数量化维度的特征搜索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Treisman和Gelade(1980)提出了注意的特征整合理论,视觉搜索研究是该理论研究的主要组成部分。视觉搜索包括特征搜索和联合搜索。特征搜索处于前注意加工水平,属平行加工;联合搜索是在特征搜索的基础上进行的注意加工,属系列加工。特征搜索主要包括颜色维度、数量化维度的搜索,其中数量化维度的特征搜索占有重要的地位。
     根据以往的理论探索和实证研究,笔者指出在数量化维度的特征搜索研究中目前仍然存在两个主要问题:(1)对决定目标搜索斜率的主要因素的确定;(2)从刺激的物理属性出发,对区分平行搜索和系列搜索之间的临界点的确定。
     为了解决上述问题,笔者引入目标值(T)和干扰子值(D)的差值与干扰子值的比值C(C=(T-D)/D),提出了以下三个假设:(1)目标搜索斜率对C值绝对值的函数是单调递减函数;(2)当C值相同时,其目标搜索斜率应相等;(3)当|C|≥|C_p|时,目标搜索是平行搜索,否则为系列搜索。上述假设不受刺激形状的影响。
     研究一通过两种刺激形状(圆和三角形)分两个实验假设1和假设2进行了检验。实验发现在目标大于干扰子条件下,目标搜索斜率对C值的函数是单调递减函数;C相等时的目标搜索斜率也相等;C相等时的圆和三角形两种刺激形状之间的目标搜索斜率无显著差异。
     研究二针对目标圆大于干扰子圆大的条件,得到的目标搜索斜率对C值的函数也是单调递减函数,并确定了平行搜索与系列搜索的临界点C_p(0.497)。当C≥0.497时的目标搜索是平行搜索,即目标搜索斜率小于或等于10毫秒/项目;当C<0.497时的目标搜索是系列搜索,即目标搜索斜率大于10毫秒/项目。
     研究三对目标圆小于干扰子圆的条件进行了研究。结果发现目标搜索斜率对C值的函数是单调递增函数。在该条件下的平行搜索与系列搜索的临界点C_p为-0.57。当C>-0.57时的目标搜索是系列搜索,即目标搜索斜率大于10毫秒/项目;C≤-0.57时的目标搜索是平行搜索,即目标搜索斜率小于或等于10毫秒/项目。
     研究四在研究二和研究三所得到的平行搜索范围内,通过随机选取某个C值,以检验在该范围内的目标搜索是否为平行搜索。该实验发现,在该种实验条件下,目标与干扰子互换角色,二者的目标搜索斜率无显
Treisman and Gelade (1980) have put forward a Feature-Integration Theory of Attention (FIT). Visual search is an important part of FIT. It includes feature search and conjunction search. Feature search is at the preattentive processing stage and belongs to parallel processing. Conjunction search is at the attentive processing stage on the basis of feature search and attributes to serial processing. Feature search mainly contains searches on quantitative dimension and color dimension. Feature search on quantitative dimension plays an important role.Two questions on quantitative dimension that are not resolved at present are put forward according to some theories and researchers' results. The questions are as follows: (1) Main factor that decides search slopes is determined. (2) Critical point that differentiates parallel search and serial search is fixed from physical property of stimuli.After a ratio(C) is drawn into, three hypotheses are given in order to solve the two questions. The ratio C is difference between target value(T) and distractors values(D) divided by distractors values. Three hypotheses are as follows: (1) A function of slopes to C absolute values is monotone decreasing function. (2) Slopes are equal when C values are same. (3) If C absolute value is bigger than C_p absolute value, searching for a target is parallel search, or is serial search. Moreover, forms of stimuli do not affect truth of these hypotheses.Two experiments in the first research examine the first and second hypothesis by circle and triangle stimuli. When target values are bigger than distractors values, the two experiments have found that a function of slopes to C values is monotone decreasing function, that slopes are identical under same C values, and that there is no significant difference between circles stimulus and triangles stimulus under same C values.The second research has also got that a function of slopes to C values is monotone decreasing function when target circles are bigger than distractors circles. The critical point between parallel and serial search is C_p=0.497. Searching for a target is parallel when C≥0.497. That is, slope is
    equal to or smaller than lOmsec/item. Searching for a target is serial when C<0.497. That is, slope is bigger than lOmsec/item.Target circles are smaller than distractors circles in the third research. The research has attained that a function of slopes to C values is monotone increasing function. The critical point between parallel and serial search is Cp=-0.57. Searches targets are serial when O-0.57. That is, slopes are bigger than lOmsec/item. Searches targets are parallel when C<-0.57. That is, slopes are equal to or smaller than lOmsec/itemFinally, a C value is randomly chosen within parallel search ranges of the second and third researches in order to test whether searches within the range are parallel search. Two slopes that experiment 4 has got before and after target and distractors are interchanged have no significant difference. Moreover, searches are symmetry when C values belong to parallel search ranges.Four researches and discussion are summarized. Main results are as follows: (1) Slopes are explained by "relative difference" concept more reasonable than "absolute difference" concept. (2) Hit rates and false alarm rates decrease when C values are small and set sizes are large (12 items). Signal Detection Theory and capacity of short-term memory (7±2) explaine the phenomenon. (3) The ratios of absent-target slopes to present-target slopes are nearly 2.0.
