低碳薄板冷轧及连续退火过程组织预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷轧低碳钢薄板主要应用于汽车、家电等行业,冷变形和退火工艺共同影响着产品的最终组织与性能,但其组织调控主要靠轧后退火实现。冷轧生产过程轧制速度快,轧后板带基本接近最终产品形状,退火加热到Ac1温度以上和随后冷却发生一系列组织转变过程决定了低碳钢的最终组织状态,进而决定产品性能,因此对冷轧低碳钢变形及轧后退火加热和冷却过程中组织转变进行预测是冷轧产品组织性能预测研究的热点问题之一。
     本文以SPHC冷轧基板为研究对象,建立了相关数学模型并结合部分实验对实验钢在轧制变形和轧后退火组织演变过程进行研究,研究结果可作为退火过程工艺制定的依据,所建模型可为低碳冷轧板带组织性能预测提供重要理论指导。
     冷轧低碳钢的轧制变形不仅决定了产品的最终形状尺寸,并且影响轧后加热过程的组织演变。低碳钢冷轧变形在实验室四辊可逆轧机上进行,结合室温拉伸、显微硬度测试和显微组织观察,基于轧制变形加工硬化机理及其对组织演变和力学性能的影响规律,建立了变形抗力模型和变形储能模型,为冷轧板带组织转变和模拟计算提供了可靠的数据信息。
     对冷轧低碳钢退火后的性能进行了研究,通过测定不同变形后退火板三个方向(沿轧制方向、垂直于轧向、与轧向成45°方向)上应变硬化特性,确立了再结晶退火冷轧低碳钢的最佳变形范围,完善了冷轧低碳钢再结晶退火生产性能优良带钢产品的内在机制。
     从相变原理出发,考虑变形储能,采用超组元模型计算了冷轧低碳钢加热发生奥氏体逆相变的相界面浓度、相变驱动力和相变开始温度等热力学参数,建立了包括相变孕育期、相转变量、奥氏体晶粒尺寸预测模型,确立变形量、加热速度、加热温度、保温时间对奥氏体化的影响规律,为生产性能优良冷轧低碳钢的组织预测提供了有力参考。
     从冷轧低碳薄板的本质特性出发,探讨了冷轧低碳钢在冷却过程发生扩散型相变和非扩散型切变的组织转变原理,建立了先共析铁素体转变和马氏体转变的相变热力学和动力学等数学模型,分析了冷却速度对过冷奥氏体转变的影响规律,并与实验结果对比分析,验证了计算模型的准确性,为冷轧低碳钢轧后连续退火生产高强高韧性产品的组织预测和控制提供了重要的理论依据。
     对冷轧低碳钢变形及轧后再结晶退火,加热时奥氏体逆相变及随后冷却过程进行了一系列研究,建立的加热、冷却过程组织转变数学模型,对冷轧低碳钢组织预测与控制具有重要意义和理论参考价值。
Cold rolled low carbon steel sheet is mainly used in automobiles, householdappliances and other industries, the combined cold deformation and annealing processeffect the microstructure and properties of the final products, but its organization regulatedis mainly achieved by annealing after rolling. For cold rolling production process, therolling speed is fast, the sheet after rolling is close to the final product. It is a series ofstructral transformation process when heated to a temperature above Ac1and subsequentcooling, these determine the final organization state of low carbon steel, and alsodetermine mechanical peroperty. So it become the hot issue study for structraltransformation predicting and controlling of cold-rolled sheet during rolling and annealingheating and cooling process.
     In the paper, taking cold rolling base plate of SPHC as research object, establishedrelated mathematical model and combining with some experiments studied rollingdeformation and organization evolution process for annealing after rolling theexperimental steel, the results can be used as the basis for constituting annealing processand the established model can provide auxiliary process design for annealing.
     Cold rolled deformation of low carbon steel determines the final product shapeorganization evolution in the heating process after rolling, rolling deformation wassimulated on the four high reversible rolling-mill in the laboratory, combined with theroom-temperature tensile, microhardness testing and microstructure observation,analysised the work-hardening mechanism and its effected on the microstructuralevolution and mechanical properties, established the deformation resistance model andenergy model, provided reliable data and information for structral change and simulationcalculation of the subsequent heating process.
     Researched on the performance of the cold-rolled low carbon steel after the annealing,after measured the strain hardening performance for three directions of annealed sheet(along the rolling direction, perpendicular to the rolling direction, a direction of45°withthe rolling direction), established the best deformation range of recrystallization annealed for cold-rolled low carbon steel, it improved internal mechanism of recrystallizationannealing producing excellent performance of strip steel.
