基于多学科综合与优化的MAV飞行控制器设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于微型飞行器(Micro Air Vehicle,简称MAV)受到体积和重量限制,在设计过程中如何从系统角度出发实现多学科综合与集成,显得尤为重要。而飞行控制系统作为飞行器设计中学科间联系最为紧密的子系统,对飞行器性能影响很大。飞行控制系统设计存在两大关键技术问题:(1)如何在飞行控制系统设计中考虑学科间的相互影响,保证控制系统性能的鲁棒性:(2)如何在多学科设计优化研究中考虑控制学科的作用,保证飞行器系统整体性能最优。本文以MAV飞行控制器设计方法研究为背景,以鲁棒控制理论为指导,以多学科集成为基础,开展了MAV飞行控制器多学科设计方法研究。主要研究内容和成果概括如下:
     建立了MAV多学科系统分析模型,分析了多学科设计参数之间的数据耦合关系;从MAV非线性微分方程组描述形式出发,研究了状态方程区间模型中不确定性表示方法,推导得到MAV广义对象一般表达式:针对MAV中存在的学科间参数耦合、参数变化、未建模动态等一系列不确定性问题,提出了MAV飞行控制器多学科设计方法。
     针对固定翼MAV,开展了以尺寸最小为目标函数的多学科设计优化研究,研制了MAV原型样机,通过理论分析和飞行试验对不同布局MAV飞行性能进行了研究。提出了在MAV多学科集成环境中利用试验设计理论建立MAV不确定性模型的方法,进行了MAV纵向和横侧向通道的鲁棒飞行控制器设计与评估。
     研究提出控制学科在回路的多学科设计优化方法。从响应面近似模型出发,推导得到将多学科设计参数直接作为摄动量的不确定性模型,减小了不确定性描述的保守性,降低了控制学科计算量,提高了优化设计算法的收敛性,将鲁棒控制优化和并行子空间优化方法相结合,实现了控制学科与其它学科的并行设计与优化,成功将该方法应用到某无尾布局MAV气动、控制学科优化设计中。
     以MAV形变控制鼓包装置几何配置优化问题为例,将MAV中气动学科和控制学科研究相结合,在MAV多学科设计框架中,利用遗传算法解决了MAV气动、控制学科并行设计中的离散优化问题,开展了新型气动控制方案探索性研究。
     针对MAV飞行控制器特点,研究了飞行控制器在回路的数学仿真和半实物仿真方
    
    国防科技人学研究生院学位论文
    法,建立了MA入/飞行控制器仿真验证平台框架。
     论文研究形成的基于多学科综合与优化的M户入z飞行控制器设计方法,能够实现控
    制学科和其它学科的并行设计与优化,从而有效保证M户y飞行控制器的鲁棒性和飞行
    器整体性能最优,为今后深入开展M户L\/飞行控制问题研究提供了实用、有效的理论和
    方法,具有一定应用前景。
    关键词:微型飞行器多学科设计优化飞行控制鲁棒控制
    第11页
Because of strict limitation to volume and weight, it is especially important for Micro Air Vehicle(MAV) to synthesize and integrate multi disciplines from the point of system integration during design process. As a sub-discipline which has most coupling and most close connection among disciplines, flight control system has extremely important influence on aircraft's performance. There exist two key problems in multidiscipline optimization design. One is how to consider mutual influence among disciplines to ensure robustness of control performance; The other is how to take control discipline into account to ensure optimization of overall performance. With MAV flight control system design as background, robust control theory as guidance and multidiscipline synthesis as basis, the research of multidiscipline optimization design method is carried out in this paper. The main contents and results are as follows:Firstly, the MAV multidisciplinary system analysis model is built. And the coupling relationship among multidisciplinary design parameters is analized. Beginning with MAV nonlinear differential equations, this paper studied the uncertainty expression method in status space model and the general expression of MAV generalized object is deduced. To the question of strucrual and nonstructual uncertain problems such as parameter coupling, parameter variation and unmodelled dynamics, the multidisciplinary design method for MAV flight control system is brought forward in this paper.Taking fixed-wing MAV as object, the multidiscipline optimization research is carried out with the aim of minimum size. MAV prototypes are developed. Flight performance of different configure MAV is studied with both theory analysis and flight test. Furthermore, method and process of founding the MAV uncertainty modeling using experimental design method under multidisciplinary integration environments is illustrated. The longitudinal and lateral channel robust flight controllers are designed and evaluated.In this paper, multidisciplinary design optimization method with control discipline in the loop is studied. Beginning with response surface approach model, the uncertainty model using
    