引文
1. Adam, J. J., & Paas, F. G.. Dwell time in reciprocal aiming tasks. Human Movement Science, 1996, 15(1): 1-24
    2. Alkhateeb, W. F., Morris, R. J., & Ruddock, K. H.. Effects of stimulus complexity on simple spatial discriminations. Spatial Vision, 1990, 5(2): 129-141
    3. Andersen, G. J., Cisneros, J., Atchley, P., & Saidpour, A.. Speed, size and edge-rate information for the detection of collision events. Journal of Experimental Psychology: Human Perception and Performance, 1999, 25(1): 256-269
    4. Arnaut, L. Y., & Greenstein, J. S.. Optimizing the touch tablet: The effects of control-display gain and method of cursor control. Human Factors, 1986, 28(6): 717-726
    5. Bilsky, A. B. & Wolfe, J. M.. Part-whole information is useful in visual search for size×size but not orientation×orientation conjunctions. Perception & Psychophysics, 1995, 57(6): 749-760
    6. Braun. Visual search among items of different salience: Removal of visual attention mimics a lesion in extrastriat area V4. Journal Neuroscience, 1994, 14: 554-567
    7. Briand, K. A.. Feature integration and spatial attention: more evidence of a dissociation between endogenous and exogenous orienting. Journal of Experimental Psychology: Human Perception and Performance, 1998, 24(4): 1243-1256
    8. Cavanagh, P., Arguin, M., & Treisman, A.. Effect of surface medium on visual search for orientation and size features. Journal of Experimental Psychology." Human Perception and Performance, 1990, 16(3): 479-491
    9. Cave, K. R., & Wolfe, J. M.. Modeling the role of parallel processing in visual search. Cognitive Psychology, 1990, 22: 225-271.
    10. Chi, C. F., & Lin, C. L.. Speed and accuracy of eye-gaze pointing. Perceptual and Motor Skills, 1997, 85(2): 705-718
    11. Chun, M. M., & Wolfe, J. M.. Just say no: how are visual searches terminated. When there is no target present? Cognitive Psychology, 1996, 30: 39-78
    12. Duncan, J., & Humphreys, G. W.. Visual search and stimulus similarity. Psychological Review, 1989, 96(3): 433-458
    13. Egeth, H., & Dagenbach, D.. Parallel verse serial processing in visual search: Further evidence from subadditive effects of visual quality. Journal of Experimental Psychology: Human Perception and Performance, 1991, 17(2): 551-560
    14. Egeth, H., Folk, C. L., & Mullin, P. A.. Spatial parallelism in the processing of lines, letters, and lexieality. In B. E. Shepp & B. Soledad (Eds.), Object perception: Structure and process. Hillsdale, NJ: Erlbaum. 1989: 19-52
    15. Enns, J. T., & Rensink, R. A.. Influence of scene-based properties on visual search. Science, 1990a, 247: 721-723
    16. Enns, J. T., & Rensink, R. A.. Sensitivity to three-dimensional orientation in visul search. Psychological Science, 1990b, 1: 323-326
    17. Enoch, J. M. Effect of the size of a complex display upon visual search. Journal of the Optical Society of America, 1959, 49: 280-286
    18. Foster, D. H., & Ward, P. A.. Asymmetries in oriented-line detection indicate two orthogonal filters in early vision. Proceedings of the Royal Society of London B, 1991a, 243. 75-81
    19. Foster, D. H., & Ward, P. A.. Horizontal-vertical filters in early vision predict anomalous line-orientation frequencies. Proceedings of the Royal Society of London B, 1991b, 243: 83-86
    20. Fournier, L. R., Eriksen, C. W., & Bowd, C.. Multiple-feature discrimination faster than single-feature discrimination within the same object? Perception & Psychophysics, 1998, 60(8): 1384-1405
    21. Friedman-Hill, S. & Wolfe, J. M.. Second-order parallel processing: visual search for the odd item in a subset. Journal of Experimental Psychology: Human Perception and Performance, 1995, 21(3): 531-551
    22. Goldsmith, M.. What's in a location? Comparing object-based and space-based models of feature integration in visual search. Journal of Experimental Psychology: General, 1998, 127(2): 189-219
    23. Horowitz, T. S., & Wolfe, J. M.. Nature, 1998, (394)6: 575-577
    24. James, W. (1895). The knowing of things together. Psychological Review, 2(2): 105-124
    25. Jong, R. D.. Multiple bottlenecks in overlapping task performance. Journal of Experimental Psychology: Human Perception and Performance, 1993, 19(5): 965-980
