低蛋白合并α-酮酸饮食在慢性肾脏病和维持性血液透析中的应用及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分短期低蛋白合并α-酮酸饮食对维持性血液透析患者难治性高磷血症的影响
     目的:
     高磷血症是维持性血液透析患者常见并发症之一,与患者心血管并发症和肾性骨病的发生密切相关,然而临床上治疗却很棘手,血磷控制达标率很低。限制蛋白质摄入必然会减少磷的摄入,但是出于对营养状况的担忧,临床上缺乏在血液透析患者中应用低蛋白饮食的经验。开同~(?)是复方α-酮酸制剂,合并低蛋白饮食应用,能补充慢性肾脏病患者体内缺乏的必需氨基酸,维持正氮平衡;由于含钙,还能在一定程度上结合磷。因此,本研究旨在观察短期低蛋白合并α-酮酸饮食对维持性血液透析患者难治性高磷血症的影响。
     方法:
     在专业营养师的指导下按照患者体重指数(BMI)及饮食习惯制定个体化的低蛋白食谱,热卡为30-35kcal/kg/d,蛋白质摄入为0.8g/kg/d,同时予以复方α-酮酸制剂12片/天口服,治疗8周。通过3日饮食日记、营养状况评分、人体测量学指标(上臂肌围、肱三头肌皮褶厚度、干体重、体重指数等)和生化指标(血清肌酐、校正的蛋白质分解率、血清总蛋白、血清白蛋白、血浆氨基酸谱)对患者进行营养状态评估。测定治疗前后的高敏C反应蛋白(hs CRP)、尿素清除率(Kt/V)和CO_2结合力(CO_2-CP),分别观察患者的炎症状态、透析充分性和代谢性酸中毒情况。测定治疗前后的血钙、磷(计算钙磷乘积)和全段甲状旁腺激素(iPTH)的水平,评价该疗法对钙磷代谢,营养状况等的影响。
     结果:
     所有患者平均摄入的总热卡为:30.10±3.70kcal/kg/d,蛋白质为:0.86±0.15g/kg/d,磷为:669.55±134.51mg/d。营养状况评分、人体测量学指标和生化指标在试验前后的差异均无统计学意义(p值均>0.05)。hs CRP和Kt/V水平在治疗前后的差异均无统计学意义(p值均>0.05),CO_2-CP水平在试验后显著升高[(25.34±2.81vs18.49±1.77)mmol/L,p<0.001]。血磷及钙磷乘积水平在试验后较试验前显著下降[P:(5.59±1.20 vs7.26±1.42)mg/dl,p<0.001;Ca×P:(52.94±12.80 Vs 70.60±12.39)mg~2/dl~2,p<0.001]。血Ca和iPTH水平在治疗前后的差异均无统计学意义[Ca:(9.44±1.04 vs 9.80±1.00)mg/dl;iPTH:(454.23±36.51 vs 531.28±48.00)pg/ml](p值均>0.05)。
     结论:
     短期低蛋白饮食合并α-酮酸疗法是一种安全有效治疗维持性血液透析患者难治性高磷血症的方法。长期使用该方法的疗效和安全性有待于更多大规模、多中心、随机对照的临床研究加以证实。
     第二部分低蛋白合并α-酮酸饮食对肾脏保护作用机制的动物研究
     (一)低蛋白合并α-酮酸饮食对5/6肾大部切除大鼠的肾脏保护作用和机制探讨
     目的:
     低蛋白合并α-酮酸饮食的营养疗法在临床上常用于中重度肾功能损害的慢性肾脏病患者以延缓病程进展,但是目前对其治疗安全性的认识仍存在争议,而且其肾脏保护作用的具体机制也不清楚。因此本研究旨在观察低蛋白合并α-酮酸饮食对5/6肾大部切除大鼠肾功能的影响,并探讨相关可能的机制。
     方法:
     30只雄性SD大鼠行5/6肾大部切除术建立慢性肾功能衰竭模型,1周后给予不同蛋白含量饲料喂养,根据喂养分组如下:(1)正常蛋白组(NPD组):予18%酪蛋白;(2)低蛋白组(LPD组):予6%酪蛋白;(3)低蛋白+α-酮酸组(LK组):予5%酪蛋白+1%α-酮酸,每组10只大鼠。另取10只雄性SD大鼠行假手术后予以正常蛋白(18%酪蛋白)含量饲料作对照组(Sham组)。12周后麻醉处死大鼠,留取血、尿和肾脏组织标本。常规生化法检测血清白蛋白(Alb)、总蛋白(TP)、血尿素氮(BUN)、血肌酐(Scr)、甘油三酯(TG)、胆固醇(CHO)、高密度脂蛋白(HDL)、低密度脂蛋白(LDL)和空腹血糖(FBG);放免法检测大鼠空腹血清胰岛素;考马斯亮蓝结合法测定24h尿蛋白排泄量(24UPro);扫描电镜观察肾小球滤过膜的超微结构。蛋白组学法检测血清中差异蛋白质的表达;比色法测定血清中的丙二醛(MDA)、超氧化物歧化酶(SOD)和谷胱甘肽髓过氧化物酶(GSH-Px)的水平。免疫组织化学和免疫印迹法检测肾脏中转化生长因子(TGF-β_1)的表达。糖原染色法(PAS)观察肾小球硬化指数(GSI)和细胞外基质(ECM)增生病变。
     结果:
     1.一般情况:建模3个月后4组大鼠的体重、血清白蛋白和血清总蛋白水平的差异均无统计学意义(p值均>0.05)。NPD、LPD、LK组大鼠的Scr较Sham组显著升高[(NPD:58.67±4.80 vs.LPD:59.40±3.65vs.LK:58.60±4.56vs.Sham:34.67±5.47)umol/L](p值均<0.05),但前3组间的差异均无统计学意义(p值均>0.05);LPD组(7.26±1.29)和LK组大鼠(6.63±2.20)的BUN水平较NPD组(11.03±2.45)显著降低(p值均<0.05)。NPD、LPD、LK组大鼠的24UPro水平也较Sham组明显增多(p值均<0.05),但其中LK组24UPro水平较NPD组和LPD组显著降低[(NPD:94.23±20.15 vs LPD:58.70±8.18vs LK:38.30±5.50 vs Sham:17.70±8.10)mg/24h](p值均<0.05)。NPD组大鼠的肾小球滤过膜存在轻度足突融合和内皮细胞屏障结构紊乱,而LPD组和LK组大鼠的肾小球滤过膜结构基本正常。
     2.应用蛋白组学分析了4组大鼠血清中共328种蛋白质。NPD、LPD和LK组与Sham组相比:5种蛋白质表达增高,8种蛋白质(如:抗氧化作用的谷胱甘肽过氧化物酶GSH-Px等)表达降低;LPD组与NPD组相比:5种蛋白质(如:抗氧化酶GSH-Px等)表达增高,10种蛋白质(如:急性反应期蛋白:胰蛋白酶抑制剂重链4-ITIH4等)表达降低;LK组和NPD组相比:14种蛋白质(如:营养相关的转铁蛋白serotransferrin和抗氧化酶GSH-Px等)表达增高,7种蛋白质(如ITIH4和载脂蛋白ApoE等)表达降低;LK组和LPD组相比:9种蛋白质(如:抗氧化酶GSH-Px等)表达增高,6种蛋白质(如:载脂蛋白ApoE和纤维化相关的层粘连蛋白laminin)表达降低。
     3.糖脂代谢:FBG在4组大鼠间的差异均无统计学意义(p值均>0.05),但NPD、LPD和LK组大鼠的空腹血清胰岛素(NeD:41.86±6.13;LPD:27.49±4.15;LK:18.71±3.92)、HOMA-IR(NPD:19.93±1.52;LPD:14.68±0.10;LK:10.23±2.02)均较Sham组[Insulin:(12.48±2.24);HOMA-IR:(4.51±0.61)]显著升高(p值均<0.05),而在LK组中两项指标均较LPD组和NPD组显著降低(p值均<0.05)。HDL在4组大鼠间的差异亦均无统计学意义(p值均>0.05),但NPD、LPD和LK组大鼠的TG:(NPD:1.25±0.46;LPD:1.20±0.36;LK:0.92±0.33)、CHO:(NPD:2.89±0.65;LPD:2.56±0.51;LK:2.47±0.52)和LDL:(NPD:0.33±0.12;LPD:0.28±0.10;LK:0.25±0.08)水平均较Sham组[TG:(0.71±0.16);CHO:(1.53±0.11);LDL:(0.16±0.03)]显著升高(p值均<0.05),而仅仅CHO和TG水平在LK组中较NPD组中显著降低(p值均<0.05)。
     4.循环中氧化应激:NPD、LPD和LK组大鼠的血清中MDA含量均显著高于Sham组(3.1992±0.1781)(p值均<0.05),但其中LK组(4.6056±0.1217)和LPD组(5.2752±0.1572)血清中MDA含量均较NPD组(6.4898±0.2621)显著减少,LK组血清中MDA含量又较LPD组进一步减少(p值均<0.05);而NPD、LPD和LK组大鼠的血清中SOD和GSH-Px水平均显著低于Sham组[SOD:(46.5054±2.4142);GSH-Px:(332.2500±33.8189)](p值均<0.05),但其在LK组[SOD:(28.0876±1.0904);GSH-Px:(173.7770±4.0926)]和LPD组[SOD:(22.4170±1.2948);GSH-Px:(117.5703±5.4685)]血清中的水平均较NPD组[SOD:(15.2142±1.9010);GSH-Px:(63.0785±4.8479)]显著升高,在LK组血清中的水平又较LPD组进一步升高(p值均<0.05)。
     5.肾脏纤维化:纤维化因子TGF-β_1蛋白在NPD组中的表达(0.6459±0.0442)显著高于在LPD组(0.3763±0.0314)和LK组(0.3128±0.0296)中的表达(p值均<0.05)。NPD、LPD和LK组大鼠的肾小球硬化指数(GSI)和细胞外基质(ECM)增生评分均较Sham组显著增高(p值均<0.05),但在LK组和LPD组中均较NPD组显著降低[GSI:(NPD:37.50±6.31vs LPD:18.32±3.22 vs LK:14.91±2.33 vs Sham:2.71±1.02);ECM增生评分:(NPD:0.176±0.05 vs LPD:0.078±0.02 vs LK:0.056±0.02 vs Sham:0.032±0.01);p值均<0.05]。
     结论:
     低蛋白合并α-酮酸饮食能在保证5/6肾大部切除大鼠稳定营养状态的同时,改善血脂代谢紊乱和胰岛素抵抗,并具有减轻5/6肾大部切除大鼠氮质血症、减少足突融合、降低蛋白尿排泄等肾脏保护作用,可能与改善肾脏纤维化病变和减轻循环中增强的氧化应激有关。
     (二)低蛋白合并α-酮酸饮食对5/6肾大部切除大鼠肾素-血管紧张素系统的影响
     目的:
     肾脏局部肾素-血管紧张素系统的激活,能导致肾脏局部氧化应激增强和肾脏纤维化病变加重,是慢性肾脏病进展的关键因素之一。已有研究证实高蛋白饮食会导致肾脏局部肾素产生增多,因此本研究旨在观察低蛋白合并α-酮酸饮食能否通过影响5/6肾大部切除大鼠肾素-血管紧张素系统的兴奋性而产生肾脏保护作用。
     方法:
     30只雄性SD大鼠行5/6肾大部切除术建立慢性肾功能衰竭模型,1周后给予不同蛋白含量饲料喂养,根据喂养分组如下:(1)正常蛋白组(NPD组):予18%酪蛋白;(2)低蛋白组(LPD组):予6%酪蛋白;(3)低蛋白+α-酮酸组(LK组):予5%酪蛋白+1%α-酮酸,每组10只大鼠。另取10只雄性SD大鼠行假手术后予以正常蛋白(18%酪蛋白)含量饲料作对照组(Sham组)。12周后麻醉处死。留取血、尿和肾脏组织标本。应用放免法测定皮质匀浆中肾素和血管紧张素Ⅱ(AngⅡ)的水平,应用ELISA方法测定血浆中AngⅡ的水平。应用real-time PCR、免疫组织化学和免疫印迹法分别检测肾脏局部肾素和AngⅡ的Ⅰ型受体(AT_1)的基因和蛋白表达。比色法测定肾组织匀浆液中的丙二醛(MDA)、超氧化物歧化酶(SOD)、谷胱甘肽髓过氧化物酶(GSH-Px)和过氧化氢酶(CAT)的水平。
     结果:
