三元层状碳化物Ti_3AlC_2的电子结构和弹性性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三元层状碳化物Ti3AlC2是一种新型热力学稳定的层状纳米材料,结合了陶瓷和金属的优异性能,在高温结构材料、电接触材料等领域具有广阔的应用前景。
     本文计算使用的是集成在美国Accelrys公司出品的Materials Studio 4.4软件平台上的CASTEP(Cambridge Series Total Energy Package)程序包。在计算中使用了范德比尔特(Vanderbilt)型超软赝势和广义梯度近似(GGA-PW91)。所有计算中平面波截断能均设置为380eV,布里渊区的积分采用(9x9x2)的Monkhorst-Pack格点面处理。
     本文首先采用Broyden-Fletcher-Goldfarb-Shanno (BFGS)极小化方案对Ti3AlC2晶体结构进行几何优化得到基态平衡晶格参数,包括晶格常数和原子内坐标。几何优化收敛标准为两次迭代的能量变化小于5.0x10-6eV/atom,原子间作用力变化小于0.01 eV/A,最大位移小于5×10-4 A以及最大应力小于0.02GPa。优化结果与实验值非常吻合。本文还计算了电子结构和Mulliken布居以分析原子间的键接特性。
     Ti3AlC2的弹性常数是通过计算不同应变模式下的应力分布来确定的。对六方晶系来说,至少需要两种应变模式{(εxx=0,ε=0,εzz=1,γyz= 0,γxz=0,γyz= 1)和(εxx=1,εYY=0,εzz=0,γyz=1,γxz=0,γxy=0)}才能确定所有的弹性常数。而且在每种模式下均施加5个不同的应变微扰,然后根据应力的计算结果来确定各弹性常数。一旦弹性常数确定,Ti3AlC2的的弹性模量以及其它力学参数即可计算得出。
     考虑到Ti3AlC2在压力环境下的应用,给晶胞施加了0-50GPa的等方性静水压来考察外部压力对Ti3AlC2的晶格结构、电子结构和弹性性能的影响。首先通过计算得到在各个压力下的具有局部最小自由焓的几何结构,将Ti3AlC2不受外部压力情况下的晶体结构称之为平衡晶体结构。以几何优化后的晶体结构作为计算模型,本文还计算了Ti3AlC2在0-50GPa静水压下的弹性常数和弹性模量值,并且讨论了压力对晶体弹性的各向异性,弹性常数以及弹性模量的影响。
The ternary layered carbide Ti3AlC2 is a new Thermodynamically stable nanolaminates. The Ti3AlC2 combines unusual properties of both ceramics and metals, having broad application prospects in the fields of high temperature material and electric contacting material.
     The CASTEP code is a plane-wave pseudopotential total energy calculation method that is based on density functional theory. It was used in the present calculation, wherein the Vanderbilt-type ultrasoft pseudopotential and generalized gradient approximation (GGA-PW91) were employed. The plane-wave basis set cutoff was 380 eV for all calculations. The special points sampling integration over the Brillouin zone was employed by using the Monkhorst-Pack method with a 9×9×2 special k-points mesh.
     Lattice parameters, including lattice constants and internal atomic coordinates, were modified independently to minimize the enthalpy and interatomic forces. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization scheme was used in geometry optimization. The tolerances for geometry optimization are difference on total energy within 5x10-6 eV/atom, maximum ionic Hellmann-Feynman force within 0.01 eV/A, maximum ionic displacement within 5x10-4 A and maximum stress within 0.02 GPa. The calculated results are in good agreement with experimental measurements and other theoriral results. To better understand the nature of the interatomic bonding, the electronic structure and Mulliken population was examined.
     The elastic coefficients were determined by applying a set of given homogeneous deformations with a finite value and calculating the resulting stress with respect to optimizing the internal degrees of freedoms. Two strain patterns, one with nonzero s33 components and the other with a nonzeroε11 andε23, generated stresses related to all five independent elastic coefficients for a unit cell with a hexagonal symmetry. We determined the elastic stiffness from a linear fit of the calculated stress as a function of strain. Other mechanical parameters, such as the bulk modulus(GPa), Young's moduli(GPa), and Poisson's ratio(GPa) were calculated from the compliance tensor. The shear modulus(GPa) was calculated according to the Voigt approximation.
     The external pressure was imposed upon the simulated unit cell as isotropic hydrostatic pressure. Calculations were performed for various pressures between 0 and 50 GPa, and the atomic configuration at zero pressure was referred to as the equilibrium state in this paper. The lattice parameters and internal atomic positions were fully optimized throughout the simulations until local minimizations of the total energy were realized. The elastic coefficients and modulis at various pressures were obtained to understand the role how external pressure influence the elastic properties of TiAlC2.