    26. Kim, N., Ivry, R. B., & Robertson, L. C.. Sequential priming in hierarchically organized figures: effects of target level and target resolution. Journal of Experimental Psychology: Human Perception and Performance, 1999, 25(3): 715-729
    27. Kumada, T.. Limitations in attending to a feature value for overriding stimulus-driven interference. Perception & Psychophysics, 1999, 61 (1): 61-79
    28. Kwak, H., Dagenbzch, D., & Egeth, H.. Further evidence for a time-independent shift of the focus of attention. Perception & Psychophysics, 1991, 49(5): 473-480
    29. McElree, B., & Carrasco, M.. The temporal dynamics of visual search: evidence for parallel processing in feature and conjunction searches. Journal of Experimental Psychology: Human Perception and Performance, 1999, 25(6): 1517-1539
    30. McLeod, P., Driver, J., & Crisp, J.. Visual search for a conjunction of movement and form is parallel. Nature(London), 1988, 332: 154-155
    31. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63: 81-97.
    32. Moore, C. M., & Egeth, H.. How does feature-based attention affect visual processing? Journal of Experimental Psychology." Human Perception and Performance, 1998, 24(4). 1296-1310
    33. Mori, S.. Effects of absolute and relative gap sizes in visual search for closure. Canadian Journal of Experimental Psychology, 1997, 51(2): 112-124
    34. Mounts, J. W., & Melara, R. D.. Attentional selection of objects or features: evidence from a modified search task. Perception & Psychophysics, 1999, 61(2): 322-341
    35. Muller, HA., Heller, D., & Ziegler, J.. Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 1995, 57(1): 1-17
    36. Nagy, A. L., & Sanchez, R. R. Critical color difference determined with a visual search task. Journal of the Optical Society of America, 1990, 7: 1209-1225
    37. Nakayama, K., & Silverman, G. H.. serial and parallel processing of visual feature conjunctions. Nature, 1986a, 320: 264-265
    38. Neisser, U.. Cognitive psychology. New York: Appleton-Century-Crofts. 1967
    39. Palmer, J.. Set-size effects in visual search: the effect of attention is independent of the stimulus for simple tasks. Vision Research, 1994, 34(13): 1703-1721
    40. Palmer, J., Ames, C. T., & Lindsey, D. T.. Measuring the effect of attention on simple visual search. Journal of Experimental Psychology: Human Perception and Performance, 1993, 19(1): 108-130
    41. Pashler, H. E.. Divided attention. The Psychology of Attention. UK: MIT press. 1998: 101-167
    42. Quinlan, P. T., & Humphreys, G. W.. Visual search for targets defined by combinations of color, sharp, and size: an examination of the task constraints on feature and conjunction searches. Perception and Psychophysics, 1987, 41(5): 455-472
    43. Schneider, W., & Shiffrin, R. M.. Controlled and Automatic human information processing: Ⅰ. Detection, search, and attention. Psychological Review, 1977, 84(1): 1-66
    44. Shiffrin, R. M., & Schneider, W.. Controlled and Automatic human information processing: Ⅱ. Perceptul learning, automatic attending, and a general theory. Psychological Review, 1977, 84(2): 127-190
    45. Shulman, G. L.. Attentional modulation of size contrast. The Quarterly Journal of Experimental Psychology, 1992, 45A(4): 529-546
    46. Snowden, R. J.. Texture segregation and visual search: a comparison of the effects of random variations along irrelevant dimension. Journal of Experimental Psychology: Human Perception and Performance, 1998, 24(5): 1354-1367
    47. Steinman, S. B.. Serial and parallel search in pattern vision. Perception, 1987, 16: 389-399
    48. Sternberg, S.. High-speed scanning in human memory. Science, 1966, 153(3736): 652-654
    49. Theeuwes, J.. Abrupt luminance change pops out; abrupt color change does out. Perception and Psychophysics. 1995, 57(3). 637-644
    50. Theeuwes, J., & Kooi, J. L.. Parallel search for a conjunction of sharp and contrast polarity. Vision Research, 1994, 34(22): 3013-3016
    51. Treisman, A.. Focused attention in the perception and retrieval of multidimensional stimuli. Perception & Psychophysics, 1977, 22: 1-11
