新的STK11互作蛋白LOH12CR1的筛选及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:PJS综合征(Peutz-Jeghers syndrome,PJS)是一种常染色体显性遗传疾病,发病率为1/10000-12000。临床表现主要为多发性错构瘤样胃肠息肉以及皮肤粘膜色素沉着,其致病基因STK11位于人类常染色体19p13-3,跨度为23kb,包含10个外显子,由433个氨基酸残基组成,具有调控细胞周期、调节细胞极性以及细胞基础能量代谢等重要功能。虽然大多数PJS患者的致病原因是由于STK11催化活性域的突变导致的激酶功能丧失,但是在部分PJS患者和散发肿瘤中,却存在STK11羧基端的突变,STK11羧基端共123个氨基酸残基,包括多个翻译后修饰位点,对STK11生物学功能的实现起着调节作用,机制尚未明确。
     方法:本研究利用GST(Glutathione S transferase)融合蛋白表达系统,构建了pGEX4T-2-STK11羧基端重组载体,在低温的条件下诱导了GST-STK11羧基端融合蛋白的表达,并利用Glutathione Sepharose获得高度可溶性GST-STK11羧基端融合蛋白,采用GST-pull down结合质谱分析的方法,筛选到STK11羧基端的可能互作蛋白LOH12CR1。LOH12CR1定位于人12号染色体上,为抑瘤基因的候选基因,且进化上的高度保守。
     结果:我们通过免疫共沉淀技术证实STK11激酶与LOH12CR1的互作关系;并利用哺乳动物双杂交系统显示两者之间非直接互作,需第三方参与。免疫荧光共定位实验发现STK11与LOH12CR1共定位。
     结论:STK11与LOH12CR1互作的发现为研究STK11的功能提供新的切入点。
Objective:Peutz-Jeghers(PJ)syndrome is an autosomal-dominant disorder characterized by melanocytic macules of the lips,multiple gastrointestinal hamartomatous polyps and an increased risk for various neoplasms,including gastrointestinal cancer. The incidence frequency of PJS is varied greatly from 1/10000 to 1/12000.Recently the disease gene STK11 was mapped to chromosome 19p13.3,extending over 23 kb of genomic DNA and composed of 9 exons,encoding the serine/threonine kinase which is consisited of 433 amino acid residues and highly conserved in the evolution process.It can regulate cell cycle,cell polarity and cell basic energy metabolism.Although the mutation in STK11 catalytic domain is responsible for the loss of its function,many mutations in the C-terminal region of STK11 have been identified in PJS as well as in other tumors.Since the C-terminal including 123 amino acid residue has multiple post-translational modification locus,it maybe play an important role in tumorigeness,but the mechanism is unclear.
     Methods:In order to further investigate the function of the C-terminal of STK11,we cloned and inserted it into the prokaryotic expression system of pGEX4T-2,and induced the expression of the fusion protein GST-STK11,then purified the highly soluble fusion protein with the Glutathione Sepharose,then we screened the LOH12CR1 which can be interacted with the C-terminal region of STK11 by GST-pull down and mass chromatographic analysis. LOH12CR1,located on the 12p,is the candidate gene of suppressor tumor gene and highly reserved in evolution.
     Results:The LOH12CR1 can co-localize with STK11 by immunofluorescence test,also we proved that they can interact by co-immunoprecipitation,however they do not directly affect in mammalian two-hybrid assay system.
     Conclusion:Our research found the novel interaction protein LOH12CR1 of STK11,therefore provided a new clue for the research of its function.
引文
[1] Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature, 1998, 391:184-187.
    [2] Jenne DE, Reimann H, Nezu J, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet, 1998,18: 38-43.
    [3] Katajisto P, Vallenius T, Vaahtomeri K, et al. The tumor suppressor kinase in human disease. Biochim Biophy Acta, 2007,1775(1):63-75.
    [4] Marignani P.A. LKB1, the multitasking tumour suppressor kinase. J Clin Pathol. 2005 Jan;58(1):15-9
    [5] Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol, 2003, 2(4):28.
    [6] Woods A, Johnstone SR, Dickerson K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol, 2003,13(22): 2004-2008.
    [7] Shaw R J, Kosmatka M, Bardeesy N, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A, 2004,101(10): 3329-3335.