     1.肾素-血管紧张素系统的改变:NPD、LPD和LK组大鼠的血浆和皮质匀浆中AngⅡ水平均较Sham组[血浆AngⅡ:(0.073±0.001)pg/ml:皮质匀浆AngⅡ:(20.48±2.34)pg/ml]显著升高(p值均<0.05),但仅皮质匀浆中AngⅡ的水平在LPD组(38.5±5.87)和LK组(30.23±4.23)中较NPD组中(68.92±10.23)显著降低(p值均<0.05)。皮质匀浆中肾素水平仅在LK组(0.16±0.01)中较NPD组中(0.20±0.01)显著降低(p<0.05)。肾脏局部肾素蛋白的表达在LPD组(0.4824±0.0640)和LK组(0.3363±0.0267)均较NPD组(0.7805±0.0905)显著减少(p值均<0.05),分别为NPD组的61.81%和43.09%。肾素基因的水平在LK组中(0.64±0.10)较NPD组(1.11±0.18)和LPD组(1.06±0.15)显著降低(p值均<0.05),分别是NPD组的57.65%和LPD组的60.37%。肾脏局部AT_1蛋白的表达在LPD组(0.14±0.02)和LK组(0.13±0.01)均较NPD组(0.19±0.02)显著减少(p值均<0.05),分别为NPD组的74%和68%。AT_(1a)基因的水平在LK组中(0.66±0.17)分别较NPD组(1.16±0.30)和LPD组(0.91±0.29)显著降低43.11%和27.47%(p值均<0.05)。
     2.肾脏局部氧化应激:NPD、LPD和LK组大鼠的组织匀浆液中MDA含量均显著高于Sham组(3.9458±0.3953)(p值均<0.05),但其中LK组(5.7220±0.2922)和LPD组(8.9340±0.2363)组织匀浆液中的MDA含量均较NPD组(11.3703±0.7423)显著减少,LK组的组织匀浆液中MDA含量又较LPD组进一步减少(p值均<0.05);而NPD、LPD和LK组大鼠的组织匀浆液中SOD、GSH-Px和CAT水平均显著低于Sham组[SOD:(152.3860±3.7769);GSH-Px:(88.5448±2.7205);CAT:(1189.2600±95.4250)](p值均<0.05),但在LK组[SOD:(88.5448±2.7205);GSH-Px:(860.9982±18.0659);CAT:(917.6600±30.1156)]和LPD组[SOD:(62.7137±2.3850);GSH-Px:(755.9942±17.3367);CAT:(715.0025±22.9055)]的组织匀浆液中其水平均较NPD组[SOD:(40.8243±3.0096);GSH-Px:(589.5017±21.2464);CAT:(464.0778±20.6500)]显著升高,在LK组的组织匀浆液中含量又较LPD组进一步减少(p值均<0.05)。
     3.相关性分析:组织匀浆液中MDA含量(r=0.892)、肾组织TGF-β_1表达(r=0.716)、GSI(r=0.807)和ECM增生评分(r=0.673)均与组织匀浆液中AngⅡ的水平呈正相关(p值均<0.001),而组织匀浆液中SOD活力(r=0.978)、GSH-Px活力(r=-0.965)和CAT活力(r=-0.891)均与组织匀浆液中AngⅡ的水平呈负正相关(p值均<0.001)。
     结论:
     低蛋白合并α-酮酸饮食可能通过抑制肾脏局部RAS兴奋性,改善5/6肾大部切除大鼠肾脏局部氧化应激状态,减轻肾组织纤维化病变,发挥肾脏保护作用。
PARTⅠ
     The effects of short-time application of low protein diet supplement withα-keto acidson refractory hyperphosphatemia in maintenance hemodialysis patients
     Objective
     Hyperphosphatemia is one of the most common complications in maintenance hemodialysis(MHD) patients, which closely relates to cardiovascular complications and renalosteodystrophy disease. Protein restriction will certainly bring to reduced phosphrousintake, but there is little experience of treating hyperphosphatemia in hemodialysis patientswith low protein diet (LPD) because of worring about malnutrition. Ketosteril~(?), a mixtureofα-ketoanalogs, is often combined with LPD to add essential amino acids whichdeficiency in chronic kidney disease (CKD) patients, as well as be used as a potentphosphrous binder. The purpose of the study is to evaluate the effects of short-timeapplication of low protein diet supplement withα-keto acids on refractoryhyperphosphatemia in MHD patients.
     Methods
     All planned menu was designed and individualized by the dietitian according to body massindex (BMI) with total calorie intake of 30~35kcal/kg/d, protein intake of 0.8g/kg/d.α-ketoacids were administered at the dose of 12 pills per day throughout the 8-week study. Thenutrition status was evaluated through the three-day-diaries (recorded at week 1, 2, 4 and 8),MNA score (minimal nutritional assessment), somatometric measurement indices (armmuscle circumference, triceps skin-fold thickness, dry weight, body mass index) andbiochemical indices (serum creatinine, protein catabolic rate, total protein, albumin, plasmaamino acids profile). High sensitivity C reactive protein (hs CRP), urea clearance rate (Kt/V)and CO_2 combinding power (CO_2-CP) before and after the trial were measured to observethe inflammation, dialysis adequacy and metabolic acidosis, respectively. Serum calcium,phosphrous and intact parathyroid hormone (iPTH) were detected before and after the trialto estimate the effects on calcium and phosphrous metabolism.
     Results
     The average calories intake, protein intake and phosphate intake during the study were30.10±3.70kcal/kg/d, 0.86±0.15g / kg/d and 669.55±134.51 mg/d, respectively. There is nosignificant difference in somatometric measurement indices and biochemical indicesbetween pre-trial and post-trial (p>0.05). No difference was observed in hs CRP and Kt/Vbefore and after the trial (p>0. 05), while CO_2-CP was significantly higher after the trial thanbefore [ (25.34±2.81 vs. 18.49±1.77)mmol/L, p<0.001]. Serum phosphate level and calciumphosphateproduct were significantly decreased in the end of the study compared to thosebefore the trial [P: (5.59±1.20vs7.26±1.42)mg/dl, p<0.001; Ca×P: (52.94±12.80 vs 70.60±12.39) mg~2/dl~2, p<0.001]。There was no marked change of serum calcium and iPTH afterthe trial [Ca: (9.44±1.04vs9.80±1.00) mg/dl;iPTH: (454.23±36.51vs531.28±48.00) pg/ml](p>0.05).
     Conclusion
     Low protein diet supplement withα-keto acids could be a safe and efficient therapy tomanage the refractory hyperphosphatemia of the MHD patients. A large scaled, multicenters,randomized controlled clinical trial is needed to confirm whether a long-termapplication of such treatment has the similar benefits.
     PARTⅡ
     In vivo study of the renal protective mechanisms oflow protein diet withα-keto acids supplement
     1. Study of the effects of low protein diet withα-keto acids supplementon renal function of 5/6 nephrectomized rats and its mechanisms
     Objective