    52. Treisman, A.. Perceptual grouping and attention in visual search for features and for objects. Journal of Experimental Psychology: Human Perception and Performance, 1982, 8(2): 194-214
    53. Treisman, A. Features and objects: the fourteen bartlett memorial lecture. The Quarterly Journal of Experimental Psychology, 1988, 40A(2): 201-237
    54. Treisman, A.. Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception and Performance, 1991, 17(3): 652-676
    55. Treisman, A., & Gelade, G. A feature-integration theory of attention. Cognitive Psychology, 1980, 12: 97-136
    56. Treisman, A., & Gormican, S. Feature analysis in early vision: evidence from search asymmetries. Psychological Review, 1988, 95(1): 15-48
    57. Treisman, A. & Paterson, R.. Emergent features, attention, and object perception. Journal of Experimental Psychology: Human Perception and Performance, 1984, 10(1): 12-31
    58. Treisman, A., & Sato, S.. Conjunction search revisited. Journal of Experimental Psychology." Human Perception and Performance, 1990, 16(3): 459-478
    59. Treisman, A., & Souther, J,. Search asymmetry: a diagnostic for preattentive processing of separable features. Journal of Experimental Psychology." General, 1985, 114(3): 285-310
    60. Treisman, A., & Souther, J..Illusory words: the roles of attention and of top-down constraints in conjoining letters to form words. Journal of Experimental Psychology: General, 1986, 12(1): 3-17
    61. Wolfe, J. M.. Research note 'effortless' texture segregation and 'parallel' visual search are not the same thing. Vision Research, 1992, 32(4): 757-763
    62. Wolfe, J. M. Guided search 2.0 a revised model of visual search. Psychonomic Bulletin & Review, 1994, 1(2): 202-238
    63. Wolfe, J. M.. Visual attention. In De Valosis KK(Ed), San Diego, CA: Academic Press. 2000: 335-386
    64. Wolfe, J. M., & Alvarez, G. A.. Attention is fast but volition is slow. Nature, 2000, 406(17): 601
    65. Wolfe, J. M., & Gancarz, G.. Guided search 3.0: a model of visual search catches up with Jay Enoch 40 years later. In V. Lakshminarayanan (Ed.), Basic and Clinical Applications of Vision Science, Dordrecht, Netherlands: Kluwer Academic. 1996: 189-192
    66. Wolfe, J. M.. Visual search. In Pashler, H. (Eds.), Attention. UK: Psychology Press. 1998a: 13-75
    67. Wolfe, J. M. (1998b). What can 1000000 trails tell us about visual search? Psychological Science, 9(1): 33-39
    68. Wolfe, J. M. Inattentional amnesia. In Veronika, C.(Ed), Fleeting memories: Cognition of brief visual stimuli. US: MIT Press. 1999: 71-94.
    69. Wolfe, J. M., Cave, K. R., & Franzel, S. L. Guided search: an alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 1989, 18(1): 419-433
    70. Wolfe, J. M., Friedman-Hill, S. R., & Bilsky, A. B.. Parallel processing of part-whole information in visual search tasks. Perception & Psychophysics, 1994, 55(5): 537-550
    71. Wolfe, J. M., Friedman-Hill, S. R., Stewart, M. I., & O'Connell, K. M.. The role of categorization in visual search for orientation. Journal of Experimental Psychology: Human Perception and Performance, 1992, 18(1): 34-49
    72. Wolfe, J. M., Klempen, N., & Dahlen, K.. Postattentive vision. Journal of Experimental Psychology: Human Perception and Performance, 2000, 26(2): 693-716.
    73. Wolfe, J. M., Klempen, N. L., & Shulman, E. P.. Which end is up? Two representations of orientation in visual search. Visual Research, 1999, 39: 2057-2086
    74. Wolfe, J. M., & Polorny, C. W.. Inhibitory tagging in visual search: a failure to replicate. Perception & Psychophysics, 1990, 48(4): 357-362
    75. Wolfe, J. M., Yu, K. P., Stewart, M. I., Shorter, A. D., Friedman-Hill, S. R., & Cave, K. R.. Limitation on the parallel guidance of visual search: color×color and orientation×orientation conjunction. Journal of Experimental Psychology: Human Perception and Performance, 1990, 16(4): 879-892
    76. Yantis, S., & Egeth, H. E.. On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 1999, 25(3): 661-676
    77.马艳云 沈模卫 水仁德.数量化维度的特征搜索.《心理科学》,2001,24(3):283-285
    78.华东师范大学数学系编.《数学分析》.高等教育出版社,1985
    79.杨治良.《实验心理学》.浙江教育出版社,1998