    [8] Lizcano J M, Goransson O, Toth R, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J, 2004, 23(4): 833-843
    [9] Baas AF, Kuipers J, van der WeI NN, et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell, 2004,116(3): 457-466.
    [10]Tiainen M, Ylikorkala A, Makela TP. Growth suppression by STK11 is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci U S A, 1999, 96(16): 9248-9251.
    [11]Resta N, Stella A, Susca FC, et al. Two novel mutations and a new STK11/LKB1 gene isoform in Peutz-Jeghers patients. Hum.Mutat, 2002, 20(1):78-79
    [12]Cao R, Li X, Liu Z,et al. 2006. Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins. J Proteome Res. 5: 634-42.
    [13]Mehenni H, Lin-Marq N, Buchet-Poyau K, et al. LKBl interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. Hum Mol Genet, 2005,14(15): 2209-2219.
    [14] Rossi DJ, Ylikorkala A, Korsisaari N, et al. Induction of cyclooxygenase-2 in a mouse model of Peutz-Jeghers polyposis. Proc Natl Acad Sci U S A, 2002 , 99: 12327-12332.
    [15]Marignani PA, Kanai F, Carpenter CL. LKBl associates with Brgl and is necessary for Brgl-induced growth arrest. J Biol Chem, 2001, 276(35): 32415-32418.
    [16]Spicer J, Rayter S, Young N, et al. Regulation of the Wnt signalling component PAR1A by the Peutz-Jeghers syndrome kinase LKBl. Oncogene, 2003, 22(30): 4752-4756.
    [17]Ossipova O, Bardeesy N, DePinho RA, et al. LKBl (XEEK1) regulates Wnt signalling in vertebrate development. Nat Cell Biol, 2003, 5(10): 889-894.
    [18] Lee JH, Koh H, Kim M, et al. JNK pathway mediates apoptotic cell death induced by tumor suppressor LKBl in Drosophila. Cell Death Differ, 2006,13(7): 1110-1122.
    [19] Martin SG, St Johnston D. A role for Drosophila LKBl in anterior-posterior axis formation and epithelial polarity. Nature, 2003,421(6921): 379-384.
    [20]Alessi DR, Sakamoto K, Bayascas JR. STK11-Dependent Signaling Pathways. Annu Rev Biochem, 2006, 75:137-163.
    [21]Sapkota GP, Kieloch A, Lizcano JM, et al. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKBl/STKll, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKBl to suppress cell vrowth. J Biol Chem, 2001, 276(22): 19469-19482.
    [22]Sapkota GP, Boudeau J, Deak M, et al. Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome. Biochem J, 2002,362(Pt 2): 481-490.
    [23] Shelly M, Cancedda L, Heilshorn S, LKB1/STRAD promotes axon initiation during neuronal polarization. Cell, 2007,129(3):565-577.
    [24] Martin SG, St Johnston D. A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature, 2003,421(6921): 379-384.
    [25] Baas AF, Boudeau J, Sapkota GP, et al. Activation of the tumour suppressor kinase STK11 by the SE20-like pseudokinase STRAD. EMBO J, 2003, 22(12): 3062-3072.
    [26]Forcet C, Etienne-Manneville S, Gaude H, et al. Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum Mol Genet, 2005,14(10): 1283-1292.
    [27]Tiainen M, Vaahtomeri K, Ylikorkala A,et al. Growth arrest by the STK11 tumor suppressor: induction of. p21(WAF1/CIP1). Hum Mol Genet, 2002, 11: 1497-1504.
    [28]Forcet C, Manneville ES, Gaude H, et al. Function analysis of Peutz-Jeghers mutations reveals that the STK11 C-terminal region exerts a crucial role in regulating both the AMPK path way and the cell polarity. Hum Mol Genet, 2005,14(10):1283-1292.
    [29] Sapkota GP, Kieloch A, Lizcano JM, et al. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem, 2001, 276(22): 19469-19482.
    [30] Montpetit A, Larose J, Boily G, et al. Mutational and expression analysis of the chromosome 12p candidate tumor suppressor genes in pre-B acute lymphoblastic leukemia. Leukemia, 2004 ,18(9): 1499-1504.
    [1] Giardiello FM, Brensinger JD, Tersmette AC ,et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology, 2000,119(6):1447-53
    [2] Aretz S, Stienen D, Uhlhaas S, et al. High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum. Mutat, 2005,26 (6):513-519.