     Low protein diet withα-keto acids supplement therapy is often been used in advancedchronic kidney disease patients to slow the progression of the disease, but it has been usedwith controversary on its safty and little known mechanisms. The purpose of the study is toobserve the effects of low protein diet withα-keto acids supplement on renal function of 5/6nephrectomized rats and its possible mechanisms.
     Methods
     Chronic renal failure model was established by 5/6 nephrectomy (Nx) in 30 male Sprague-Dawleyrats, then the animals were randomly assigned to the following diet groups: normalprotein group (NPD:18% casein protein), low protein group (LPD:6% casein protein) andsupplemented low protein group (LK: 5% casein protein+1%α-keto acids). Ten maleSprague-Dawley sham-operated rats giving 18% casein protein served as control group(Sham). All rats were killed at the end of the 12~(th) week with blood and urine samplescollected. Serum albumin (Alb), total protein (TP), blood urea nitrogen (BUN), serumcreatinine (Scr), triglyceride (TG), cholesterol (CHO), high density lipoprotein(HDL), lowdensity lipolprotein (LDL) and fasting blood glucose (FBG) were measured by routinebiochemistry. Fasting serum insulin was detected by radioimmunoassay. 24h urine proteinexcretion was detected with coomassie brilliant blue combined techniques. Electronicmicroscope was used to observe the structure of glomerular filtration membrane.Proteomics was used to identify the differentially-expressed protein in serum among thefour groups. The assays of malonaldehyde (MDA), superoxide dismutase (SOD),glutathione peroxidase (GSH-Px) in serum were measured by colorimetric method.Immunohistochemistry and western blot were used to detect the protein expression ofTGF-β_1 in residual kidney. Pathological changes of the residual kidney were investigatedwith periodic acid schiff (PAS) staining.
     Results
     1. General status: nutritional indices including weight, Alb and TP were not significantdifferent among the four groups (p>0.05). Scr was significantly higher in the Nx ratsthan in Sham rats [(NPD: 58.67±4.80vs.LPD:59.40±3.65 vs.LK:58.60±4.56 vs.Sham:34.67±5.47) umol/L, p<0.05], but was of no difference among the three Nx groups(p>0.05). BUN was obviously lower in LPD (7.26±1.29) and LK group (6.63±2.20)than in NPD group (11.03±2.45), (p>0.05). Proteinuria level of Nx groups wasmarkedly higher than that of the Sham group [(17.70±8.10)mg/24h], and that of the LKgroup [(38.30±5.50)mg/24h] was lower than those of NPD [(94.23±20.15)mg/24h] andLPD [(58.70±8.18)mg/24h] groups(p<0.05). The glomerular filtration membrane ofNPD group manifested foot process fusion and endothelial cell fenestrationdisappearance, but it was kept almost normal in LPD and LK group;
     2. 328 kinds of serological protein in four groups were analyzed by proteomics. When theNx groups were compared to Sham group, there were five kinds of protein expressionelevated, while eight kinds of protein expression declined (eg: anti-oxidative stressrelated protein GSH-Px, et al). Five types of protein expressed more in LPD group thanin NPD group (eg: GSH-Px, et al), while ten types of protein expressed less in LPDgroup (eg: acute reactive protein ITIH4, et al). There were fourteen kinds of elevatedprotein (eg: nutrition related protein serotrasferrin and anti-oxidative stress relatedprotein GSH-Px, et al) and seven kinds of reduced protein (eg: ITIH4 and ApoE, et al)in LK group compared to NPD group. Compared with LPD group, nine types of proteinlevel (eg: GSH-Px, et al) raised up while six kinds of protein level (eg: ApoE andfibrosis related protein laminin) stepped down in LK group;
     3. Fat and carbohydrate metabolism: the FBG was of no difference among the fourgroups(p>0.05), while fasting serum insulin and HOMA-IR in Nx groups weresignificantly higher than in Sham group [Insulin:(12.48±2.24);HOMA-IR:(4.51±0.61)],but those in LK group [Insulin: (18.71±3.92); HOMA-IR:(10.23±2.02)] weresignificantly lower than in LPD [Insulin: (27.49±4.15); HOMA-IR:(14.68±0.10)] andNPD [Insulin:(41.86±6.13); HOMA-IR: (19.93±1.52)] groups(p<0,05); There was nosignificantly differences of HDL in the four goups (p>0.05), while TG (NPD:1.25±0.46;LPD:1.20±0.36; LK:0.92±0.33), CHO(NPD:2.89±0.65; LPD: 2.56±0.51; LK:2.47±0.52) and LDL (NPD:0.33±0.12; LPD:0.28±0.10; LK: 0.25±0.08) in Nx groups weresignificantly higher than in Sham group[TG (0.71±0.16); CHO(1.53±0.11 ); LDL(0.16±0.03)], but only TG and CHO in LK group were significantly lower than in LPD and NPD groups (p<0.05);