     From the principle of phase transformation, calculated the phase interface’sconcentration, driving force of phase change, starting temperature of phase change andother thermodynamic parameters during heating austenitic inverse phase transformationprocess with ultra element model, established models include the bredperiod model phasechange, change amount model, austenitic grain size prediction model, combining resultsof the physical simulation experiment, analysised the influence principle for austenizationwith heating rate, heating temperature and holding time, provided a strong reference forproducing excellent performance of cold rolled low carbon steel.
     From the essential characteristics of the cold rolled low carbon steel, diffussed theprinciple of structral changes for diffusion and non-expanding-type phase change duringthe cooling process, transformation thermodynamic and kinetics model of proeutectoidferrite and martensitic transformation, analyzed the influence regular for supercooledaustenite transformation with cooling rate, compared with the experimental results andverified the accuracy of calculation model, provided important theoretical basis fororganizations predicting and controlling of producing high strength and high toughnessproducts with cold-rolled low carbon steel using the continuous annealing production of
     Researched cold deformation, crystallization annealing after rolling, the austeniticinverse phase transformation and subsequent cooling process, established structraltransformation mathematical model of heating and cooling process with cold rolled lowcarbon steel, it has a certain theoretical reference value and importance for organizationpredicting and controlling process.
引文
[1]骆铁军.钢铁工业“十二五”发展规划对科技发展的新要求[C].第八届(2011)中国钢铁年会.北京:中国金属学会,2011:1-14.
    [2]顾海兵,孙挺.“十二五”时期国家经济安全水平预测分析[J].国家行政学院学报,2012(3):16-21.
    [3]康永林.现代汽车板的质量控制与成形性[M].北京:冶金工业出版社,1999.
    [4]王利,张丕军,陆匠心.高质量汽车薄板质量及生产技术[C].1999中国钢铁年会.北京:钢铁,1999:908-912.
    [5]王先进,茹铮,马衍伟.我国汽车用钢板的现状和研究进展[J].钢铁,1998(10):70-74.
    [6] Yokoyama H, Mitao S, Takemasa M. Development of High Strength Pearlitic Steel Rail (SpRail) with Excellent Wear and Damage Resistance[J]. NKK Technical Review,2002(86):1-7.
    [7] Kolla H H, Mishra B, Jena P K, et al. Development of an Ultrahigh Strength Low Alloy Steelfor Armour Applications[J]. Materials Science and Technology,2011,27(2):551-555.
    [8] Imamura H, Hayashi H, Kimura T. Steel Section Products for Current and21St Century SocialInfrastructure Applications[J]. Kawasaki Steel Technical Report,2001(44):102-106.
    [9] Uchiyama T, Asakura K, Murayama T. High-Temperature Strength and Microstructure ofStrongly Cold Worked Austenitic Stainless Steel[J]. Tetsu-To-Hagane/Journal of the Iron andSteel Institute of Japan,2008,94(4):141-147.
    [10]陆匠心,王利,应白桦,等.高强度汽车钢板的特性及应用[J].汽车工艺与材料,2004(6):13-15.
    [11] Oki Y, Ibaraki N, Ochiai K, et al. Microstructure Influence On Ultra High Tensile Steel CordFilament Delamination[J]. KOBELCO Technology Review,2002(25):35-38.
    [12] Ghosh A, Mishra B, Chatterjee S. Development of Low Carbon Microalloyed Ultra HighStrength Steels[C]. International Conference on Microalloying for New Steel Processes andApplications, PAS '05, September7,2005-September9,2005, Donostia-San SebastianBasque Countr, Spain,2005. Trans Tech Publications Ltd,551-558.
    [13] Gao X, Du L, Qiu C, et al. The Development of High Strength Hull Steel Plate Fh40[C].2010International Conference on Frontiers of Manufacturing and Design Science, ICFMD2010,December11,2010-December12,2010, Chongqing, China,2011. Trans Tech Publications,2203-2207.
    [14] Jiang Z Y, Wei D, Tieu A K. Analysis of Cold Rolling of Ultra Thin Strip [J]. Journal ofMaterials Processing Technology,2009,209(9):4584-4589.
    [15]王利,陆匠心.宝钢冷轧汽车板品种开发、应用及发展[J].中国冶金,2003(8):28-30.
    [16]王利,杨雄飞,陆匠心.汽车轻量化用高强度钢板的发展[J].钢铁,2006,9(41):1-8.
    [17] Malinowski Z, Lenard J G. Study of the State of Stress During Cold Strip Rolling[J]. Journal ofMaterials Processing Technology,1992,33(3):273-288.
    [18] Timokhina I B, Hodgson P D, Beladi H, et al. Microstructure and Mechanical Properties ofThermomechanically Processed Trip Steel[J]. Metallurgia Italiana,2009,101(10):43-48.