    [3] Hearle NC, Rudd MF, Lim W, et al. Exonic STK11 deletions are not a rare cause of Peutz - Jeghers syndrome, J Med Genet, 2006,43 (4):1-15.
    [4] Tiainen M, Ylikorkala A, Makela TP. Growth suppression by Lkbl is mediated by a G(1) cell cycle arrest. Proc Natl Acad Sci U S A, 1999,96(16):9248-9251.
    [5] Bardeesy N, Sinha M, Hezel AF, et al. Loss of the Lkbl tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature, 2002, 419(6903):162-167.
    [6] Nakau M, Miyoshi H, Seldin MF, et al. Hepatocellular carcinoma caused by loss of heterozygosity in Lkbl gene knockout mice. Cancer Res, 2002, 62(16):4549-4553.
    [7] Zeng PY, Berger SL. LKBl is recruited to the p21/WAFl promoter by p53 to mediate transcriptional activation. Cancer Res, 2006; 66(22): 10701-10708.
    [8] Tiainen M, Vaahtomeri K, Ylikorkala A,et al. Growth arrest by the LKBl tumor suppressor: induction of p21(WAFl/CIPl). Hum Mol Genet, 2002, 11(13): 1497-1504.
    [9]Mehenni H, Lin-Marq N, Buchet-Poyau K,et al. LKBl interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes.Hum Mol Genet, 2005,14(15):2209-2219.
    [10] Jimenez Al, Fernandez P, Dominguez O, et al. Growth and molecular profile of lung cancer cells expressing ectopic LKB1:down-regulation of the phosphatidylinositol 3'-phosphate kinase/PTEN pathway. Cancer Res, 2003, 63(6): 1382-1388.
    
    [11] Mehenni H, Lin-Marq N, Buchet-Poyau K, et al. LKBl interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. Hum Mol Genet, 2005,14(15):2209-2219.
    [12] Rossi DJ, Ylikorkala A, Korsisaari N, et al. Induction of cyclooxygenase-2 in a mouse model of Peutz-Jeghers polyposis. Proc Natl Acad Sci U S A, 2002, 99(19):12327-12332.
    [13] Marignani PA, Kanai F, Carpenter CL. LKB1 associates with Brgl and is necessary for Brgl-induced growth arrest. J Biol Chem, 2001, 276(35):32415-32418.
    [14]Hongbin J,. Ramsey MR, Neil Hayes D, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature, 2007, 48(16):807-811.
    [15] Kemphues KJ, Priess JR, Morton DG, et al, Identification ofgenes required for cytoplasmic localization in early C. elegans embryos. Cell, 1988,52(3):311-320.
    [16] Hung TJ, Kemphues KJ, PAR-6 is a conserved PDZ domaincontaining protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development, 1999,126 (1):127 -135.
    [17] Nance J, PAR proteins and the establishment of cell polarity during C. elegans development. BioEssays, 2005, 27 (2) 126-135.
    [18] Munro EM, PAR proteins and the cytoskeleton: a marriage of equals. Curr Opin Cell Biol, 2006,18 (1):86-94.
    [19] Drewes G MARKing tau for tangles and toxicity. Trends Biochem Sci, 29(10):548-555.
    [20] Lizcano JM, Goransson O, Toth R, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBOJ, 2004, 23(4):833-43
    [21] Forcet C, Etienne-Manneville S, Gaude H, et al. Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum Mol Genet, 2005,14(10):1283-1292.
    [22] Baas AF, Kuipers J, van der Wel NN, et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell, 2004,116(3):457-466.
    [23] Shelly M, Cancedda L, Heilshorn S, LKB1/STRAD promotes axon initiation during neuronal polarization. Cell, 2007,129(3):565-577.
    [24] Asada N, Sanada K, Fukada Y. LKB1 regulates neuronal migration and neuronal differentiation in the developing neocortex through centrosomal positioning. J Neurosci.2007,27-(43):11769-1175.
    [25] Tan JL, Ravid S, Spudich JA, et al. Control of nonmuscle myosins by phosphorylation. Annu. Rev Biochem, 1992, 61:721-759.
    [26] Matsumura F, Regulation of myosin II during cytokinesis in higher eukaryotes.Trends Cell Biol, 2005,15 (7):371-377.