    multidisciplinary design parameters as perturbations is deduced, which not only decreases conservative characteristics of uncertainty expression, but also reduces computational complexity for control discipline, thus improves the convergency degree of optimization algorithum. After that, the parallel design and optimization between control discipline and other disciplines is realized and applied successfully to parallel optimization design of aerodynamics and control discipline for a given tailess MAV.Taking the problem of MAV geometrical optimization placement controlled by shape-change blisters as example, the problem of discret optimization in the process of parallel design is solved using genetic algorithum by combining aerodynamics and control discipline in the frame of MAV multidisciplinary design. Research of a new aerodynamic control scheme is also carried out in this paper.Considering characteristics of MAV flight controller, method of both mathematic simulation and hardware in the loop simulation is studied. Framework of simulation validation platform for MAV flight controller is also built.Finally, a MAV flight controller design method based on multidisciplinary collabration and optimization is developed. Such method realize the cooperation and optimization design between control discipline and other disciplines, which not only ensure the opimal integrative performance and robustness of MAV flight control system.but also provide an effective and practical theory and method for further studying of MAV flight control problem with good prospective for use.
引文
[1] Hundley R O,Gritton E C. Future Technology-Driven Revolutions in Military Operations[R]. RAND Corporation,Document No. DB-110-ARPA,1994.
    [2] Wilson J R. Mini technologies for major impact[J]. America Aerospace,1998,36(5): 36-42.
    [3] Hewish M. A bird in the hand—Miniature and micro air vehicles challenge conventional thinking[J]. Janes International Defense Review,1999(11): 22-28.
    [4] 蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [5] 方昌德.基于微机电技术的微型燃气涡轮发动机[J].国际航空,2000(3):49-50
    [6] Cheng W S,Tilston J R. Testing of a Novel Propulsion System for Micro Air Vehicles: Part G[J]. Proc Instn Mech Engrs,Vol 215: 207-218.
    [7] 李彦华,石文蕊.微型飞行器对传统航空技术的挑战[J].国际航空, 2000(5):41-44
    [8] 肖永利,张琛.微型飞行器的研究现状与关键技术[J].宇航学报.2001,22(5):26-32.
    [9] 苑伟政,马炳和,毛竹群.基于MEMS的微型飞机(MAV)关键技术[J].航空精密制造技术,2000,36(3):1-5.
    [10] Rais-Rohani M,George R H. Multidisciplinary Design and Prototype Development of a Micro Air Vehicle[J]. AIAA Journal of Aircraft,1999,36(1).
    [11] Morris S J,Michael H. Design of Micro Air Vehicles and Flight Test Validation[Z],MLB Company,2000.
    [12] Bostjancic J,Torres G. Multidisciplinary Optimization Report for U. F. O.: University of Florida Observer Aircraft Design and Optimization[R],Second Annual ISSMO Micro Aerial Vehicle Competition,1998.
    [13] Ashley S. Palm-size Spy Plane[J]. Mechanical Engineering,ASME,1998,120 (2): 74-78.
    [14] Gad-el-Hak M. Micro-Air-Vehicles: Can They be Controlled Better?[J]. Journal of Aircraft,2001,38(3): 419-429.
    [15] 美国国防部提名2001财年四项ACTD候选技术[N].国防科技简讯,2000-11-7(43).