    [19] Rusinga C J, Niendorfa T, Lackmanna J, et al. Microstructure-Deformation Relationships inFine Grained High Manganese Twip Steel the Role of Local Texture[J]. International Journal ofMaterials Research,2012,103(1):12-16.
    [20] Matteis P, Scavino G, D'Aiuto F, et al. Fatigue Behavior of Dual-Phase and Twip Steels forLightweight Automotive Structures[C]., P.O. Box101161, Weinheim, D-69451, Germany,2012.Wiley-VCH Verlag,950-956.
    [21]王衍平,蔡恒君,刘仁东,等.鞍钢高品质汽车板的研制开发[J].鞍钢技术,2010(2):8-11.
    [22]张梅,符仁钰,许洛萍.汽车用双相钢钢板的发展[J].热处理,2001(1):5-8.
    [23]党淑娥.双相钢的研究现状及应用前景[J].山西机械,2002(4):14-15.
    [24]王凯,张贵杰,周满春.冷轧高强钢热处理工艺技术的发展[J].金属世界,2009(4):52-57.
    [25]韩会全,刘彦春,张驰,等.两相区热处理对不同初始组态钢板组织性能的影响[J].东北大学学报(自然科学版),2008,29(3):339-342.
    [26] Waterschoot T, Verbeken K, De Cooman B C. Tempering Kinetics of the Martensitic Phase inDp Steel[J]. ISIJ International,2006,46(1):138-146.
    [27]姚忠卯,侯斌,张学成.冷轧汽车板的发展和应用[J].河南冶金,2006,14(6):3-5.
    [28] Shi M F, Thomas G H, Chen M X, et al. Formability Performance Comparison Between DualPhase and Hsla Steels[J]. Iron and Steelmaker (I and SM),2002,29(3):27-32.
    [29] De Cosmo M, Galantucci L M, Tricarico L. Design of Process Parameters for Dual Phase SteelProduction with Strip Rolling Using the Finite-Element Method[J]. Journal of MaterialsProcessing Technology,1999,92-93(8):486-493.
    [30] Balliger N K, Gladman T. Work Hardening of Dual-Phase Steels.[J]. Metal science,1981,15(3):95-108.
    [31] Gladman T. Dual-Phase and Other Formable Steels.[J]. Metals Technology,1983,10(pt7):274-281.
    [32] Fourlaris G, Gladman T. Microscopical Characterization of Martensite Formation in aMetastable Austenitic Stainless Steel[J]. Journal De Physique. IV: JP,1997,7(5):423-428.
    [33]符仁钰,许珞萍,陈洁,等.St14双相钢钢板的组织与性能研究[J].机械工程材料,2000,24(1):25-27.
    [34]张学辉,朱国辉,毛卫民.再结晶和相变的交互作用对双相钢组织特征的影响[J].钢铁,2009,44(9):86-89.
    [35]狄国标,陈连生,刘振宇,等.低成本热轧双相钢组织性能研究[J].轧钢,2007,24(5):17-20.
    [36] Bleck W, Papaefthymiou S, Frehn A. Microstructure and Tensile Properties in Dual Phase andTrip Steels[J]. Steel Research,2004,75(11):704-710.
    [37]傅作宝.冷轧薄钢板生产[M].第二版.北京:冶金工业出版社,2005.
    [38]刘光穆,郑柏平,陈建新,等.薄板坯连铸连轧工艺与产品质量[J].中南大学学报(自然科学版),2004,35(5):763-768.
    [39]赵明修.薄板坯连铸连轧ISP工艺[J].湖南冶金,1994(6):55-61.
    [40] Wu L, Liu Y, Hong J, et al. Effects of Annealing Process On the Texture and Formability ofCold Rolled Spcc Sheet Produced by Csp[J]. Cailiao Rechuli Xuebao/Transactions of Materialsand Heat Treatment,2007,28(SUPPL.):130-133.
    [41] Ojha S N. Processing of Microalloyed Steels by CSP Process[J]. Materials and ManufacturingProcesses,2010,25(1-3):72-75.
    [42]王泽林.冷轧钢板实际退火过程中的有关问题[J].鞍钢技术,2001(2):37-38.
    [43]徐斌,何方,韩冬,等.邯钢冰箱侧板的罩式退火工艺[J].钢铁,2011,46(9):104-108.
    [44] Al-Maharbi M, Karaman I, Beyerlein I J, et al. Microstructure, Crystallographic Texture, andPlastic Anisotropy Evolution in an Mg Alloy During Equal Channel Angular ExtrusionProcessing[J]. Materials Science and Engineering A,2011,528(25-26):7616-7627.
