团簇加连接原子模型的修正及其在金属玻璃和共晶合金成分解析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属玻璃具有长程无序短程有序的特殊结构,研究其结构特征对于金属玻璃成分和性能的设计具有重大意义。在前期,我们课题组提出了团簇加连接原子结构模型,从局域团簇角度描述金属玻璃的结构,把任何结构分成团簇和连接原子两部分,对于理想金属玻璃,可表示成团簇式[团簇](连接原子)1,3,团簇来自于相应晶化相中的主团簇,进而通过引入电子共振效应,提出团簇共振模型,指出单位团簇式包含固定数目的电子数,构成理想金属玻璃的基本结构单元。本论文在此基础上,拓展了团簇加连接原子模型的结构内涵和应用范围,提出团簇共振修正模型,构建了块体二元体系和典型三元体系中块体金属玻璃的理想团簇式,解析了二元金属玻璃形成体系的共晶点成分规律,从而解释了共晶点集中出现于少数简单成分比例的现象,即‘'Stockdale/Hume-Rothery eutectic puzzle"。具体的工作内容涵盖如下四个方面:
     1)针对团簇模型中的主团簇选择判据不够清晰和团簇式电子数非整数的问题,完善了主团簇的选择判据,提出团簇共振修正模型,指出单位团簇式包含整数的24个电子数。在本课题组的前期工作中,提出针对理想金属玻璃的团簇共振模型,单位团簇式包含恒定的接近于e/u=23.6的电子数,团簇来自相关晶化相中的具有近程有序结构代表性的主团簇。在本论文中,我们首先完善了主团簇的选择判据,在国外提出的团簇密堆几何判据基础上,获得了更加严格的适用于多组元团簇的团簇密堆准则,结合团簇在晶化相结构中的排布结构,提出了主团簇是具有最大空间孤立度(团簇共享后有效原子个数)且原子密堆(与理想密堆的接近程度)的团簇。我们进而修正了以前团簇共振模型中的团簇近邻关系,获得了理想金属玻璃的原子密度pa计算方法,最终得到团簇共振修正模型,给出理想金属玻璃的单位团簇式的价电子数e/u为固定且整数的24个。
     2)将上述团簇加连接原子衍生出的团簇共振修正模型具体运用于二元块体金属玻璃的成分规律解析上,确定了所有已知二元块体金属玻璃的理想团簇式,包括Cu-(Zr,Hf), Ni-(Nb, Ta), Al-Ca和Pd-Si,并提出来成分解析的具体构建过程,即主团簇的选择和具有24电子数的理想团簇式[团簇](连接原子)1,3的构建。这些块体金属玻璃的团簇式为:[Cu8Zr5]Cu≈Cu64.3Zr35.7(e/u=23.7)、[Zr7Cu10]Zr≈Cu55.6Zr44.4(23.4)、[Zr7Cu8]Zr=Cu50Zr50(24.2)、[Cu8Hf5]Cu≈Cu64.3Hf35.7(23.7)、[Ni7Nb6]Ni3=Nb37.5Ni62.5(23.5)、[Ni-Ni6Ta6]Ni3=Ni62.5Ta37.5(23.1),[Ta-Ni6Ta6]Ni3=Ni56.25Ta43.75(23.8)、[Ca9Al6]Ca3≈Ca66.7Al33.3(23.8)和[Pd11Si3]Pd3≈Pd82.4Si17.6(24.0),其中括号内为实际电子数,与理论的24电子十分接近。
     3)构建了三元理想金属玻璃团簇式,完美解释了实验成分统计规律。三元理想金属玻璃根据团簇式特征分为两类,第一类是基于二元基础体系团簇式的第三组元替换,多数三元金属玻璃属于这个类型,如Ca-Mg-(Cu, Zn), Cu-(Al,Ti)-Zr, La-Al-(Cu,Ni), Mg-Cu-Y, Ni-Nb-Zr, Pd-Cu-Si和Pd-Ni-P;第二类是主团簇直接来自三元晶化相,如Zr-Al-Co和Zr-Al-Ni。24电子规则同样在此得到证实。利用含有不同原子个数的团簇式,完美解释了经过统计大量实验成分得到的七个最稳定三元块体金属玻璃成分,分别为含有16个原子的A44B38C18≈A7B6C3、A44B43C13≈A7B7C2和A56B32C12≈A9B5C2;18个原子的A55B28C17≈A10B5C3;20个原子的A65B25C10=A13B5C2、A70B20C10=A14B4C2和A65B20C15=A13B4C3。
     4)利用团簇式分析了二元金属玻璃形成体系中的共晶点成分特征,定量解释了Stockdale/Hume-Rothery共晶困惑。首先我们假设共晶体由两种稳定液态结构以等比例构成,我们证实,二元共晶点均可用源自两个共晶相中的主团簇式等比例混合解释,即两个主团簇分别匹配以1或者3个连接原子,共晶团簇式因此可以理解为两个主团簇加上2个、4个或6个连接原子,与之相关联的块体金属玻璃成分对应于其中一个24电子理想团簇式,主团簇与共晶相成分差越大,对应团簇式的玻璃形成能力越强。这些特点在二元块体玻璃形成体系Cu-(Hf,Zr)、Ni-(Nb,Ta)、Al-Ca和Pd-Si中得到证实。进而,我们把合金元素根据原子半径分为微小、小、中、大和超大的五组,金属玻璃和共晶体系均源自不同组的原子组合,而两组原子的平均半径比决定了密堆团簇的种类,这样就出现了少数密堆团簇以及相关联的共晶成分式,从而定量解释了Stockdale/Hume-Rothery共晶困惑,即共晶点成分集中出现在简单成分比例如8/1、5/1、3/1、2/1和3/2附近。
Metallic glasses are characterized by long-range disorders and short-range orders. Understanding their structures is of great significance to their composition and property design. In earlier works, our group proposed a cluster-plus-glue-atom model which described the structures of metallic glasses in terms of a local atomic cluster part and a glue atom part. Ideal metallic glasses can always be expressed by cluster formulas [cluster](glue atoms)1,3, where the cluster is the