    [16] Aldridge E C. Department of Defense(DoD) Announces 2002 ACTD List[N]. Journal of Aerospace and Defense Industry News,March 8,2002.
    
    [17] Joel M G,Matthew T. Keennon. Development of the Black Widow Micro Air Vehicle[R]. AIAA 2001-0127,Aerospace Sciences Meeting,Reno,NV,Jan 2001.
    [18] Cowley M. AeroVironment's "WASP" Micro Air Vehicle Sets World Record[EB/OL]. http: //www. aerovironment. com/area-aircraft/unmanned. html,2002.
    [19] Cowley M. AeroVironment's "Hornet" Micro Air Vehicle Completes First Fuel Cell Powered Flight[EB/OL]. http: //www. aerovironment. com/area-aircraft/ unmanned. html,2003.
    [20] 《国外无人机大全》编写组.国外无人机大全[M].北京:航空工业出版社,2001:500-501.
    [21] MLB Company. MLB Product[EB/OL]. http: //www. sirius. com/~mlbco.
    [22] BAE Systems. MicroSTAR Micro Air Vehicle Design to Reality[Z]. Lockheed Martin Aeronautics Company,2001.
    [23] 前田辙.美军在阿富汗实地实验新武器[N].参考消息,2001-12-11(5).
    [24] Kellogg J,Bovais C,Dahlburg J,et al. The NRL Micro Tactical Expendable (MITE) air vehicle[J]. Aeronautical Journal,2002,106(1062): 431-441.
    [25] Waszak M R,Jenkins L N. Stability and Control Properties of an Aeroelastic Fixed Wing Micro Aerial Vehicle[R]. AIAA 2001-4005,2001.
    [26] Ifju P G,Jenkins D A,Ettinger S,et al. Flexible-Wing-Based Micro Aerial Vehicle[R]. AIAA 2002-0705,AIAA Aerospace Sciences Meeting,Reno,NV,January 2002.
    [27] Waszak M R,Davidson J B,Ifju P G. Simulation and Flight Control of an Aeroelastic Fixed Wing Micro Aerial Vehicle[R]. AIAA 2002-4875,AIAA Atmospheric Flight Mechanics Conference,Monterey,CA,5-8 August 2002.
    [28] McMichael J M. Micro Air Vehicle—Toward a New Dimension in Flight[EB/OL]. http: //www. darapa. mil,1998.
    [29] Naimer N,Koretz B,Putt R. Zinc-air Batteries for UAVs and MAVs[Z]. Electric Fuel,December 6,2002.
    [30] Kajiwara I,Haftka R T. Simultaneous Optimum Design of Shape and Control System for Micro Air Vehicles[R],AIAA 99-1391,1999.
    [31] 丁衡高.微系统与微米/纳米技术及其发展[J].微米/纳米科学技术,2000,5(1):1-6.
    [32] Marti S. How to Talk to a Papa-TV-Bot: Interfaees for Autonomously Levitating Robots[EB/OL]. http: //www. media. mit. edu/~stefanm/FFMP.
    [3
    
    [33] Marti S. Free Flying Micro Platform and Papa-TV-Bot: evolving autonomously hovering mobots[EB/OL],http: //www. media. mit. edu/~stefanm.
    [34] Miniature UAVs[EB/OL]. http: //www. vectorsite. net/index. html.
    [35] Amy Stone. Flying into the Future[EB/OL]. http: //www. gtri. gatech. edu.
    [36] Pornsin-Sirirak T N,Yu-Chong T,Chih-Ming H,et al. Microbat: A Palm-Sized Electrically Powered Ornithopter[R]. JPL10-2001,2001.
    [37] Schenato L,Deng X,Wu W C,et al. Virtual Insect Flight Simulator (VIFS): A Software Testbed for Insect Flight[R]. University of California,2001.
    [38] 南航大成功研制出微型飞行器[N].中国航空报,2001-08-13.