    [45]何建锋.汽车用薄钢板的连续退火技术[J].钢铁研究,2004(4):39-42.
    [46]袁新运,赵海强.马钢2130mm冷轧薄板连续退火线设计特点[J].轧钢,2009,26(1):44-46.
    [47]左军,常军,张开华,等.加磷高强If钢冷轧板罩式退火工艺研究[J].轧钢,2009,26(6):9-12.
    [48] Sahay S S, Kumar B V H, Krishnan S J. Microstructure Evolution During Batch Annealing[J].Journal of Materials Engineering and Performance,2003,12(6):701-707.
    [49] Deva A, Jha B K, Mishra N S. Microstructural Evolution During Batch Annealing of BoronContaining Aluminum-Killed Steel[J]. Journal of Materials Science,2009,44(14):3736-3740.
    [50]牛枫,赵征志,赵爱民,等.连续退火工艺参数对超高强度双相钢组织和力学性能的影响[J].机械工程材料,2010,34(9):23-26.
    [51] Lips K, Yang X, Mols K. Effect of Coiling Temperature and Continuous Annealing On theProperties of Bake Hardenable If Steels[J]. Steel Research,1996,67(9):357-363.
    [52]韩会全,霍刚,崔席勇,等.600Mpa级冷轧连续退火双相钢临界区加热温度研究[J].金属热处理,2009,34(6):76-80.
    [53] Chen T, Ho C, Lin J, et al.3-D Temperature and Stress Distributions of Strip in PreheatingFurnace of Continuous Annealing Line[J]. Applied Thermal Engineering,2010,30(8-9):1047-1057.
    [54]张明亚,朱伏先,马世成,等.冷轧Q345钢退火工艺的实验研究[J].东北大学学报(自然科学版),2011,32(8):1111-1114.
    [55]李一鸣,任慧平,金自力,等.低碳钢板冷轧退火组织和织构[J].材料热处理学报,2010,31(1):74-79.
    [56]李一鸣,任慧平,金自力,等.Csp工艺不同冷轧压下率低碳钢板退火织构的演变[J].内蒙古科技大学学报,2009,28(1):72-75.
    [57] Ghosh P, Bhattacharya B, Ray R K. Comparative Study of Precipitation Behavior and TextureFormation in Cold Rolled-Batch Annealed and Cold Rolled-Continuous Annealed InterstitialFree High Strength Steels[J]. Scripta Materialia,2007,56(8):657-660.
    [58] Jonas J J, Shrivastava S, Toth L S. Inverse Swift Effect: Experiments and Theory[J]. ActaMaterialia,1997,46(1):51-60.
    [59] Hahn S, Hwang S J. Estimate of the Hall-Petch and Orowan Effects in the Nanocrystalline Cuwith Al2O3Dispersoid[J]. Journal of Alloys and Compounds,2009,483(1-2):207-208.
    [60] Velay X. Prediction and Control of Subgrain Size in the Hot Extrusion of Aluminium Alloyswith Feeder Plates[J]. Journal of Materials Processing Technology,2009,209(7):3610-3620.
    [61]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,1995.
    [62]田保红,郑世安.马氏体—下贝氏体复相组织强韧化机理研究及实际应用[J].洛阳工学院学报,1993,14(4):29-34.
    [63] Schastlivtsev V M, Tabatchikova T I, Yakovleva I L, et al. Microstructure and Properties ofLow-Carbon Weld Steel After Thermomechanical Strengthening[J]. Physics of Metals andMetallography,2012,113(5):480-488.
    [64] Araki T, Enomoto M, Shibata K. Bainitic and Similar Microstructures of Modern Low CarbonHsla Steels[C]. Proceedings of the International Conference on Processing, Microstructure andProperties of Microalloyed and Other Modern High Strength Low Alloy Steels, June3,1991-June6,1991, Pittsburgh, PA, USA,1992. Publ by Iron&Steel Soc of AIME,249-255.
    [65] Hillert M. Predictions of Alloy Constitution and Phase Transformations by Computer Modelling.An Aid in Alloy Design and Materials Processing[J]. Scandinavian Journal of Metallurgy,1997,26(5):215-223.
    [66] Borgenstam A, Hillert M. Driving Force for F.C.C.&Rarrb.C.C. Martensites in Fe-X Alloys[J].Acta Materialia,1997,45(5):2079-2091.
    [67] Enomoto M. Validity of the Additivity Rule in Non-Isothermal Diffusion-Controlled Growth ofPrecipitates in Steel[J]. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan,1994,80(8):73-78.
    [68] Cahn R W, Siemers P A, Hall E L. Order-Disorder Transformation in Ni3Al and Ni3Al-FeAlloys-Ii. Phase Transformations and Microstructures[J]. Acta Metallurgica,1987,35(11):2753-2764.