principal cluster in a relevant devitrification phase. After introducing the electronic resonance effect, this model was transformed into a cluster-resonance model that led to a constant number of valence electrons per unit cluster formula for all ideal metallic glasses, regardless of their chemical compositions. In this work, the contents and applications of the cluster-plus-glue-atom model are expanded and the issued cluster-resonance model is revised. The ideal cluster formulas of metallic glasses in bulk binary and typical ternary metallic glass forming systems are built using the revised model. The eutectic composition rule in binary glass forming systems is specially focused to answer "Stockdale/Hume-Rothery eutectic puzzle". Our contributions are summarized into the following four aspects:
     1) To clarify the selection criteria for the principal clusters in the cluster-based models and to answer the doubt on non-integer constant of the electron number per unit cluster formula,the cluster criteria are first refined and the cluster-resonance model is revised. A unit cluster formula is shown to possess a constant24electrons, to amend the original cluster-resonance model that indicates a constant electron number being close to e/u=23.6. The principal cluster definition is further refined to better represent the short-range order structure in the relevant crystalline phase. A multi-component cluster close-packing criterion is established on the basis of cluster dense packing. The principal clusters have the largest cluster isolation (largest effective cluster size) and high atomic packing efficiencies (closeness to ideal dense packing). The calculation of atomic density pa in the model is then revised that leads to a revised cluster-resonance model. The universal cluster formulas for ideal metallic glasses are shown to possess a constant total electron number e/u=24.
     2) The revised cluster-resonance model, issued from the cluster-plus-glue-atom model, is used to explain the glass-forming compositions of binary bulk metallic glasses, including Cu-(Zr,Hf), Ni-(Nb,Ta), Al-Ca and Pd-Si. The selection of the principal clusters and the establishment of24-electron cluster formulas [cluster](glue atoms)1,3are formalized. The ideal cluster formulas of all the known binary bulk metallic glasses are then:[Cu8Zr5]Cu≈Cu64.3Zr35.7(e/u=23.7),[Zr7Cu10]Zr≈Cu55.6Zr44.4(23.4),[Zr7Cu8]Zr=Cu50Zr50(24.2),[Cu8Hf5]Cu≈Cu64.3Hf35.7(23.7),[Ni7Nb6]Ni3=Nb37.5Ni62.5(23.5),[Ni-Ni6Ta6]Ni3=Ni62.5Ta37.5(23.1),[Ta-Ni6Ta6]Ni3=Ni56.25Ta43.75(23.8),[Ca9Al6]Ca3≈Ca66.7Al33.3(23.8) and [Pd11Si3]Pd3≈Pd82.4Si17.6(24.0), where the electron numbers of the real cluster formulas in the brakets are close to24.