    [27] Ivanov AI, Hunt D, Utech M, et al, Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol Biol Cell, 2005,16 (6):2636 - 2650.
    [28] Bettencourt-Dias M, R Giet, Sinka R, et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature, 2004,432 (7052):980-987.
    [29] Kahn BB, Alquier T, Carling D, et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab, 2005,1 (1):15-25.
    [30] D. Carling, AMP-activated protein kinase: balancing the scales. Biochimie, 2005, 87 (1) 87 - 91.
    [31] Shaw RJ, Lamia KA, Vasquez D, et al.The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin, Science, 2005, 310 (5754):1642-1646.
    [32] Bolster DR, Crozier SJ, Kimball SR, et al. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem, 2002, 310(5754):1642-1646.
    [33] Sakamoto K, McCarthy A, Smith D, et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J, 2005,24(10)1810-1820.
    [34] Sakamoto K, Zarrinpashneh E, Budas GR, et al. Deficiency of LKB1 in heart prevents ischemiamediated activation of AMPKalpha2 but not AMPKalphal. Am J Physiol Endocrinol. Metab, 2006, 290(5):E780-788.
    [35] Hawley SA, Boudeau J, Reid JL,et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol, 2003, 2(4):28-31.
    [36] Marignani PA, Scott KD, Bagnulo R, et al. Novel Splice Isoforms of STRADa Differentially Affect LKB1 Activity, Complex Assembly and Subcellular Localization. Cancer Biol Ther, 2007, 6(10)1-5.
    [37] Forcet C, Etienne-Manneville S, Gaude H, et al. Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum Mol Genet, 2005,14(10): 1283-1292.
    [38] Alessi DR, Sakamoto K, Bayascas JR. LKB1-Dependent Signaling Pathways. Annu Rev Biochem, 2006,75:137-163.
    [39]Sapkota GP, Kieloch A, Lizcano JM, et al. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem, 2001, 276(22): 19469-19482.
    [40] Sapkota GP, Boudeau J, Deak M, et al. Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome. Biochem. J, 2002, 362(2):481-490.
    [41] Collins SP, Reoma JL, Gamm DM, et al. LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem. J, 2000, 345 (3):673-680
    [42] Evans JM, Donnelly LA, Emslie-Smith AM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ, 2005, 330 (7503): 1304-1305.
    [43] Bowker SL, Majumdar SR, Veugelers P, et al. Increasedcancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care, 2006, 29 (2):254-258.
    [44] Musi N, Hirshman MF, Nygren J, et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes, 2002, 51 (7) 2074-2081.
    [45] Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of M-etformin action. J. Clin. Invest, 2001,108 (8) 1167-1174.
    [46] El-Mir MY, Nogueira V, Fontaine E, et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem, 2000, 275 (1): 223-228.
    [47] Fryer LG, Parbu-Patel A, Carling D, et al. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem, 2002,277 (28):25226-25232.
    [48] Hawley SA, Gadalla AE, Olsen GS, et al. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism, Diabetes, 2002,51 (8):2420-2425.
    [49] Lizcano JM, Goransson O, Toth R, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 2004, 23 (4):833-843.
    [50] Zou MH, Kirkpatrick SS, Davis BJ, et al. Goldman,Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem, 2004, 279(42):43940-43951.
    [51] Xie Z, Dong Y, Zhang M, et al. Activation of protein kinase Czeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J Biol Chem, 2006, 281 (10):6366-6375.
    [52] Law BK, Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol, 2005, 56 (1):47-60.
    [53] Shaw RJ, Bardeesy N, Manning BD, et al.The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 2004, 6 (1):91-99.
    [54] Strate LL, Syngal S, Hereditary colorectal cancer syndromes. Cancer Causes Control,2005,16(3):201-213.
    [55]Takeda H,Miyoshi H,Tamai Y,et al.Simultaneous expression of COX-2 and mPGES-1 in mouse gastrointestinal hamartomas.Br J Cancer,2004,90(3):701-704.
    [56]Gupta RA,Dubois RN,Colorectal cancer prevention and treatment byinhibition of cyclooxygenase-2,Nat Rev Cancer 1,2001,1(1):11-21.
    [57]Udd L,Katajisto P,Rossi DJ,et al.Suppression of Peutz - Jeghers polyposis by inhibition of cyclooxygenase-2,Gastroenterology,2004,127(4):1031-1037.