    [69] Cahn J W. Time Cone Method for Nucleation and Growth Kinetics On a Finite Domain[C].Proceedings of the1995MRS Fall Meeting, November27,1995-December1,1995, Boston,MA, USA,1996. Materials Research Society,425-437.
    [70] Johnson E, Kim Y, Scott Chumbley L, et al. Initial Phase Transformation DiagramDetermination for the Cd3Mn Cast Duplex Stainless Steel[J]. Scripta Materialia,2004,50(10):1351-1354.
    [71]王国栋,刘相华,刘振宇.钢材热轧过程中组织-性能预测技术的发展现状和趋势[J].钢铁,2007,42(10):1-5.
    [72]刘振宇,王国栋,张强.加工硬化奥氏体→先共析铁素体相变动力学及机制[J].东北大学学报,1994,15(4):379-383.
    [73]王斌,刘振宇,周晓光,等.超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算[J].金属学报,2013,49(1):26-34.
    [74]陈德华,许雯,李响妹,等.铁基合金马氏体相变的动力学问题[J].热处理,2012(3):10-21.
    [75]邝霜,康永林,于浩,等.Fe-C-Mn系冷轧双相钢两相区奥氏体化过程模拟[J].北京科技大学学报,2008,30(8):858-863.
    [76] Kim K J, Yang D Y, Yoon J W. Microstructural Evolution and its Effect On MechanicalProperties of Commercially Pure Aluminum Deformed by Ecae (Equal Channel AngularExtrusion) Via Routes a and C[J]. Materials Science and Engineering A,2010,527(29-30):7927-7930.
    [77]侯哲哲,乔治,樊云昌.人工神经网络预测奥氏体化温度[J].石家庄铁道学院学报,2005,18(2):61-63.
    [78]徐佐仁,孙嵩山.低碳低合金钢在临界区加热时奥氏体形成过程的研究[J].上海金属,1991,13(1):30-39.
    [79] Czeppe T, Korznikova G, Swiatek Z, et al. The Microstructure and Mechanical Properties of theNi-Al-V Alloys Prepared by Levitation and Crystallization in Copper Mould[C]. InternationalConference on Solid-Solid Phase Transformations in Inorganic Materials, PTM2010, June6,2010-June11,2010, Avignon, France,2011. Trans Tech Publications Ltd,475-480.
    [80] Martin D S, Palizdar Y, Garcia-Mateo C, et al. Influence of Aluminum Alloying and HeatingRate On Austenite Formation in Low Carbon-Manganese Steels[J]. Metallurgical and MaterialsTransactions A: Physical Metallurgy and Materials Science,2011,42(9):2591-2608.
    [81] Hyde T H, Yaghi A H, Tanner D W J, et al. Current Capabilities of the Thermo-MechanicalModelling of Welding Processes[J]. Journal of Multiscale Modeling,2009,1(3-4):451-478.
    [82]杨景明,郝瑞峰,车海军,等.带钢冷连轧材料变形抗力模型研究[J].钢铁研究,2012,40(2):28-32.
    [83]赵中华,韦习成.工作条件对拉深成形加工硬化的影响[J].热加工工艺,2011,40(7):97-99.
    [84] Influence of Recrystallized Microstructure On the Mechanical Properties of Cold RolledMicroalloy High Strength Steel[J]. Baosteel Technical Research,2008,22(4):55-58.
    [85]张学辉,朱国辉,毛卫民.再结晶和相变的交互作用对双相钢组织特征的影响[J].钢铁,2009,44(9):86-89.
    [86]窦婷婷,康永林,于浩,等.冷轧双相钢连续退火初期的组织演变规律[J].金属热处理,2008,33(3):31-35.
    [87]龚桂仙,刘嘉玲.冷轧双相钢加热期间组织的演变及其各阶段的力学性能[J].物理测试,1986(2):37-40.
    [88] Acosta P, Jimenez J A, Ruano O A, et al. Response to Thermal Treatment of a Power MetallurgyFe-0.8%B-1.3%C-1.6%Cr Alloy[J]. Steel Research,1995,66(8):360-365.
    [89]李硕本,金淼,彭加耕.关于板材加工硬化性能评定方法的探讨[J].塑性工程学报,2001,8(2):66-69.
    [90]罗G. W..工业金属塑性加工原理[M].北京:机械工业出版社,1984.
    [91]杨德庄.位错与金属强化机制[M].哈尔滨:哈尔滨工业大学出版社,1991.