     3) The ideal cluster formulas of ternary metallic glasses are established, and the statistical results of experimental compositions are fully explained. Two kinds of ternary ideal cluster formulas are presented. In the first, ideal ternary cluster formulas are obtained by substitutions in binary cluster formulas by the third component, as in systems Ca-Mg-(Cu, Zn), Cu-(Al, Ti)-Zr, La-Al-(Cu, Ni), Mg-Cu-Y, Ni-Nb-Zr, Pd-Cu-Si and Pd-Ni-P. In the second, the principal clusters of ideal ternary cluster formulas are derived from ternary crystalline phases, as in Zr-Al-Co and Zr-Al-Ni systems. The24-electron rule is confirmed in these systems. The seven most stable ternary glass-forming compositions from the statistical experimental results are fully explained by cluster formulas with different total atoms, A44B38C18≈A7B6C3, A44B43C13≈A7B7C2and A56B32C12≈A9B5C2using16-atom formulas, A55B28C17≈A10B5C3using18, A65B25C10=A13B5C2, A70B20C10=A14B4C2and A65B20C15=A13B4C3using20.
     4) Eutectic composition rules in binary systems are analysed by cluster formulas, and Stockdale/Hume-Rothery puzzle is quantitatively explained. It is assumed that a eutectic consists of two kinds of stable liquids in equal proportion. A binary eutectic is explained by the equal-proportion mixing of two principal cluster formulas where each principal cluster is matched with one or three glue atoms. A eutectic cluster formula is then composed of two principal clusters plus two, four or six glue atoms. The24-electron cluster formulas are correlated to glass formation:the principal cluster far away from the eutectic point has a high glass forming ability. This rule is verified in Cu-(Hf,Zr), Ni-(Nb,Ta), Al-Ca and Pd-Si systems. Alloying elements are classified into five types, tiny, small, middle, large and super, according to their atomic radii. The close-packed clusters are determined by the relative atomic radius ratio in the different eutectic systems formed by two types of these atoms, and then general eutectic formulas are obtained. The Stockdale/Hume-Rothery eutectic puzzle, that eutectic points are near the ratio8/1,5/1,3/1,2/1and3/2, is quantitatively explained.
引文
[1]KLEMENT W, WILLENS R, DUWEZ P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature,1960,187:869-870.
    [2]DUWEZ P, WILLENS R. Rapid quenching of liquid alloys [J]. Trans Metall Soc AIME,1963, 227:362-365.
    [3]POND R, MADDIN R. Method of producing rapidly solidified filamentary castings [J]. Trans Met Soc AIME,1969,245 (11):2475-2476.
    [4]CHEN H. Thermodynamic considerations on the formation and stability of metallic glasses [J]. Acta Metall 1974,22 (12):1505-1511.
    [5]A. J. DREHMAN A L G, AND D. TURNBULL. Bulk formation of a metallic glass:Pd40Ni40P20 [J]. Appl Phys Lett 1982,41:716-717.
    [6]INOUE A, ZHANG T, MASUMOTO T. Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method [J]. Mater Trans JIM,1990,31 (5): 425-428.
    [7]PEKER A, JOHNSON W L. A highly processable metallic glass:ZrTiCuNiBe [J]. Applied Physics Letters,1993,63:2342.
    [8]INOUE A, ZHANG T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method [J]. Materials transactions-JIM,1996,37 (2):185-187.
    [9]KANG H G, PARK E S, KIM W T, et al. Fabrication of bulk Mg-Cu-Ag-Y glassy alloy by squeeze casting [J]. Materials Transactions, JIM(Japan),2000,41 (7):846-849.