引文
[1]傅正义,李建保主编.先进陶瓷及无机非金属材料.科学出版社.2007:1
    [2]周玉.陶瓷材料学,第二版[M].北京:科学出版社.2004:1
    [3]李建伟.Ti3AlC2陶瓷材料的燃烧合成.兰州理工大学硕士论文.2008:1页
    [4]杨晨.Ti3AlC2可加工导电陶瓷及其铜基复合材料的研制.吉林大学博士论文.2009:P1
    [5]路宁.三元层状复合材料的电子结构研究.武汉理工大学硕士论文.2007:1页
    [6]朱教群.三元层状碳化物Ti3SiC2的制备及性能研究.武汉理工大学博士论文.2003:1页
    [7]周卫兵.Ti2AlC陶瓷的合成制备研究.武汉理工大学硕士论文.2003:1页
    [8]周卫兵.Ti-Al-C系/TiB2复合材料的制备和性能研究.武汉理工大学博士论文.2006:1页
    [9]林宁.三元层状碳化物Cr2AlC的制备及性能研究.武汉理工大学硕士论文.2008:1页
    [10]周卫兵,梅炳初,朱教群,陈艳林.可加工Ti2AlC陶瓷的研究进展.武汉理工大学学报.2003,24(9):22-24
    [11]周卫兵,梅炳初,朱教群,洪小林.新型层状陶瓷Ti3AlC2的研究进展.江苏陶瓷.2003.36(3):12-15
    [12]Barsoum M. W., The MN+1AXN Phases:A New Class of Solids;. Thermodynamically stable nanolaminates. Prog Solid St. Chem.2000, (28):201-281
    [13]Jingyang Wang and Yanchun Zhou. Recent Progress in Theoretical Prediction, Preparation, and Characterization of Layered Ternary Transition-Metal Carbides. Annu. Rev. Mater. Res.2009, (39):415-443
    [14]Per Eklund, Manfred Beckers, UIf Jansson, Hans Hogberg, Lars Hultman. The Mn+1AXn phases:Materials science and thin-film processing. Thin Solid Films.2010, (518):1851-1878P
    [15]Barsoum M W, Brodkio D, EI-anghy T. Layered Machinable Ceramics for High Temperature Application. Scripta. Mater.,1997,36(5):535-541
    [16]Pietzka M. A., Schuster J. C.. The ternary boundary phase of the quaternary system Ti-Al-C-N in Leuven proceedings [M]. Part A. Brussels:Kluwer Academic Publisher,1992,83-92
    [17]Pietzka M. A., Schuster J. C., Summary of Constitutional Data on the Aluminum-Carbon-Titanium System, J. Phase Equil.,1994,15(4):392-400
    [18]H. Nowotny, Struktuchemie Einiger Verbindungen der Ubergangsmetalle mit den elementen C, Si, Ge, Sn, Prog. Solid State Chem., H. Reiss, Ed.,1970, (2.27).
    [19]A. L. Ivanovskii, N. I. Medvedova. Electronic structure of hexagonal Ti3AlC2 and Ti3AlN2 [J]. Mendeleev Communication,1999, (1):36-38
    [20]J C Ho, H Hamdeh, M W Barsoum, T EI-Raghy. Low temperature heat capacities of Ti3Al1.1C1.8, Ti4AIN3 and Ti3SiC2. Journal of applied physics,1999,86(7):3609-3611
    [21]M. W. Barsoum. Oxidation of Tin+1AlXn where n=l~3 and X is C, N, part Ⅰ:Model [J]. J. Electrochemical Soc.,2001,148 (8):544-550
    [22]M. W. Barsoum. Oxidation of Tin+1AlXn where n=l~3 and X is C, N, part Ⅱ: Experimental Results [J]. J. Electrochemical Soc.2001,148, (8):551-562
    [23]N. Medvedeva, D. Novikov, A. Ivanovsky, M. Kuznetsov, and A. Freeman, Electronic Properties of Ti3Si2-Based Solid Solutions, Phvs. Rev. B.1998, (58) 16042.