     4. Circualr oxidative stress: Serological MDA of the Nx groups was significantly higherthan that of Sham group (3.1992±0.1781) (p<0.05), but was reduced lower in LK(4.6056±0.1217) and LPD group (5.2752±0.1572) than in NPD group (6.4898±0.2621),which was reduced further lower in LK group than in LPD group (p<0. 05).SerologicalSOD and GSH-Px of the Nx groups were notably lower than those of Sham group [SOD:(46.5054±2.4142); GSH-Px:(332.2500±33.8189)], (p<0.05), but they were elevatedhigher in LK [SOD: (28.0876±1.0904); GSH-Px:(173.7770±4.0926)] and LPD group[SOD: (22.4170±1.2948); GSH-Px:(117.5703±5.4685)] than in NPD group [SOD:(15.2142±1.9010); GSH-Px:(63.0785±4.8479)], which were elevated further higher inLK group than in LPD group (p<0. 05);5. Renal fibrosis: TGF-β_1 protein expression in NPD group (0.6459±0.0442) wasremarkably higher than that in Sham group (0.0671±0.0172), which was significantlydown-regulated in LPD (0.3763±0.0314) and LK group (0.3128±0.0296), (p<0.05).Glomerular sclerosis index (GSI) and excelluar matrix score of the Nx groups weresignificantly higher than those of Sham group, but improved lessen in LPD and LKgroup than in NPD group [GSI (NPD: 37.50±6.31 vs. LPD: 18.32±3.22 vs. LK: 14.91±2.33 vs. Sham:2.71±1.02); ECM score (NPD: 0.176±0.05 vs LPD: 0.078±0.02 vs LK:0.056±0.02 vs Sham: 0.032±0.01); p<0. 05].
     Conclusions
     Low protein diet withα-ketoacids supplement could keep stable nutritional status as well asameliorate the lipids metabolism disturbance and insulin resistance in 5/6 nephrectomizedrats. The therapy could also exhibit renal protective effects of lessening azotemia, reducingfoot process fusion and urinary protein excretion at the same time. Improvement of circularoxidative stress and renal fibrosis change may both be involved.
     2. Effects of low protein diet withα-keto acids supplement onrenin-angiotensin system(RAS) in 5/6 nephrectomized rats
     Objective
     The activation of renal local RAS, one of key factors contributing to the progression ofchronic kidney disease, may lead to enhanced oxidative stress and aggravated renal fibrosis.It has been proved that high protein diet will result in increased renin secretion. The purposeof the study is to observe the effects of low protein diet withα-keto acids supplement onrenin-angiotensin system in 5/6 nephrectomized rats.
     Methods
     Experimental animal modeling composition and grouping were the same as the part 1. Therenin and angiotensinⅡin tissue were measured by radioimmunoassay, whileangiotensinⅡin plasma were detected with the ELISA kit. Immunohistochemistry andwestern blot were used to locate and quantitate the protein expression of renin and AT_1.Real-time PCR was used to detect the gene expression of renin and AT_(1a), the main subtypesof AT_1 receptor. The assays of malonaldehyde (MDA), superoxide dismutase (SOD),glutathione peroxidase (GSH-Px) and catalase (CAT) in tissue were measured bycolorimetric method.
     Results
     1. Change of RAS: the AngⅡlevel both in plasma and in tissue were higher in the Nxgroups than in Sham group [plasma:(0.073±0.001)pg/ml;tissue:(20.48±2.34) pg/ml,p<0.05], but only in tissue the AngⅡlevel was lower in LPD group (38.57±5.87) and LKgroup (30.23±4.23) than in NPD group (68.92+10.23) (p<0.05).The renin level in tissuewas lower in LK group (0.16±0.01) than in NPD group (0.20±0.01) (p<0.05). The reninprotein expressed much less in LPD group (0.4824±0.0640) and LK group (0.3363±0.0267) than that in NPD group (0.7805±0.0905) (p<0.05). Renin mRNA level in LKgroup (0.64±0.10) was significantly lower than that in NPD group (1.11±0.18) and LPDgroup (1.06±0.15) (p<0. 05). The AT_1 protein expression in LPD group (0.14±0.02) andLK group (0.13±0.01) was much lesser than that in NPD group (0.19±0.02) (p<0.05).AT_(1a) mRNA level in LK group (0.66±0.17) was significantly lower than that in NPDgroup (1.16±0.30) and LPD group (0.91±0.29) (p<0.05).
     2. Renal local oxidative stress: MDA in tissue of the Nx groups was significantly higherthan in Sham group (3.9458±0.3953), which was reduced lower in LK (5.7220±0.2922)and LPD group (8.9340±0.2363) than in NPD group(11.3703±0.7423), and was reducedeven lower in LK group than in LPD group (p<0.05). SOD, GSH-Px and CAT in tissueof the Nx groups were significantly lower than in Sham group[SOD:(152.3860±3.7769);GSH-Px: (88.5448±2.7205); CAT: (1189.2600±95.4250)], (p<0.05), while those wereelevated higher in LK [SOD:(88.5448±2.7205); GSH -Px: (860.9982±18.0659); CAT:(917.6600±30.1156)] and LPD [SOD:(62.7137±2.3850); GSH-Px:(755.9942±17.3367);CAT:(715.0025±22.9055)] group than in NPD group [SOD: (40.8243±3.0096); GSH-Px:(589.5017±21.2464); CAT: (464.0778±20.6500)] (p<0.05), which were elevated evenhigher in LK group than in LPD group (p<0.05).
     3.Correlation analysis: MDA in tissue (r=0.892), TGF-β_1 expression (r=0.716), GSI(r=0.807) and ECM score (r=0.673) were positively related to AngⅡlevel in tissue (p<0.001), but SOD (r=-0.978), GSH-Px (r=-0.965) and CAT (r=-0.891) in tissue werenegatively related to AngⅡlevel in tissue (p<0.001).
     Conclusions
     Low protein diet withα-keto acids supplement therapy may exhibit renal protective effectsof improving oxidative stress and renal fibrosis pathology through inhibition the acitivity oflocal renin-angiotensin system in 5/6 nephrectomized rats.
引文
1.Mitch WE. Malnutrition: a frequent misdiagnosis for hemodialysis patients. J Clin Invest,2002,110:437-439
    