    [39] 孙茂,吴江浩.微型飞行器的仿生流体力学——昆虫前飞时的气动力和能耗[J].航空学报,2002,23(5):385-393.
    [40] 童秉纲,崔尔杰.飞行和游动的生物力学与仿生技术[EB/OL].北京:香山科学会议,2003-10-20.
    [41] 曹云峰,王柳文,陶勇等.微型飞行器控制与导航系统研究[J].航空电子技术,2002,33(1):31-35.
    [42] Ettinger S M,Nechyba M C,Ifju P G,et al. Vision-Guided Flight Stability and Control for Micro Air Vehicles[J]. Advanced Robotics,2003,17(7): 617-640.
    [43] Fitz-Coy N,Belcher V. A Framework for Control,Sensor and Actuator Design in Adaptive Wing MAV[A]. Proceedings of 1st International Conference on Emerging Technologies for Micro Air Vehicles[C]. 1997.
    [44] Limin Z,Ramaprian B R. A Piezo-Electrically Actuated Wing for A Micro Air Vehicle[R]. AIAA 2000-2302,2000.
    [45] Douglas Page. Micro Air Vehicles: Learning from the Birds and Bees[EB/OL]. http: //www,hightechcareers. com/doc 198e/mav198e. html.
    [46] Douglas Page. MAV Flight Control: Realities and Challenges[EB/OL]. http: //www. Hightech-careers. com/doc198e/flightcontrol198e. html.
    [47] Raney D L,Slominski E C. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles[R]. AIAA 2003-5345,AIAA Guidance,Navigation & Control Conference,Austin,Texas,11-14 August 2003.
    [48] 陈皓生,李疆.单片机在微型飞行器增稳系统中的应用[J].测控技术,2001,20(1):51-54.
    [49] Ji F,Zhou Z Y,Wang X H,et al. Signal Measurement and Control System in Micro Air Vehicle[J]. Instrument and Control Transaction,2003,24(6): 643-648.
    [5
    
    [50] Kenneth L B. AFTI/F111 mission adaptive wing flight research program[A]. AIAA 4th Flight Test Conf[C],San Diego,1988.
    [51] Padula S L,Rogers J L,Raney D L. Multidisciplinary Techniques and Novel Aircraft Control Systems[J]. AIAA 2000-4848,2000.
    [52] Inman D J. Comments on Prospects of Fully Adaptive Aircraft Wings[A]. SPIE Paper SS 4332-01,8th International Symposium on Smart Structures and Materials[C],Newport Beach,CA,2001.
    [53] Discovery Online. Tiny Spies In the Sky[EB/OL]. http: //www. discovery. com.
    [54] Carroll B,Fitz-Coy N,Shyy W,Nishida T. Use of MEMS For Micro Air Vehicles[R]. AFRL-SR-BL-TR-01-0087,2000.
    [55] 鲁道夫·布罗克豪斯著,金长江译.飞行控制[M].北京:国防工业出版社,1999.
    [56] Rauw M. FDC 1. 2—A Simulink Toolbox for Flight Dynamics and Control Analysis[Z]. Delft University of Technology,Faculty of Aerospace Engineering,Delft,The Netherlands,1998.
    [57] Steinberg M L. Comparison of Intelligent,Adaptive,and Nonlinear Flight Congrol Laws[J]. Journal of Guidance,Control,and Dynamics,2001,24(4): 693-699.
    [58] Park D,Park M S,Hong S K. A Study on the 3-DOF Attitude Control of Free-flying Vehicle[A]. Proceedings of IEEE International Symposium on Industrial Electronics[C],Jun 12-16,2001(2): 1260-1265.
    [59] Yoon D Y,Oh S R,You B J,et al. Behavior-Based Autonomous Flight Control For A Micro Aerial Vehicle[C]. Proceedings of the 32nd ISR(International Symposium on Robotics),2001.