    [24]Y. C. Zhou, X. H. Wang, Z. M. Sun and S. Q. Chen, Electronic and structural properties of the layered ternary carbide Ti3AlC2, Journal of Materials Chemistry.2001, (11):2335-2339
    [25]Zhou Y C, Sun Z M, Wang X H, et al. Ab Initio Geometry Optimization and Ground State ProPerties of Layered Ternary Carbides Ti3MC2(M=Al, Si and Ge). J. Phys. Condens. Matter.,2001,13(4):10001-10010
    [26]Min Xinmin, Ren Yi. Electronic Structures and Bonding Properties of Ti2AlC and Ti3AlC2. Journal of Wuhan University of Technology (Mater. Sci. Ed.),2007, 2(1):27-30
    [27]刘红飞,余洪韬等.热力学稳定纳米层状陶瓷[J].山东陶瓷,2005,28(5):26-31
    [28]田无边,王佩玲等.三元层状材料M2AX的研究进展[J].无机材料学报,2007,22(5):783-790
    [29]陈秀娟,李建伟.Ti3AlC2陶瓷材料研究进展[J].粉末冶金工业,2008,18(4):40-43
    [30]王家华.层状陶瓷Ti3AlC2的制备及性能研究.哈尔滨工程大学硕士论文.2009:14-15
    [31]梁国胜.Cu-Ti3AlC2金属陶瓷的制备及性能[D].北京交通大学硕士学位论文, 2006,50-53
    [32]L. M. Peng. Fabrication and properties of Ti3AlC2 particulates reinforced copper composites [J]. Scripta Materalia,2007,56:729-732
    [33]Accelrys Inc., CASTEP Users Guide, San Diego(2001).
    [34]V.Milman, B.Winkler,J. A.White et al., Int. J. Quant. Chem.77(2000)895.
    [35]魏凤方.当代物理学进展.南昌:江西教育出版社,1997:7-8页.
    [36]张志红.碳纳米管增强MoSi2基复合材料的第一性原理研究.哈尔滨工程大学硕士学位论文.2008
    [37]王保如.二元过度金属团簇的结构与磁序.河北师范大学博士论文.2009
    [38]石绍庆.Ag(2,2'-bipy)-POMs杂化体系的密度泛函理论研究.东北师范大学博士论文.2006
    [39]舒瑜.FCC金属表面结构与性能的半经验势和第一性原理的计算和模拟.山西师范大学博士论文.2010
    [40]谢希德,陆栋.固体能带理论.上海:复旦大学出版社,1998:45-57页.
    [41]黄祖飞.LiMnO2体系结构与性能的第一性原理研究.吉林大学博士论文,2006:27-30页
    [42]袁士俊.碳纳米管与过渡金属团簇相互作用的第一性原理研究.兰州大学博士论文,2007:8-13页
    [43]何巨龙.B-C-N新材料的实验合成与相关材料的第一性原理研究.燕山大学博士论文,2003:16-22页
    [44]Pariser R, Parr R G. A Semi-empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules[J]. J Chem. Phys.,1953,21(5): 767-776.
    [45]笪良国,张倩茹.量子化学计算方法及其在结构化学中的应用.淮南师范学院学报.2007.9(43):101-103
    [46]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys Rev,1964,136(3B): B864-B871.
    [47]Kohn W, Sham L J. Self-consistent Equations Including Exchange and Correlation Effects[J]. Phys.Rev,1965,140(4A):A1133-A1138.
    [48]肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分方法在化学和材料物理学中 的应用.科学出版社.1998
    [49]Thomas L S. The Calculation of Atomic Fields [J]. Proc Cmab Phil Soc.1927.23: 542-548.
    [50]Fermi, E. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theories des periodischen Systems der Elemente. Z. Phys. 1928,48,73.
    [51]方亮.含3D过渡金属磁性中心的多酸体系DFT-BS理论研究.东北师范大学博士论文.2008
    [52]张跃等.计算材料学基础.北京航空航天大学出版社.2007
    [53]向士凯.金属铝、铜、铂和锂高压物理性质的从头计算.中国工程物理研究院博士论文.2006:P18-19
    [54]黄美纯,密度泛函理论的若干进展[J].物理学进展,2000,20(3):199
    [55]Callaway J, March N H, Solid State Phys [J].1984, B8:135
    [56]邓烨.氧化钙和碳化硅高压物性的第一性原理计算四川大学硕士学位论文.2007
    [57]Becke A D.Density-functional Exchange-energy Approximation with Correct Asymptoticbehavior[J]. Phys Rev A,1988,38(6):3098-3100.
    [58]Perdew J P,Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B,1992,45:13244-13249.
    [59]Perdew J P, Chevary J A, Vosko S H, etal. Atoms molecules solids and surfaces: Applications of the generalized gradient approximation for exchangeand correlation [J]. Physical Review B,1992,46:6671-6687.
    [60]Perdew P,Burke K,Ernze:rhof M.Generalized Gradient Approximation Made Simple[J]. Phys Rev Lett,1996,77(18):3865-3868.