    2.Pupim LB , Flakoll PJ, Brouillette JR, et al. Intradialytic parenteral or nutrition improves protein and cenergy homeostasis in chronic hemodialysis patients. J Clin Invest,2002,110:483-492
    
    3.Cockram D, et al. Proceedings of the 7th International Congress on Nutritional and Metabolism in Renal Disease, Stockholm, May 29 to June l,1994;Absract 29
    
    4.Maroni BJ. Requiments for protein, calories and fat in the predialysis pateins in: Mitch WE, Klahr S. Nutritional the Kidney. 2nd ed. Boston: Little, Brown and Compary, 1993;185-212
    
    5.Teschan PE, Beck GJ, Dwyer JT, et al. Effect of a ketoacid- aminoacid - supplemented very low protein diet on the progression of advanced renal disease: a reanalysis of the MDRD feasibility study. Clin Nephrol, 1998, 50: 273-283.
    
    6.Kopple JD, Massry SG, eds. Nutritional management of renal disease. 2nd ed.Philadelphia: Lippincott Williams & Wilkins, 2004. 17-18,241-259, 379-414
    
    7.Mitch WE, Klahr S, eds. Handbook of nutrition and the kidney. 4th ed. Philadelphia:Lippincott Williams & Wilkins, 2002.135-156,157-177,214-232
    
    8.Ward RA, Shirlow M J, Hayes JM, et al. Protein catabolism during hemodialysis. Am J Clin Nutr, 1979, 32: 2443-2449
    
    9.Ramirez JA, Emmett M, White MG, et al. The absorption of dietary phosphorus and calcium in hemodialysis patients. Kidney Int, 1986, 30:753-759
    
    10.Hsu CH: Are we mismanaging calcium and phosphate metabolism in renal failure? Am J Kidney Dis, 1997,29:641-649
    
    11.National Kidney Foundation: K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis, 2003, (Suppl 3): S1-S201
    12.Levin Nw, Hulberg-Schearon TE, Strawderman RL, et al. Which causes of death are related to hyperphosphatemia in hemodialysis patients. J Am Soc Nephrol, 1998, 9: 217A
    13.Uribarri J . Doqi guidelines for nutrition in long - term peritoneal dialysis patients: a dissenting view. Am J Kidney Dis, 2001, 37(6):1313 -1318
    
    14.Margarita R, Eduardo DB, Marisa M, et al. Is it possible to control hyperphosphataemia with diet, without inducing protein malnutrition? Nephrol Dial Transplant, 1998, Suppl 3:S65-S67
    15.Uribarri J. The obsession with high dietary protein intake in ESRD patients on dialysis:is it justified? Nephron, 2000, 86:105-108
    16.Uribarri J. Protein catabolic rate may underestimate dietary protein intake in hemodialysis patients. Nephron, 1999, 82:97-99
    17.Mehrotra R,Nolph KD. Treatment of advanced renal failure: Low-protein diets or timely initiation of dialysis? Kidney Int, 2000, 58:1381-1388
    18.Kopple JD. National Kidney Foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis, 2001, 37:S66-S70
    19.Guerin AP, London CM, Marchais SJ, et al. Aterial stiffening and vascular calcifications in end-stage renal disease. Nephrol Dial Transplant, 2000,15:1014-1021
    20.National Kidney Foundation: K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis, 2003, Suppl 3: S1-S201
    21.Young EW, Akiba T, Albert JM, et al. Magnitude and impact of abnormal mineral metabolism in hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis, 2004, 44:34-38
    22.孙鲁英,王梅,杨莉.终末期肾脏病患者钙磷代谢及甲状旁腺激素水平的临床分析.北京大学学报(医学版),2005,37(2):147-150
    23.Delmez J, Slatopolsky E. Hyperphosphatemia: its consequences and treatment in patients with chronic renal failure. Am J Kidney Dis, 1992, 19:303-317
    24.Morton R, Hercz D, Coburn J. Control of hyperphosphatemia in chronic renal failure. Semin Dial, 1990, 3:219-223
    25.Hercz D, Coburn J. Prevention of phosphate retention and hyperphosphatemia in uremia.Kidney Int, 1987, 32:S215-S220
    26.Alfrey AC, Mishell JM, Burks J, et al. Syndrome of dyspraxia and multifocal seizures associated with chronic hemodialysis. Trans Am Soc Artif Intern Organs, 1972, 18:257-261
    27.Alfrey AC, Legendre GR, Kaehny WD. The dialysis encephalopathy syndrome: Possible aluminum intoxication. N Engl J Med, 1976, 294:184-188
    28.Pierides AM, Edwards WG, Cullum UX, et al. Hemodialysis encephalopathy with osteomalacic fractures and muscle weakness. Kidney Int,1980, 8:115-124
    29.Kim J, Pisoni RL, Danese MD, et al. Achievement of proposed NKF-K/DOQI bone metabolism and disease guidelines: Results from the dialysis outcomes and practice patterns study (DOPPS) [Abstract].J Am Soc Nephrol, 2003, 14: 269A-270A
    30.Riedel E, N(?)ndel M, Hampl H.α-Ketoglutratate application in hemodialysis patients improves amino acids metabolism. Nephron, 1996, 74: 261-265
    
    31.Passavanti G, Fassianos E, Saracino A, et al. Effects of a mix of ketoanalogous of essential aminoacids(KEAA) for the treatment of malnutrition in dialysis patients: a 2-years study. 39~(th) Congress of EDTA, Copenhagan, July 14-17,2002; Abstract 88
    