    [60] Bingwei S,Briere Y,Bordeneuve-Guibe J. Development of a MAV—Modelling,Control and Guidance[Z]. Ecole Nationale d'Ing(?)nieurs de Constructions A(?)ronautiques,2003.
    [61] Johnson E N,DeBitetto P A. Modeling and Simulation for Small Autonomous Helicopter Development[R]. AIAA97-3511,1997.
    [62] Appa K,Argyris J. Non-linear Multidisplinary Design Optimization Using System Identification and Optimal Control Theory[J]. Comput. Methods Appli. Mech. Engrg.,1995(128): 419-432.
    [63] Johnson E N,Fontaine S G. Minimum Complexity Uninhabited Air Vehicle Guidance and Flight Control System[R]. Naval Research Laboratory, 2002.
    
    [64] Johnson E N, Fontaine S. Use of Flight Simulation to Complement Flight Testing of Low-Cost UAVS[R]. AIAA 2001-4059, 2001.
    [65] Huaiyu Wu, Zhaoying Zhou, Shenshu Xiong, et al. Analysis of Multi Channel Control Signals for Micro Air Vehicles Based on MVAR Model[J/OL]. Sensors & Transducers e-Digest,2002.
    [66] Ostroff A J, Bacon B J. Force and Moment Approach for Achievable Dynamics using Nonlinear Dynamic Inversion[R]. AIAA 99-4001, 1999.
    [67] Bacon B J, Ostroff A J. Reconfigurable Flight Control Using Nonlinear Dynamic Inversion With a Special Accelerometer ImplementationfR]. AIAA 2000-4565, 2000.
    [68] Yi H, KeKang X, JingQing H, et al. Flight Control Design using Extended State Observer and Non-smooth Feedback[A]. Proceedings of IEEE Conference on Control and Decision[C]. Oriando, 2001,223-228.
    [69] Spee J B R M. Determining Requirements for a Computational Aircraft Control Engineering Environment (CACEE) Based on a Literature Survey[R]. GAPTEUR/TP-088-1,1997.
    [70] Helmersson A. Robust Flight Control Design Challenge Problem Formulation and Manual: the Research Civil Aircraft Model (RCAM). GAPTEUR/TP-088-3,1997.
    [71] Muir E A M. Robust Flight Control Design Challenge Problem Formulation and Manual: the High Incidence Research Model (HIRM)[R]. GAPTEUR/TP-088-4,1997.
    [72] Montes D. Robust Control Techniques Tutorial Document[R]. GAPTEUR/TP-088-7,1997.
    [73] Bennani S. RCAM Design Challenge Presentation Document: The mu-Synthesis Approach[R]. GAPTEUR/TP-088-11, 1997.
    [74] Looye G. Description and Analysis of the Research Civil Aircraft Model (RCAM)[R]. GAPTEUR/TP-088-27,1997.
    [75] Markerink J A. Design of a Robust, Scheduled Controller for the HIRM using H-infinity, mu-synthesis[R]. GAPTEUR/TP-088-29,1997.
    [76] Venkayya V B. Multidisciplinary Issues in Airframe Design[R]. AIAA 96-1386,1996.
    [77] AIAA White Paper, Current State of the Art: Multidisciplinary Design Optimization[Z] AIAA Technical Committee for MDO, 1991.
    
    [78] Sobieski J P,Haftka R T. Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments[R]. AIAA 96-0711,1996.
    [79] Giesing J P,Barthelemy J F M. A Summary of Industry MDO Applications and Needs[R]. AIAA 98-4737,1998.
    [80] 余熊庆,丁运亮.多学科设计优化算法及其在飞行器设计中应用[J].航空学报,2000,21(1):1-6.
    [81] 余雄庆.多学科设计优化算法及其在飞机设计中的应用研究[D].南京:南京航空航天大学,1999.
    [82] Kroo I. Computation-Based Design—A White Paper[Z]. Stanford Univesity,1996.