    [10]PONNAMBALAM V, POON S J, SHIFLET G J. Fe-Mn-Cr-Mo-(Y, Ln)-CB (Ln= Lanthanides) bulk metallic glasses as formable amorphous steel alloys [J]. Journal of materials research,2004, 19 (10):3046-3052.
    [11]INOUE A, NISHIYAMA N, KIMURA H. Preparation and thermal stability of bulk amorphous Pd40Cu30Nil0P20 alloy cylinder of 72 mm in diameter [J]. Materials Transactions-JIM,1997, 38:179-183.
    [12]LI Y, POON S, SHIFLET G, et al. Formation of bulk metallic glasses and their composites [J]. MRS Bull 2007,32 (08):624-628.
    [13]INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater 2000,48 (1):279-306.
    [14]CHENG Y, MA E. Atomic-level structure and structure-property relationship in metallic glasses [J]. Prog Mater Sci 2011,56 (4):379-473.
    [15]INOUE A, SHEN B, KOSHIBA H, et al. Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys [J]. Acta Mater 2004,52 (6):1631-1637.
    [16]SCHROERS J, PATON N. Amorphous metal alloys form like plastics [J]. Adv Mater Processes 2006,164(1):61-63.
    [17]MAKINO A, MEN H, KUBOTA T, et al. New Fe-metalloids based nanocrystalline alloys with high B of 1.9 T and excellent magnetic softness [J]. J Appl Phys 2009,105:07A308.
    [18]DEMETRIOU M D, WEST A, JOHNSON W L. Ni and Cu free Pd-based metallic glasses [M]. Google Patents,2011.
    [19]CARMO M, SEKOL R C, DING S, et al. Bulk metallic glass nanowire architecture for electrochemical applications [J]. Acs Nano,2011,5 (4):2979-2983.
    [20]Liquidmetal Technologies official website [J/OL] 2011, http://www.liquidmetal.com/applications/defense-applications/.
    [21]New bulk metallic glass to catch pieces of the solar wind [J/OL] 2011, http://www.nasa.gov.
    [22]Genesis-Search for the origins [J/OL] 2011, http://genesismission.jpl.nasa.gov/.
    [23]GASKELL D R. Introduction to the Thermodynamics of Materials [M]. Taylor & Francis,2008.
    [24]COHEN M H, TURNBULL D. Molecular transport in liquids and glasses [J]. The Journal of Chemical Physics,1959,31:1164.
    [25]ADAM G, GIBBS J H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids [J]. The journal of chemical physics,1965,43:139.
    [26]WEINBERG M C. Glass-formation and crystallization kinetics [J]. Thermochim Acta 1996,280: 63-71.
    [27]WEINBERG M C, UHLMANN D R, ZANOTTO E D. "Nose Method" of Calculating Critical Cooling Rates for Glass Formation [J]. J Am Ceram Soc 1989,72 (11):2054-2058.
    [28]TURNBULL D. Under what conditions can a glass be formed? [J]. Contemporary Physics,1969, 10 (5):473-488.
    [29]XU D, LOHWONGWATANA B, DUAN G, et al. Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx (x= 34,36,38.2,40 at.%) and mechanical properties of bulk Cu64Zr36 glass [J]. Acta Materialia,2004,52 (9):2621-2624.
    [30]GIESSEN B, HONG J, KABACOFF L, et al. Compositional Dependence of the Thermal Stability and Related Properties of Metallic Glasses Ⅰ:Tg for Ca0.65M0.35 and Zr0.475Cu0.475M0.05 glasses [C]. Proceedings of the Proceedings of Third International Conference on Rapidly Quenched Metals (RQⅢ), London, U.K.:Metals Society,1978:249.
    [31]AMIYA K, INOUE A. Formation, thermal stability and mechanical properties of Ca-based bulk glassy alloys [J]. Materials Transactions(Japan),2002,43 (1):81-84.
    [32]XIA L, DING D, SHAN S, et al. The glass forming ability of Cu-rich Cu-Hf binary alloys [J]. J Phys:Condens Matter 2006,18:3543.