    [92] Yao K F, Yu P, Wang J, et al. Effects of High-Density Current Pulses On Work HardeningBehaviors of Austenite Stainless Steel in Wire-Drawing Deformation[J]. Acta MetallurgicaSinica (English Letters),2001,14(5):341-346.
    [93] Mejia I, Maldonado C, Benito J A, et al. Determination of the Work Hardening Exponent by theHollomon and Differential Crussard-Jaoul Analyses of Cold Drawn Ferrite-Pearlite Steels[C].Advanced Structural Materials Symposium of the Annual Congress of the Mexican Academy ofMaterials Science, Mexico,2006. Trans Tech Publications Ltd,37-42.
    [94] Zheng X L, Xiong W H, Zheng Y, et al. Work Hardening of Adhesively Bonded Pure CopperSingle Lap Joints[J]. Transactions of Nonferrous Metals Society of China,2005,15(3):365-368.
    [95] Adams B L, Gardner C J, Fullwood D T. Ebsd-Based Dislocation Microscopy[C].3rdInternational Conference on Texture and Anisotropy of Polycrystals, ITAP-3, September23,2009-September25,2009, Gottingen, Germany,2010. Trans Tech Publications Ltd,3-10.
    [96] Cao S, Li Y, Zhang J, et al. Ebsd Investigation On Oriented Nucleation in If Steels[J]. Journal ofMaterials Science and Technology,2007,23(2):262-266.
    [97] Hurley P J, Humphreys F J. The Application of Ebsd to the Study of Substructural Developmentin a Cold Rolled Single-Phase Aluminium Alloy[J]. Acta Materialia,2003,51(4):1087-1102.
    [98] Pham M S, Solenthaler C, Janssens K G F, et al. Dislocation Structure Evolution and its EffectsOn Cyclic Deformation Response of Aisi316L Stainless Steel[J]. Materials Science andEngineering A,2011,528(7-8):3261-3269.
    [99]余永宁.金属学原理[M].北京:冶金工业出版社,2000.
    [100]周维贤.描述钢板硬化曲线的一个新数模[J].材料科学进展,1989,3(4):325-330.
    [101]刘宗昌.材料组织结构转变原理[M].北京:冶金工业出版社,2006.
    [102]戚正凤,刘世程.原始组织对钢加热转变的影响[J].大连铁道学院学报,1983(Z1):21-36.
    [103]肖翔,刘国权,胡本芙,等.冷变形对12Cr铁素体/马氏体钢回复与再结晶过程的影响[J].材料工程,2011(2):73-78.
    [104] Sandim H R Z, Renzetti R A, Padilha A F, et al. Annealing Behavior of Ferritic-Martensitic9%Cr-Ods-Eurofer Steel[J]. Materials Science and Engineering A,2010,527(15):3602-3608.
    [105]魏育君,王正虎,杜礼章.变形量对2Cr13Mn9Ni4冷作硬化钢板性能的影响[J].特钢技术,2007,13(4):17-18.
    [106]朱祖昌,许雯.钢的加热转变[J].热处理技术与装备,2011,32(1):57-62.
    [107]苏德达.25钢的奥氏体形成与热处理工艺[J].金属制品,2002,28(5):50-53.
    [108]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].冶金工业出版社,1994.
    [109]葛继平,却力克,戚正风.45及45Vs钢冷形变后回复与再结晶的研究[J].金属热处理,1989(11):21-27.
    [110]王卫国,周邦新,冯柳,等.冷轧变形Pb-Ca-Sn-Al合金在回复和再结晶过程中的晶界特征分布[J].金属学报,2006,42(7):715-721.
    [111] Artymowicz D, Hutchinson W B, Evans P J, et al. Modelling of Microstructure and TextureDuring Annealing of Titanium Alloyed Interstitial Free Steels[J]. Materials Science Forum,1998,284-286:105-116.
    [112]林一坚.IC-218合金的回复激活能与再结晶激活能[J].上海金属,2003,25(4):16-19.
    [113]张国滨,张贵杰,武学泽.20Mnsi钢静态再结晶模型及其在棒材热连轧中的应用[J].河北理工学院学报,2000,22(4):23-28.
    [114]徐祖耀,牟翊文.Fe-C合金贝氏体相变热力学(LFG模型)[J].金属学报,1987,23(1):33-41.
    [115] Wilhelm F, Schmickler W, Spohr E. Proton Transfer to Charged Platinum Electrodes. AMolecular Dynamics Trajectory Study[J]. Journal of Physics Condensed Matter,2010,22(17):471-477.
    [116]牟翊文,徐祖耀.Fe-C合金中C-C交互作用能[J].金属学报,1987,34(4):329-338.
    [117] Fischer F D, Oberaigner E R, Tanaka K, et al. Transformation Induced Plasticity Revised anUpdated Formulation [J]. International Journal of Solids and Structures,1998,35(18):2209-2227.