    [83] Batill S M,Stelmack M A,XiongQing Yu. Multidisciplinary design optimization of an electric-powered unmanned air vehicle[J]. Aircraft Design,1999(2): 1-18.
    [84] Batill S M,Stelmack M A. Framework for Multidisciplinary Design Based on Response-Surface Approximations[J]. Journal of Aircraft,1999,36(1): 287-297.
    [85] 胡峪.飞机多学科设计优化及其应用研究[D].西安:西北工业大学,2001.
    [86] Anderson M R,Suchkov A. Flight Control System Design Risk Assessment[R]. AIAA95-3197,1995.
    [87] Anderson M R,Mason W H. An MDO Approach to Control-Configured-Vehicle Design[R]. AIAA 96-4058,1996.
    [88] Raney D L,Montgomery R C,Green L L. Flight Control using Distributed Shape-Change Effector Arrays[R],AIAA 2000-1560,2000.
    [89] Becket J,Luber W. Flight Control Design Optimization with Respect to Flight and Structural Dynamic Requirements[R]. AIAA-96-4047-CP,1996.
    [90] Tischler M B,Colbourne J D,Morel M R,et al. A Multidisciplinary Flight Control Development Environment and Its Application to a Helicopter[J],IEEE Control Systems,1999(8): 22-33.
    [91] Spee J B R M,Laan D J. Collaborative Engineering Environments-Two Examples of Process Improvement[R]. NLR-TP-98600,2001.
    [92] Hallberg E. Development of a Flight Test System for Unmanned Air Vehicles[J]. IEEE Control Systems,1999(2): 55-65
    [93] Finsterwalder R,Joos H D,Varga A. A Graphical User Interface for Flight Control Development[A]. Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design[C]. Hawai,1999: 439-444.
    [9
    
    [94] 曾庆华,张育林.MAV:未来分布式数字战场的前端武器[A].2000年度总装备部科技年会[C].北京:总装备部新技术局,2000.
    [95] Geen J. New iMEMS Angular-Rate-Sensing Gyroscope[R]. Analog Dialogue 37-03,2003.
    [96] 张明廉.飞行控制系统[M].北京:国防工业出版社,1998:41-45.
    [97] 肖业伦,金长江.大气扰动中的飞行原理[M].北京:国防工业出版社,1993:73-90.
    [98] Torres G,Thomas J M. Micro Aerial Vehicle Development: Design,Components,Fabrication and Flight-Testing[Z]. University of Notre Dame Report,2000.
    [99] Mueller T J,Gibson R. Aerodynamic Measurements at. Low Reynolds Numbers for Fixed Wing Micro-Air Vehicles[R]. Hessert Center for Aerospace Research University of Notre Dame,1999.
    [100] 《7210任务》办公室.航空气动力手册(第二册)[S].北京:航空工业出版社,1983.
    [101] 严恒元.飞行器气动特性分析与工程计算[M].西安:西北工业大学出版社,1990.
    [102] Morris S J. Design and flight test results for Micro-sized fixed-wing and VTOL aircraft[EB/OL],http: //www. sirius. com/~mlbco/mav. html,1998.
    [103] Morris S J. Design of A Micro-sized unmanned aircraft using MDO[EB/OL]. http: //www. sirius. com/~mlbco/mav. html,1998.
    [104] 孙世贤,黄圳圭.理论力学教程[M].长沙:国防科技大学出版社,1997.
    [105] 曾庆华,王中伟.微型飞行器舵机驱动回路的模型辨识报告[R].国防科技大学航天与材料工程学院技术报告,长沙:国防科技大学航天与材料工程学院,2000.
    [106] 余立.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [107] 周克敏,Doyle J C and Glover K. 鲁棒与最优控制[M].国防工业出版社,2002.
    [108] Kemin Zhou,Doyle J C. Essentials of Robust Control[M]. Prentice Hall,1997.
    [109] 冯纯伯,田玉平.鲁棒控制系统设计[M].南京:东南大学出版杜,1995.