    [33]JIA P, GUO H, LI Y, et al. A new Cu-Hf-Al ternary bulk metallic glass with high glass forming ability and ductility [J]. Scr Mater 2006,54 (12):2165-2168.
    [34]INOUE A, NAKAMURA T, SUGITA T, et al. Bulky La-Al-TM (TM= Transition Metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method [J]. Materials Transactions, JIM(Japan),1993,34 (4):351-358.
    [35]TAN H, ZHANG Y, MA D, et al. Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu, Ni) pseudo ternary system [J]. Acta Mater 2003,51 (15):4551-4561.
    [36]XIA L, LI W, FANG S, et al. Binary Ni-Nb bulk metallic glasses [J]. J Appl Phys 2006,99: 026103.
    [37]CHEN L, HU H, ZHANG G, et al. Catching the Ni-based ternary metallic glasses with critical diameter up to 3mm in Ni-Nb-Zr system [J]. J Alloys Compd 2007,443 (1):109-113.
    [38]CHEN H. Glass temperature, formation and stability of Fe, Co, Ni, Pd and Pt based glasses [J]. Materials Science and Engineering,1976,23 (2):151-154.
    [39]NISHIYAMA N, INOUE A. Direct comparison between critical cooling rate and some quantitative parameters for evaluation of glass-forming ability in Pd-Cu-Ni-P alloys [J]. Materials Transactions-JIM,2002,43 (8):1913-1917.
    [40]MUKHERJEE S, SCHROERS J, ZHOU Z, et al. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability [J]. Acta Mater 2004,52 (12): 3689-3695.
    [41]INOUE A. High Strength Bulk Amorphous Alloys [J]. Materials Transactions, JIM,1995,36: 866.
    [42]MONDAL K, MURTY B. On the parameters to assess the glass forming ability of liquids [J]. J Non-Cryst Solids 2005,351 (16):1366-1371.
    [43]YUAN Z-Z, BAO S-L, LU Y, et al. A new criterion for evaluating the glass-forming ability of bulk glass forming alloys [J]. J Alloys Compd 2008,459 (1):251-260.
    [44]LU Z, LIU C. A new glass-forming ability criterion for bulk metallic glasses [J]. Acta Mater 2002, 50 (13):3501-3512.
    [45]LU Z, LIU C. Glass formation criterion for various glass-forming systems [J]. Phys Rev Lett 2003,91 (11):115505.
    [46]DU X, HUANG J, LIU C, et al. New criterion of glass forming ability for bulk metallic glasses [J]. J Appl Phys 2007,101 (8):086108.
    [47]CHEN Q, SHEN J, ZHANG D, et al. A new criterion for evaluating the glass-forming ability of bulk metallic glasses [J]. Mater Sci Eng, A,2006,433 (1):155-160.
    [48]HRUB A. Evaluation of glass-forming tendency by means of DTA [J]. Czechoslovak Journal of Physics B,1972,22 (11):1187-1193.
    [49]FAN G, CHOO H, LIAW P. A new criterion for the glass-forming ability of liquids [J]. J Non-Cryst Solids 2007,353 (1):102-107.
    [50]KIM J-H, PARK J S, LIM H K, et al. Heating and cooling rate dependence of the parameters representing the glass forming ability in bulk metallic glasses [J]. J Non-Cryst Solids 2005,351 (16):1433-1440.
    [51]LONG Z, WEI H, DING Y, et al. A new criterion for predicting the glass-forming ability of bulk metallic glasses [J]. J Alloys Compd 2009,475 (1):207-219.
    [52]LONG Z, XIE G, WEI H, et al. On the new criterion to assess the glass-forming ability of metallic alloys [J]. Mater Sci Eng, A,2009,509 (1):23-30.
    [53]NAGEL S, TAUC J. Nearly-free-electron approach to the theory of metallic glass alloys [J]. Phys Rev Lett 1975,35 (6):380-383.
    [54]OBERLE R, BECK H. The influence of pair potentials on the structure of polyvalent liquid metals [J]. Solid State Commun 1979,32 (11):959-962.
    [55]H USSLER P. Interrelations between atomic and electronic structures-Liquid and amorphous metals as model systems [J]. Phys Rep 1992,222:65-143.
