonsinusoidal Input Voltages[C]. Proceedings IEEE ICIEM’07, 2007: 1917-1921.
    [69]粟梅,李丹云,孙尧,等.双级矩阵变换器的过调制策略[J].中国电机工程学报,2008, 28(3):47-52.
    [70] Li Gang,Sun Kai,Huang Lipei. A Novel Algorithm for Space Vector Modulated Two- stage Matrix Converter[C]. Proceedings IEEE ICIEM’08,2008:1316-1320.
    [71] Li Gang,Sun Kai,Huang Lipei,et al. RB-IGBT gate drive circuit and its application in two-stage matrix converter[C]. Proceedings IEEE APEC’08,2008:245-251.
    [72]李刚,孙凯,黄立培.基于RB-IGBT的双级矩阵变换器整流级电路[J].清华大学学报(自然科学版),2009,49(1):37-40.
    [73]李刚,孙凯,黄立培.电压瞬时跌落时双级矩阵变换器的控制策略[J].电机与控制学报,2009,13(1):1-5.
    [74]李刚,孙凯,黄立培.双级矩阵变换器输入电压不平衡控制策略[J].电工电能新技术,2009,28(4):6-9,65.
    [75] Song Weizhang,Zhong Yanru. A study of z-source matrix converter with high voltage transfer ratio[C]. Proceedings IEEE VPPC’08,2008:1-6.
    [76]金爱娟,刘志嘉,李少龙.五相双级矩阵变换器[J].电力系统及其自动化学报,2009,21 (1):59-63.
    [77]陈修锋,金爱娟,李少龙.一种新颖的五相矩阵变换器的调制策略及仿真[J].电气传动,2009,39(6):23-25.
    [78] E R Motto,J F Donlon,M Tabata,et al. Application characteristics of an experimental RB-IGBT(reverse blocking IGBT) module[C]. Proceedings IEEE IAS’04,2004,3:1540-1544.
    [79]邓文浪.双级矩阵变换器及其控制策略研究[D].中南大学博士论文,2007.
    [80]姜艳姝,刘宇,徐殿国,等. PWM变频器输出共模电压及其抑制技术的研究[J].中国电机工程学报,2005,25(9):47-53.
    [81]高强,徐殿国. PWM逆变器输出端共模与差模电压dv/dt滤波器设计[J].电工技术学报,2007,22(1):79-84.
    [82]黄立培,浦志勇.大容量PWM逆变器对交流电机的轴电压和轴承电流的影响[J].电工电能新技术,2000,19(4):39-43.
    [83]刘洪臣,陈希有,冯勇,等.双电压合成矩阵变换器共模电压的研究[J].中国电机工程学报,2004,24(12):182-186.
    [84]刘洪臣,陈希有,沈涛,等.用于抑制矩阵变换器共模电压的零输出换相策略[J].中国电机工程学报,2005,25(3):29-32.
    [85]何必,林桦,张晓锋,等.电流控制型矩阵变换器抑制共模电压控制策略[J].中国电机工程学报,2007,27(25):90-96.
    [86]徐殿国,高强.电压源PWM变频器驱动系统负面效应及其对策研究(二)[J].变频器世界,2006,6:10-16,9.
    [87] F Yue,P W Wheeler,J C Clare. Cancellation of 3rd Common-mode Voltage Generated by Matrix Converter[C]. Proceedings IEEE IECON’05,2005:1217-1222.
    [88] F Yue,P W Wheeler,J C Clare. Common-mode voltage in matrix converters[C]. Proce- edings IET PEMD’08,2008:500-504.
    [89] H J Cha,P N Enjeti. An approach to reduce common mode voltage in matrix converter [C]. Proceedings IEEE IAS’02,2002,(1):432-437.
    [90] H H Lee,H M Nguyen. A Study on Reduction of Common-Mode Voltage in Matrix Converter with Unity Input Power Factor and Sinusoidal Input/Output Waveforms[C]. Proceedings IEEE IECON’05,2005:7.
    [91] M Jussila,J Alahuhtala,H Tuusa. Common-Mode Voltages of Space-Vector Modulated Matrix Converters Compared to Three-Level Voltage Source Inverter[C].Proceedings IEEE PESC’06,2006:1-7.
    [92]张占松,蔡宣三.开关电源的原理与设计[M].电子工业出版社,2004:98-100.
    [93]刘和平,邓力,江渝,等. DSP原理及电机控制应用-基于TMS320LF240x系列[M].北京航空航天大学出版社,2006:189.