    32.Fasianos E, Sacchetti A, Angellini P, et al. Ketoanalogues of essential amino acids on maintenance hemodialysis patients: a 4-years cross-over study. 12th International Congress on Nutrition and Metabolism in Renal Disease, June 18-22,2004; Abstract
    
    33.Soucie JM, Clellan WM. Early death in dialysis patients: risk factors and impact on incidence and mortality rates. J Am Soc Nephrol,1996, 7:2169-2175
    
    34.Kopple JD. National Kidney Foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis, 2001, 37(Suppl 2): S66-S70
    
    35.Jones MR: Etiology of server malnutrition: results of an international cross-section study in continuous ambulatory peritoneal dialysis patients. Am J Kidney Dis, 1994, 23: 412-420
    
    36.Michel A, Philippe C, Valerie DP, et al. Nutrition and outcome on renal replacement therapy of patients with chronic renal failure treated by a supplemented very low protein diet. J Am Soc Nephrol, 2000,11:708-716
    
    37.Klahr S, Levey AS, Beck GJ, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med, 1994,330:877-884
    
    38.Eberhard R, Michael N, Hannelore H. α-Ketoglutarate application in hemodialysis patients improves amino acid metabolism. Nephron, 1996, 74:261-265
    
    39.Wernermann J. a-Ketoglutarate in the treatment of postoperative and critically ill patients. Clin Nutr, 1993,12:58-59
    
    40.Cynober L. Ornithine a-ketoglutarate in nutritional support. Nutrition, 1991, 7: 313 -322
    
    41.Lindenau K, Kokot F, Frohling PT. Suppression of parathyroid hormone by therapy with a mixture of Keto analogues/amino acids in hemodialysis patients. Nephron, 1986,43:84-86
    
    42.Schaefer D, Herrath von, Asmus G, et al. The beneficial effect of ketoacids on serum phosphate and parathyroid hormone in patients with chronic uremia. Clin Nephrol, 1988, 30:93-96
    
    43.Aparicio M, Combe C, Lafage MH, el al. In advanced renal failure, dietary phosphorus restriction reverses hyperparathyroidism independent of changes in the level of calcitriol.Nephron.1993, 63(1): 122-123
    44.Barsotti G, Morelllie, Giducci A, et al. Reversal of hyperparathyroidism in severe uremics following a very low-protein and low-phosphorus diet. Nephron, 1982, 30: 310-313
    
    45.Barsotti G, Lazzeri M, Cristofano C, et al. The role of metabolic acidosis in causing uremic hyperphosphatemia. Miner Electrolyte Meta, 1986, 2:103-106
    
    46.Combe C, Aparicio M. Phosphorus and protein restriction and parathyroid function in chronic renal failure. Kidney Int, 1994, 5:1381-1386
    
    47.Barsotti G, Cupisti A, Ferdeghini M, et al. Circulating levels of IGF- I in patients with chronic uremia on conservative dietary treatment. Ren Fail, 1998, 20 (2):357-360
    
    48.Feiten SF, Draibe SA, Watanabe R, et al. Short-term effects of a very-low-protein diet supplemented with ketoacids in nondialyzed chronic kidney disease patients. Eur J ClinNutr,2005, 59:129-136
    
    49.Seiya Okuda, Takamichi Nakamura, Tatsuo Yamamoto, et al. Dietary protein restriction rapidly reduces transforming growth factor β1 expression in experimental glomerulonephritis. Proc Natl Acad Sci, 1991, 88: 9765-9769
    
    50.Vladimir Teplan, Otto Schuck, Miroslava Horackova, et al. Effect of a keto acid - amino acid supplement on the metabolism and renal elimination of branched-chain acids in patients with chronic renal insufficiency on a low protein diet. Wien Klin Wochenschr,2000,112(20):876-881
    
    51 .Fliser D, Pancni G, Engelleiter R et al. Insulin resistance and hyperinsulinemia are already present in patients with incipient renal disease. Kidney Int, 1998, (53): 1343 - 1347
    
    52.Rigalleau V, Blanchetier V, Combe C et al. A low-protein diet improves insulin sensitivity of endogenous glucose production in predialytic uremic patients. Am J Clin Nutr,1997,(65): 1512-1516
    
    53.Diamond JR. The role of reactive oxygen species in animal models of glomerular disease.Am J Kid Dis, 1992, 19: 292-300
    
    54.Baliga P, Ueda N, Walker PD, et al. Oxidant mechanism in toxic acute renal failure.Drug Metab Rev, 1999, 31:971-997
    
    55.Lee GT , Ha H , Jung M, et al. Delayed treatment with lithospermate B attenuates experimental diabetic renal injury. J Am Soc Nephrol, 2003, 14 :709-720
    
    56.Klahr S, Urinary tract obstruction. Semin Nephrol, 2001, 21:133-145
    
    57.Wanner C, Greiber S, Kramer-Guth A, et al. Lipids and progression of renal disease: role of modified low density lipoprotein and lipoprotein(a). Kidney Int, 1997, 52 (Suppl.63):S102-S106
    58.Kitamura M, Ishikawa Y. Oxidant-induced apoptosis of glomerular cells: intracellular signaling and its intervention by bioflavonoid. Kidney Int, 1999, 56: 1223-1229
    
    59.Handelman GJ, Walter MF, Adhikarla R, et al. Elevated plasma F2-isoprostanes in patients on long-term hemodialysis. Kidney Int, 2001, 59:1960-1966
    
    60.Uribarri J, Turtle KR. Advanced Glycation End Products and Nephrotoxicity of High-Protein Diets. Clin J Am Soc Nephrol, 2006, (1): 1293-1299
    
    61.Ziyadeh FN, Han DC, Cohen JA. Glycated albumin stimulates fibronectin gene exepression in glomeruar mesangial cells: Involvement of the transforming growth factor-B system. Kidney Int, 1998, 53: 631-638
    
    62.Anderson PW, Zhang XY, Tian J, et al. Insulin and angiotensin II are additive in stimulating TGF-β1 and matrix mRNA in mesangial cells. Kidney Int, 1996, 50: 745- 753
    
    63.Floege J, Hackmann B, Kliem V, et al. Age-related glomerulosclerosis and interstitial fibrosis in Milan normotensive rats: a podocyte disease. Kidney Int, 1997, 51: 230-243
    
    64.Border WA, Noble NA. Transforming growth factor β in tissue fibrosis. N Engl J Med,1994,331: 1286-1292
    
    65.Rosenberg ME, Swanson JE, Thomas BL, et al. Glomerular and hormonal responses to dietary protein intake in human renal disease. Am J Physiol, 1987,253: 1083-1090
    
    66.Paller MS, Hostetter TH. Dietary protein increases plasma renin and reduces pressor reactivity to angiotensin II. Am J Physiol, 1986,251: 34-39
    
    67.Daniels BS, Hostetter TH. Effect of dietary protein on vasoactive hormones. Kidney Int,1988, 33:260 [Abstr]
    
    68.Levine MM, Kirschenbaum MA, Chaudhari A, et al. Effect of protein on glomerular filtration rate and prostanoid synthesis in normal and uremic rats. Am J Physiol, 1986, 251:635-641
    