    [61]Perdew J P.Density-functional Approximation for the Correlation Energy of the Inhomogeneous electron gas[J].Phys Rev B,1986,33(12):8822-8824
    [62]Lee C T, Yang W T, Parr R G. Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density [J]. Phys. Rev. B,1988,37(2):785-789.
    [63]Burke K, Perdew J P, Wang Y. Electronic Density Functional Theory:Recent Progress and New Directions [M].Ed. Dobson J F, Vignale G, Das M P, Plenum,1998.
    [64]Filippi C, Umrigar C J, Taut M. Comparison of Exact and Approximate Density Functionals for an Exactly Soluble Model[J].J Chem Phys,1994,100(2):1290-1296
    [65]Stefano Baroni, Stefano de Gironeoli, Andrea Dal Corso Paolo Giannozzi. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys.,2001,73:515-562
    [66]Martin R M. Electronic Structure:Basic Theory and Methods. Cambridge:Cambridge University Press,2004
    [67]Segall,.D.. First-principles simulation:ideas, illustrations and the CASTEP code. Journal of Physics:Condensed Matter,2002,14:2717-2744P
    [68]Vanderbilt D. Phys. Rev. B,1990,41:7892.
    [69]Blochl PE. Phys. Rev. B,1994,50:17953.
    [70]张士晶.锰基钙钛矿型氧化物的第一性原理研究.吉林大学博士论文.2009
    [71]金胜哲.空穴掺杂LiCoO2体系的电子结构与输运性质.吉林大学博士论文.2007
    [72]孙源.多铁材料结构与性质的第一性原理研究.吉林大学博士论文.2009
    [73]丁迎春.γ-Si3N4材料第一性原理研究.四川师范大学硕士论文.2007:38-39P
    [74]R.Prasad, R. Benedek, A. J. Kropf et al., Phys. Rev. B,2003 (68):012101.
    [75]Solovyev, N.Hamada, K.Terakura, Phys. Rev. B,1996 (53):7158.
    [76]S. K. Mishra, G. Ceder, Phys. Rev. B,1999(59):6120.
    [77]G.Ceder et al.,Nature 392(1998)694.
    [78]E. Deiss, A. Wokaun, J. L. Barras, C. Daul, P. Dufek, J. Electrochem. Soc.144 (1997) A1560.
    [79]赵景祥.一维纳米管功能化的理论研究.吉林大学博士学位论文.2009:32-35P
    [80]刘永刚.高压下Nal物性的第一性原理计算.四川大学硕士学位论文.2007
    [81]史冬敏.Ni-AI、Ca-X (X=Si, Ge, Sn, Pb, Zn)金属间化合物的第一性原理研究.大连理工大学硕士学位论文.2009:16-19P
    [82]方俊鑫,陆栋.固体物理学(上).上海科学技术出版社.1995
    [83]朱晓玲.超硬材料PtN2和ReB2力学性质的第一性原理计算.四川师范大学硕士学位论文.2009
    [84]向士凯.高压及有限温度下立方金属弹性常数的计算.硕士学位论文.绵阳:中国工程物理研究院.2003.
    [85]郭云东.氧化镁和立方氮化硼等晶体高压下弹性及热力学性质的研究.四川大学 博士学位论文.2007
    [86]陈长波.压力作用下六角密堆结构金属锂及掺氢体系的弹性性质.吉林大学硕士学位论文.2002
    [87]M. Born, K. Huang, Dynamical theory of crystal lattices. (Oxford University Press, Oxford,1998)
    [88]J. F. Nye, Physical properties of crystal. (Clarendon Press, Oxford,1964)
    [89]G.Steinle-Neumann and L.Stixrude,First-principles elastic constants for the hcp transition metals Fe,Co,and Re at high pressure. Phys.Rev.B,60:791(1999)
    [90]Pugh S F.Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J].Philos Mag.1954,45:823-843.
    [91]Frantsevich I N, Voronov F F, Bokuta S A. Elastic Constants and Elastic Moduli of Metals and Insulators Handbook [M]. Kiev:Naukova Dumka Publishing House,1983
    [92]J. Y. Wang and Y. C. Zhou. Ab initial investigation on the electronic structure and bonding properties in layered ternary compound Ti3SiC2 at high pressure J. Phys: Condens. Matter..5,1983-1991 (2003)
    [93]A. Onodera, H. Hirano, T. Yuasa, N. F. Gao, and Y. Miyamoto, Static compression of Ti3SiC2 to 61 GPa. Appl. Phys. Lett.74,3782 (1999)