    [110] Balas G J,Doyle J C,Glover K,et al. μ-Analysis and Synthesis Toolbox for Use with MATLAB[CP/DK]. The Mathworks Inc.,2001.
    [1
    
    [111] Chiang R Y. Robust Control Toolbox for Use with MATLAB[CP/DK]. The Mathworks Inc.,2001.
    [112] 郑建华,杨涤.鲁棒控制理论在倾斜转弯导弹中的应用[M].北京:国防工业出版社,2001.
    [113] 吴方向,史忠科,周宗锡等.飞机运动系统的区间模型及鲁棒飞行控制[J].西北工业大学学报,2000,18(3):374-376.
    [114] GJB185-86,有人驾驶飞机(固定翼)飞行品质[S],国防科技工业委员会,1986.
    [115] Phillips W F,Santana B W. Aircraft Small-Disturbance Theory with Longitudinal-Lateral Coupling[J]. Journal of Aircraft,2002,39(6): 973-980.
    [116] 熊海泉.飞机飞行动力学[M].北京:航空工业出版社,1990.
    [117] 吕学富.飞行器飞行力学[M].西安:西北工业大学出版社,1995.
    [118] 何庆芝.《飞机设计手册》第1册[M].北京:航空工业出版社,1996.
    [119] 方振平.带自动器飞机飞行动力学[M].北京:国防工业出版社,1999.
    [120] 潘荣霖.飞航导弹自动控制系统[M].北京:宇航出版社,1991.
    [121] Venter G. Non-Dimensional Response Surfaces for Structural Optimization with Uncertainty[D]. USA: University of Florida,1998.
    [122] Padmanabhan D,Batill S M. An Iterative Concurrent Subspaee Robust Design Framework[R]. AIAA-2000-4841,2000.
    [123] Xiaoping Du,Wei Chen. Concurrent Subsystem Uncertainty Analysis in Multidisciplinary Design[R]. AIAA 2000-4928,2000.
    [124] Batill S M,Renaud J E,Xiaoyu G. Modeling and Simulation Uncertainty in Multidisciplinary Design Optimization[R]. AIAA 2000-4803,2000.
    [125] 符曦.系统最优化及控制[M].北京:机械工业出版社,1998.
    [126] 解学书.最优控制理论与应用[M].北京:清华大学出版社,1987.
    [127] Hulme K F. The Design of a Simulation-Based Framework for theDevelopment of Solution Approaches in Multidiseiplinary DesignOptimization[D]. USA: State University of New York,2000.
    [128] 李中键,安锦义.不确定性表示及在高性能鲁棒飞行控制器设计中的应用研究[J].西北工业大学学报,2002,20(1):96-99.
    [129] 王德进.H_2和H_∞优化控制理论[M].哈尔滨:哈尔滨工业大学出版社,2001:124-126.
    [130] 刘朝辉.试验设计和分析[M].北京:气象出版社,1998.
    [131] 陈立周.稳健设计[M].北京:机械出版社,2002.
    
    [132] Sobieski J P, I.M.Kroo. Collaboration Optimization Using Response Surface Estimation[J]. AIAA Journal,2000,38 ( 10) : 1931-1938.
    [133] Morris S J. Integrated Aerodynamics and Control System Design For Tailless Aircraft[R]. AIAA-92-4604, 1992.
    [134] Livine E, Schmit L A, Friedmann P P., Exploratory Design Studies of Actively Controlled Wings Using Integrated Multidisciplinary Synthesis, AIAA Journal, 1992,30(5).
    [135] K.Tsujioka, I.Kajiwara, A.Nagamatsu. Integrated Optimum Design of Structure and H- Control System[J]. AIAA Journal, 1996,34 ( 1) : 159-165.
    [136] Mannchen T,Bates D G, Postlethwaite I. Modeling and Computing Worst-case uncertainty Combinations for Flight Control Systems Analysis[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(6): 1029-1039.