    [118] Kaufmann S, Niemann R, Thersleff T, et al. Modulated Martensite: Why It Forms and Why ItDeforms Easily[J]. New Journal of Physics,2011,13(5):832-838.
    [119] Alexis J, Jonsson P G, Jonsson L. Model of an Induction-Stirred Ladle Accounting for Slag andSurface Deformation[J]. ISIJ International,1999,39(8):772-778.
    [120] Baldissin D, Battezzati L. Multicomponent Phase Selection Theory Applied to High Nitrogenand High Manganese Stainless Steels[J]. Scripta Materialia,2006,55(9):839-842.
    [121] Zhu Xiao-lei, Zhou Yao-ming, Peng Pan-ying, et al.Molecular Dynamics Studies of Solid-liquidPhase Transitions Ⅰ——Melting and Freezing of (KI)108Clusters[J]. Jounal of MolecularScience,1997,13(4):218-223.
    [122] Afify N, Gaber A, Abousehly A M, et al. Precipitation Kinetics in Supersaturated Al-2.0at%Cu-1.0at%Mg Alloy[J]. Materials Transactions,2010,51(2):317-320.
    [123] Pham T T, Hawbolt E B, Brimacombe J K. Predicting the Onset of Transformation UnderNoncontinuous Cooling Conditions: Part I. Theory[J]. Metallurgical and Materials TransactionsA: Physical Metallurgy and Materials Science,1995,26A(8):1987-1992.
    [124] Baddour C E, Upham D C, Meunier J. Direct and Repetitive Growth Cycles of CarbonNanotubes On Stainless Steel Particles by Chemical Vapor Deposition in a Fluidized Bed[J].Carbon,2010,48(9):2652-2656.
    [125] Gusev M R, Murzin E S, Shirokij F G, et al. Silicon-Free Master Alloy for Steel Inoculation[J].Litejnoe Proizvodstvo,2003(5):10-11.
    [126] Lange C, Hopfeld M, Wilke M, et al. Pulsed Laser Deposition From a Pre-Synthesized Cr2AlcMax Phase Target with and without Ion-Beam Assistance[J]. Physica Status Solidi (A)Applications and Materials Science,2012,209(3):545-552.
    [127] Capdevila C, Garcia De Andres C, Caballero F G. Incubation Time of Isothermally TransformedAllotriomorphic Ferrite in Medium Carbon Steels[J]. Scripta Materialia,2001,44(1):129-134.
    [128] Gomez M, Medina S F, Caruana G. Modelling of Phase Transformation Kinetics by Correctionof Dilatometry Results for a Ferritic Nb-Microalloyed Steel[J]. ISIJ International,2003,43(8):1228-1237.
    [129] Mundy J N, Rothman S J. Apparatus for Microsectioning Diffusion Samples by Sputtering.[J].Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films,1983,1(1):74-76.
    [130] Hillert M, Sundman B. Scheil Reaction Scheme by Computer[J]. Calphad: Computer Couplingof Phase Diagrams and Thermochemistry,1990,14(2):111-114.
    [131] Ali A. Reverse Transformations in a High-Strength High-Hardenability Fe-C-Si-Mn-MoSteel[J]. Journal of Materials Science,1993,28(12):3137-3144.
    [132] Laridjani M, Cahn R W. Identification of Metastable Phases in Splat-Quenched Aluminium-Germanium Alloys.[J]. Materials Science and Engineering,1975,23(2-3):125-129.
    [133] Handwerker C A, Cahn J W, Manning J R. Thermodynamics and Kinetics of Reactions atInterfaces in Composites[J]. Materials Science and Engineering A,1990, A126(1-2):173-189.
    [134] Cahn J W. Time Cone Method for Nucleation and Growth Kinetics On a Finite Domain[C].Proceedings of the1995MRS Fall Meeting, November27,1995-December1,1995, Boston,MA, USA,1996. Materials Research Society,425-437.
    [135]沈雷,王辅明,文玉华.分子动力学模拟高压下铁的相变[J].厦门大学学报(自然科学版),2005,44(z1):319-321.
    [136] Kattner U R. Construction of a Thermodynamic Database for Ni-Base Superalloys: A CaseStudy[C]. CALPHAD and Alloy Thermodynamics, February17,2002-February21,2002,Seattle, WA, United states,2002. Minerals, Metals and Materials Society,147-164.
    [137] MORAVEC M, KUDRMAN J, FREIWILLIG R. Comparison of the Calculated and theExperimentally Found Activation Energies of the Bainite Lengthening,(Srovnani Modelovych aExperimentalne Zjistenych Aktivacnich Energii Celniho Rustu Bainitu)[J]. Kovove Materialy,1971,9(4):282-292.