    69.Don BR, Blake S, Hutchison FN, et al. Dietary protein intake modulates glomerular eicosanoid production in the rat. Am J Physiol, 1989,256: 711-718
    
    70.Correa-RR, Hostetter TH, Manivel JC, et al. Renin expression in renal ablation.Hypertension, 1992, 20(4):483-490
    
    71.Correa-RR, Hostetter TH, Rosenberg ME. Effect of dietary protein on renin and angiotensinogen gene expression after renal ablation. Am J Physiol, 1992, 262:631- 638
    
    72.Rosenberg ME, Chmielewski D, Hostetter TH. Effect of dietary protein on rat renin and angiotensinogen gene expression. J Clin Invest, 1990, (85): 1144-1149
    73.Harm P, Wayne AB, Nancy AN. Angiotensin II blockade and low-protein diet produce additive therapeutic effects in experimental glomerulonephritis. Kidney Int, 2000, 57:1493-1501
    
    74.Lavoie JL, Sigmund CD. Minireview: overview of the renin-angiotensin system-an endocrine and paracrine system. Endocrinology, 144(6): 2179-2183
    
    75.Nguyen G, Delareu F, Burckle C, et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellulr responses to renin. J Clin Invest, 2002, 109:1417-1427
    
    76.Nguyen G, Burckle C, Sraer JD. The renin receptor: the facts, the promise and the hope.Curr Opin Nephrol Hypertens, 2003, 12(1):51-55
    
    77.Huang Y, Wongamorntham S, Kasting J, et al. Renin increase mesangial cell transforming growth factor-pi and matrix proteins through receptor-mediated, angiotensin II independent mechanisms. Kidney Int, 2006, 69(1): 105-113
    
    78.Ludwig J, Kersher S, Brandt U et al. Identification and characterization of a novel 9.2 KDa membrane sector-associated protein of vacuolar proton ATPase from chromaffin granules. J Biol Chem, 1998, 273:10939-10947
    
    79.Gerber JG, Branch RA, Nies AS, et al. Prostaglandins and renin release: assessment of renin secretion following infusion of PGI2, E2, and D2 into the renal artery of anesthetized dogs. Prostaglandins, 1978,15:81-88
    
    80.Seney FD, Persson EG, Wright FS. Modification of tubuloglomerular feedback signal by dietary protein. Am J Physiol, 1987,252: 83-90
    
    81 .Navar LG, Nishiyama A. Why are angiotensin concentrations so high in the kidney?Curr Opin Nephrol Hypertens, 2004, 13: 107-115
    
    82.Seikaly MG, Arant BS, Seney FD, et al. Endogenous angiotensin concentration in specific intrarenal fluid compartments of the rats. J Clin Invest, 1990, 86:1352-1357
    
    83.Bumps FM, Catt KJ, Chiu AT, et al. Nomenclature for angiotensin receptors: a report of the Nomenclature Committee of the Council for High Blood Presssure Reseach. Hypertension, 1991, 17: 720-721
    
    84.Iwai N, Inagami T.Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett, 1992, 24; 298(2-3):257-260
    
    85.Zhu Z, Zhang SH, Wagner C, et al. Angiotensin AT1B receptor mediates calcium signaling in vascular smooth muscle cells of AT1A receptor-deficient mice. Hypertension,1998, 31(5):1171-1177
    86.Hamawaki M, Coffman TM, Lashus A, et al. Pressure-overload hypertrophy is unabated in mice devoid of AT1A receptors. Am J Physiol, 1998, 274:868-873
    87.Benigni A, Corna D, Zoja C, et al. Targeted deletion of angiotensin Ⅱ type 1A receptor does not protect mice from progressive nephropathy of overload proteinuria. J Am Soc Nephrol, 2004, 15(7): 1794-1804
    88.Paller MS, Hostetter TH. Dietary protein increases plasma renin and reduce pressor reactivity to angiotensin Ⅱ. Am J physiol, 1986, 251(1 Pt 2):34-39
    89.Kyaw M, Yoshizumi M, Tsuchiya K, et al. Antioxidants inhibit JNK and p38 MAPK activation but not ERK 1/2 activation by angiotensin Ⅱ in rat aortic smooth muscle cells.Hypertens Res, 2001, 24:251-261
    90.Zhao W, Zhao T, Chen Y, et al. Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-betal in hypertensive rats. Mol Cell Biochem, 2008, 317(1-2):43-50
    91.Ruiz-Ortega M, Egido J. Angiotensin Ⅱ modulates cell growth-related events and synthesis of matrix proteins in renal interstitial fibroblasts. Kidney int, 1997, 52:1497-1510
    92.Kuster C, Wolf G.. Renin-agiotensin Ⅱ-aldosterone system and progression of renal disease. J Am Soc Nephrol, 2006, 17:2985-2991
    93.Chan LY, Leung JC, Tang SC, et al. Tubular expression of angiotensin Ⅱ receptors and their regulation in IgA nephropathy. J Am Soc Nephrol, 2005, 16:2306-2317
    94.张敏敏,顾勇,陈靖等。醛固酮可通过钠氢交换子1诱导肾小球系膜细胞外基质增生。中华肾脏病杂志,2006,22(8):477-482
    95.张敏敏,顾勇,陈靖等。短发卡RNA-钠氢交换子1抑制醛固酮引起的系膜细胞纤连蛋白增生。中华肾脏病杂志,2007,23(10):635-639
    96.Lai LY, Chen J, Hao CM, et al.Aldoserone promotes fibronectin production through a smad2-dependent TGF-β_1 pathway in mesangial cells. Biochem Biophys Res Commun,2006, 348: 70-75.
    1. Andrew SL, Tom G, Gerald JB, et al. Dietary protein restriction and the progression of chronic renal disease: what have all of the results of the MDRD study shown[J]? J Am Soc Nephrol, 1999, 10: 2426-2439.
    2. Mackenzie W, Sylvia H. Can renal replacement be deferred by a supplemented very low protein diet[J]? J Am Soc Nephrol, 1999, 10:110-116.
    3. Aparicio M, Chauveau P, De Precigout V, et al. Nutrition and outcome on renal replacement therapy of patients with chronic renal failure treated by a supplemented very low protein Diet [J]. J Am Soc Nephrol, 2000,11:708-716.
    4. Harm P, Wayne AB, Nancy AN. Angiotensin Ⅱ blockade and low-protein diet produce additive therapeutic effects in experimental glomerulonephritis[J]. Kidney Int, 2000, 57:1493-1501.
    5. Teplan V, Schuck O, Horackova M, et al. Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain acids in patients with chronic renal insufficiency on a low protein diet[J]. Wien Klin Wochenschr, 2000, 112(20):876-881.
    
    6. Lafage MH ,Combe C, Fournine A, et al. Keto, physiological calcium intake and native vitamin D improve renal osteodystrophy[J]. Kidney Int, 1992,42:1217-1225.
    
    7. Lindenau K, Abendroth K, Kokot F, et al. Therapeutic effect of keto acid on renal Osteodystrophy[J]. Nephrol, 1990, 55(2):133-135.
    