    [56]H USSLER P. Electronic and Magnetic Properties [M]. Quasicrystals. Wiley-VCH Verlag GmbH & Co. KGaA.2003:209-310.
    [57]MIZUTANI U, TAKEUCHI T, SATO H. Interpretation of the Hume-Rothery rule in complex electron compounds:y-phase Cu5Zn8 Alloy, FK-type A130Mg40Zn30 and MI-type A168Cu7Ru17Si81/1-1/1-1/1 approximants [J]. Prog Mater Sci 2004,49 (3-4):227-261.
    [58]CAHN R W. Metallic glasses [J]. Mater Sci Technol 1991:
    [59]MA D, TAN H, WANG D, et al. Strategy for pinpointing the best glass-forming alloys [J]. Appl Phys Lett 2005,86 (19):191906.
    [60]戴道生,韩汝琪.非晶态物理学[M].北京:电子工业出版社,1988.
    [61]王一禾,杨膺善.非晶态金属合金[M].北京:冶金工业出版社,1988.
    [62]BERNAL J. Geometry of the structure of monatomic liquids [J]. Nature,1960,185:68-70.
    [63]BERNAL J D. The Bakerian lecture,1962. The structure of liquids [J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences,1964,280 (1382):299-322.
    [64]SCOTT G D. Packing of spheres:packing of equal spheres [J]. Nature,1960,188 (4754): 908-909.
    [65]FINNEY J. Random packings and the structure of simple liquids. I. The geometry of random close packing [J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences,1970,319 (1539):479-493.
    [66]FINNEY J. Random Packings and the Structure of Simple Liquids. II. The Molecular Geometry of Simple Liquids [J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences,1970,319 (1539):495-507.
    [67]BARNETT R, CLEVELAND C, LANDMAN U. Structure and dynamics of a metallic glass: Molecular-dynamics simulations [J]. Phys Rev Lett 1985,55 (19):2035-2038.
    [68]SADOC J, DIXMIER J, GUINIER A. Theoretical calculation of dense random packings of equal and non-equal sized hard spheres applications to amorphous metallic alloys [J]. J Non-Cryst Solids 1973,12(1):46-60.
    [69]FRANK F. Supercooling of liquids [J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences,1952,215 (1120):43-46.
    [70]TORQUATO S, TRUSKETT T M, DEBENEDETTI P G. Is random close packing of spheres well defined? [J]. Phys Rev Lett 2000,84 (10):2064-2067.
    [71]ANIKEENKO A, MEDVEDEV N. Polytetrahedral nature of the dense disordered packings of hard spheres [J]. Phys Rev Lett 2007,98 (23):235504.
    [72]ANIKEENKO A, MEDVEDEV N, ASTE T. Structural and entropic insights into the nature of the random-close-packing limit [J]. Phys Rev E,2008,77 (3):031101.
    [73]KAMIEN R D, LIU A J. Why is random close packing reproducible? [J]. Phys Rev Lett 2007,99 (15):155501.
    [74]GASKELL P. A new structural model for transition metal-metalloid glasses [J]. Nature,1978, 276 (5687):484-485.
    [75]GASKELL P. A new structural model for amorphous transition metal silicides, borides, phosphides and carbides [J]. J Non-Cryst Solids 1979,32 (1):207-224.
    [76]WASEDA Y, CHEN H. A structural study of metallic glasses containing boron (Fe-B, Co-B, and Ni-B) [J]. physica status solidi (a),1978,49 (1):387-392.
    [77]BOUDREAUX D, FROST H J. Short-range order in theoretical models of binary metallic glass alloys [J]. Phys Rev B,1981,23 (4):1506.
    [78]EVTEEV A, KOSILOV A, LEVTCHENKO E. Atomic mechanisms of formation and structure relaxation of Fe83 M17(M:C, B, P) metallic glass [J]. Acta Mater 2003,51 (9):2665-2674.
    [79]INOUE A, TAKEUCHI A. Recent progress in bulk glassy alloys [J]. Mater Trans,2002,43 (8): 1892-1906.