    [138] Mohanty J N, Baral K C, Nath G. Diffusion and Transport in Collisional Magnetised Plasmawith Temperature Anistropy[C]. IEEE Conference Record-Abstracts: The31st IEEEInternational Conference on Plasma Science, ICOPS2004, June28,2004-July1,2004,Baltimore, MD, United states,2004. Institute of Electrical and Electronics Engineers Inc.,430.
    [139] Capdevila C, Caballero F G, Garcia De Andres C. Modeling of Kinetics of IsothermalIdiomorphic Ferrite Formation in a Medium-Carbon Vanadium-Titanium Microalloyed Steel[J].Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,2001,32(7):1591-1598.
    [140]陈德华,许雯,李响妹,等.马氏体转变(二)[J].热处理技术与装备,2011(6):58-64.
    [141] Sahu P, Hamada A S, Sahu T, et al. Martensitic Transformation During Cold RollingDeformation of an Austenitic Fe-26Mn-0.14C Alloy[J]. Metallurgical and MaterialsTransactions A: Physical Metallurgy and Materials Science,2012,43(1):47-55.
    [142]徐祖耀,牟翊文.Fe-C合金贝氏体相变热力学(Krc模型)[J].金属学报,1985,21(2):13-24.
    [143]张斌,张鸿冰,阮雪榆.热变形奥氏体先共析铁素体的热力学计算[J].上海交通大学学报,2003(10):1517-1521.
    [144] Zivkovic D, Zivkovic Z, Estak J. Predicting of the Thermodynamic Properties for the TernarySystem Ga-Sb-Bi[J]. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,1999,23(1):113-131.
    [145] Yokota T, Mateo C G, Bhadeshia H K D H. Formation of Nanostmctured Steels by PhaseTransformation[J]. Scripta Materialia,2004,51(8SPEC. ISS.):767-770.
    [146]周晓光,刘振宇,吴迪,等.基于Ftsr热轧含Nb钢的铁素体相变实际转变温度模型[J].轧钢,2009,26(2):18-20.
    [147] Offerman S E, Van Dijk N H, Rekveldt M T, et al.3D Neutron Depolarization Experiments Onthe/Phase Transformation in Steel[J]. Physica B: Condensed Matter,2000,276:868-869.
    [148]刘振宇,王国栋,张强.形变奥氏体连续冷却相变后Α晶粒尺寸的预测[J].金属学报,1995,31(22):468-472.
    [149] Yoshimura T, Ishikawa Y, Enomoto K. Atom-Probe Study of Ageing Embrittlement of FerriticStainless Steels (1)(Fe-28Cr-5Ni Alloy)[J]. Nippon Kikai Gakkai Ronbunshu, AHen/Transactions of the Japan Society of Mechanical Engineers, Part A,1991,57(542):2543-2549.
    [150] Rees D W A. Sheet Orientation and Forming Limits Under Diffuse Necking[J]. AppliedMathematical Modelling,1996,20(8):624-635.
    [151] Basabe V V, Jonas J J. The Ferrite Transformation in Hot Deformed0.036%Nb Austenite atTemperatures Above the Ae3[J]. ISIJ International,2010,50(8):1185-1192.
    [152] Gauzzi F, Montanari R, Principi G, et al. Martensite Formation During Heat Treatments of Aisi304Steel with Biphasic Structure[J]. Materials Science and Engineering A,1999,273(8):443-447.
    [153]李箭,徐祖耀.Fe-Ni-C合金马氏体相变驱动力及M_S的计算[J].金属学报,1987(4):321-328.
    [154] Kishi Y, Yajima Z, Shimizu K, et al. Phase Transformation Behavior and Microstructures ofRapidly Solidified Co-Ni-Ga Alloys[J]. Materials Science and Engineering A,2006,438-440(SPEC. ISS.):965-969.
    [155]徐祖耀.铁基合金马氏体相变热力学[J].材料科学进展,1987(4):3-12.
    [156] Sunol J J, Escoda L, Hernando B, et al. Structure of Rapidly Quenched Ga-Free HeuslerAlloys[J]. Physica Status Solidi (A) Applications and Materials Science,2011,208(10):2281-2283.
    [157] Zhao J, Notis M R. Continuous Cooling Transformation Kinetics Versus IsothermalTransformation Kinetics of Steels: A Phenomenological Rationalization of ExperimentalObservations[J]. Materials Science and Engineering R: Reports,1995,15(4-5):135-208.
    [158]郑雁军,崔立山,杨大智.形状记忆合金马氏体相变动力学模型[J].复合材料学报,2000,17(1):81-85.