    8. Tizianello A, Deferrari G, Gabribotto G, et al. Is amino acid imblance harmful to patients in chronic renal failure[J]? Kidney Int Suppl, 1985, 17: S79-S83.
    
    9. Hiroshige K, Sonta T, Suda T, et al. Oral supplementation of branched-chain amino acid improves nutritional status in elderly patients on chronic haemodialysis[J]. Nephrol Dial Transplant, 2001, 16:1856-1862.
    
    10.Fliser D, Pancni G, Engelleiter R, et al. Insulin resistance and hyperinsulinemia are already present in patients with incipient renal disease[J]. Kidney Int, 1998,53: 1343-1347.
    
    11 .Rigalleau V, Blanchetier V, Combe C, et al. A low-protein diet improves insulin sensitivity of endogenous glucose production in predialytic uremic patients[J]. Am J Clin Nutr, 1997, 65:1512-1516.
    
    12.Bellizzi V, Dilorio BR, Nicola LD, et al. Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease[J]. Kidney Int,2007,71:245-251.
    13.Brenner B, Meyer T, Hostetter T. Dietary protein intake and the progressive nature of kidney disease[J]. N Engl J Med, 1982, 307: 652-660.
    14.Richardo S, Bertram J, Ryan G. Reactive oxygen species in puromycin aminonucleoside nephrosis: In vitro studies[J]. Kidney Int, 1994, 45: 1057-1069.
    15.Chobanian M, Julin C, Molteni K, et al. Growth hormone regulates ammoniagenesis in canine renal proximal tubule segments[J]. Am J Physiol, 1992, 262:878-884.
    16.Jarusiripipat C, Shapiro J, Chan L, et al. Reduction of remnant nephron hypermetabolism by protein restriction[J]. Am J Kidney Dis, 1991,18: 367-374.
    17.Heidland A, Sebekova K, Ling H. Effect of low-protein diets on renal disease:are non-haemodynamic factors involved[J]? Nephrol Dial Transplant, 1995:1512-1514.
    18.Correa-RR, Hostetter TH, Manivel JC, et al. Renin expression in renal ablation[J].Hypertension, 1992, 20(4):483-490.
    19.Correa-RR, Hostetter TH, Rosenberg ME. Effect of dietary protein on renin and angiotensinogen gene expression after renal ablation[J]. Am J Physiol, 1992, 262:631-638.
    20.Okuda S, Nakamura T, Yamamoto T, et al. Dietary protein restriction rapidly reduces transforming growth factor β1 expression in experimental glomerulonephritis[J]. Proc Natl Acad Sci, 1991, 88: 9765-9769.
    21. Uribarri J, Tuttle KR. Advanced Glycation End Products and Nephrotoxicity of High-Protein Diets[J]. Clin J Am Soc Nephrol, 2006, (1): 1293-1299.
    22. Meek RL, Cooney SK, Flynn SD, et al. Amino acids induce indicators of response to injury in glomerular mesangial cells[J].Am J Physiol Renal Physiol, 2003,285:79-86.
    1.Kopple JD. National Kidney Foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis, 2001, 37:S66-S70.
    2.National Kidney Foundation: K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis, 2003, Suppl 3: S1-S201.
    3.Block GA. Prevalence and clinical consequences of elevated Ca×P product in hemodialysis patients. Clin Nephrol, 2000, 54:318-324.
    4.Kim J, Danese S, Satayathum P, et al. Achievement of proposed NKF-K/DOQI bone metabolism and disease guidelines: Results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). J Am Soc Nephrol, 2003, 14: 269-270.
    5.Young EW, Akiba T, Albert JM,et al. Magnitude and impact of abnormal mineral metabolism in hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS).Am J Kidney Dis, 2004, 44:34-38.
    6.孙鲁英,王梅,杨莉.终末期肾脏病患者钙磷代谢及甲状旁腺激素水平的临床分析.北京大学学报(医学版),2005,37(2):147-150.
    7.Guerin AP, London CM, Marchais SJ, et al. Aterial stiffening and vascular calcifications in end-stage renal disease. Nephrol Dial Transplant, 2000, 15:1014-1021.
    8.Block GA, Port FK. Re-evaluation of risks associated with hyperphosphatemia and hyperparathyroidism in dialysis patients: recommendations for a change in management. Am J Kidney Dis, 2000, 35:1226-1237.
    9.Raggi P. Imaging of cardiovascular calcifications with electron beam tomography in hemodialysis patients. Am J Kidney Dis, 2001, 37:S62-S65.
    10.Block G, Port FK. Calcium phosphate metabolism and cardiovascular disease in patients with chronic kidney disease. Semin Dial, 2003, 16: 140 - 147.
    11.Sperschneider H, Gunther K, Marzoll I, et al. Calcum Carbonate (Ca_2CO3): An efficient and safe phosphate binder in haemodialysis patinents? A 3-Year study. Nephrol Dial Transpl, 1993,8:530-534.
    12.Slatopolsky EA, Burke SK, Dillon MA, et al. Renagel, a nonabsorbed calcium - and aluminum - free phosphate binder, lowes serum phosphorus and parathyroid hormone.The Renagel study Group. Kidney Int, 1999, 55: 299 - 307.
    13.Margarita R, Eduardo DB, Marisa M, et al. Is it possible to control hyperphosphataemia with diet, without inducing protein malnutrition? Nephrol Dial Transplant, 1998, Suppl 3:S65-S67.
    14.Ramirez JA, Emmett M, White MG, et al. The absorption of dietary phosphorus and calcium in hemodialysis patients. Kidney Int, 1986, 30: 753-759.
    15.Hsu CH. Are we mismanaging calcium and phosphate metabolism in renal failure? Am J Kidney Dis, 1997, 29: 641-649.
    
    16.李素萍,刘隽,马飞驹.开同治疗慢性维持性血透患者.临床医学, 2004,2 (24): 16-17.
    
    17.Gabor Zaker for the study group. The effect of a keto acid supplement on the course of chronic renal failure and nutritional parameters in predialysis patients and patients on regular hemodialysis therapy: The Hungarian Ketosteril Cohort Study. Wien Klin Wochenschr, 2001, 113: 688-694.
    18.Eberhard R,Michael N, Hannelore H. a-Ketoglutarate application in hemodialysis patients improves amino acid metabolism. Nephron, 1996, 74: 261-265.
    19.Jaworska M, Szulinska Z, Wilk M. Development of a capillary electrophoretic method for the analysis of amino acids containing tablets. J Chromatogr A, 2003, 993: 165-172.
    20.Druml W. Supplements of keto acids in patients with chronic renal failure more than modulators of nitrogen economy. Wien Klin Wochenschr, 2001, 113: 638-640.
    21.Zakar G. The effect of a keto acid supplement on the course of chronic renal failure and nutritional parameters in predialysis patients and patients on regular hemodialysis therapy: the Hungarian Ketosteril Cohort Study. Wien Klin Wochenschr, 2001, 113: 688-694.
    22.Lindenau K, Kokot F, Frohling PT. Suppression of parathyroid hormone by therapy with a mixture of keto analogues/ amino acids in hemodialysis patients. Nephron, 1986, 43: 84-86.
    23.Combe C, Aparicio M. Phosphorus and protein restriction and parathyroid function in chronic renal failure. Kidney Int, 1994, 5:1381-1386.