    [80]EGAMI T, WASEDA Y. Atomic size effect on the formability of metallic glasses [J]. J Non-Cryst Solids 1984,64 (1):113-134.
    [81]DOYE J P, MEYER L. Mapping the magic numbers in Binary Lennard-Jones clusters [J]. Phys Rev Lett 2005,95 (6):063401.
    [82]MIRACLE D B. A structural model for metallic glasses [J]. Nat Mater 2004,3 (10):697-702.
    [83]MIRACLE D, SANDERS W, SENKOV O. The influence of efficient atomic packing on the constitution of metallic glasses [J]. Philos Mag 2003,83 (20):2409-2428.
    [84]MIRACLE D. The efficient cluster packing model-An atomic structural model for metallic glasses [J]. Acta Mater 2006,54 (16):4317-4336.
    [85]FRANK F T, KASPER J. Complex alloy structures regarded as sphere packings. Ⅰ. Definitions and basic principles [J]. Acta Crystallographica,1958,11 (3):184-190.
    [86]MIRACLE D B, EGAMI T, FLORES K M, et al. Structural aspects of metallic glasses[J]. MRS Bull 2007,32:629-634.
    [87]SHENG H, LUO W, ALAMGIR F, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature,2006,439 (7075):419-425.
    [88]SHI L-L, XU J, MA E. Alloy compositions of metallic glasses and eutectics from an idealized structural model [J]. Acta Mater 2008,56 (14):3613-3621.
    [89]MACKAY A, FINNEY J. Structuration [J]. J Appl Crystallogr 1973,6 (4):284-289.
    [90]KRYPYAKEVICH P, BURNASHOVA V, MARKIV V Y. Dopov. Akad. Nauk Ukr. SSR [J]. Ser A No,1970,9:828.
    [91]DONG C, WANG Q, QIANG J, et al. From clusters to phase diagrams:composition rules of quasicrystals and bulk metallic glasses [J]. J Phys D:Appl Phys 2007,40:R273.
    [92]LI F W, QIANG J B, WANG Y M, et al. Revisiting Al-Ni-Zr bulk metallic glasses using the 'cluster-resonance'model [J]. Chin Sci Bull 2011,56 (36):3902-3907.
    [93]HAN G, QIANG J, LI F, et al. The e/a values of ideal metallic glasses in relation to cluster formulae [J]. Acta Mater 2011,59 (15):5917-5923.
    [94]EGAMI T. Universal criterion for metallic glass formation [J]. Mater Sci Eng, A,1997,226: 261-267.
    [95]YANG L, XIA J, WANG Q, et al. Design of Cu8Zr5-based bulk metallic glasses [J]. Applied Physics Letters,2006,88 (24):241913.
    [96]XIA J, QIANG J, WANG Y, et al. Ternary bulk metallic glasses formed by minor alloying of Cu8Zr5 icosahedron [J]. Applied Physics Letters,2006,88 (10):101907.
    [97]TIAN H, ZHANG C, WANG L, et al. Ab initio molecular dynamics simulation of binary Cu64Zr36 bulk metallic glass:Validation of the cluster-plus-glue-atom model [J]. Journal of Applied Physics,2011,109 (12):123520.
    [98]WANG Y, QIANG J, WONG C, et al. Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion [J]. J Mater Res 2003,18 (3):642-648.
    [99]CHEN W, WANG Y, QIANG J, et al. Bulk metallic glasses in the Zr-Al-Ni-Cu system [J]. Acta Mater 2003,51 (7):1899-1907.
    [100]DONG C, WANG Q, QIANG J, et al. A cluster line approach for composition rules of quasicrystals and bulk metallic glasses [C]. Proceedings of the J Phys:Conf Ser IOP Publishing, 2008:012015.
    [101]NAGEL S. Temperature dependence of the resistivity in metallic glasses [J]. Phys Rev B,1977, 16 (4):1694.
    [102]NAGEL S, VASSILIOU J, HORN P, et al. Temperature dependence of the resistivity of Nb:Ni glasses [J]. Phys Rev B,1978,17 (2):462.
    [103]WANG Y, SHEK C H, QIANG J, et al. The e/a criterion for the largest glass-forming abilities of the Zr-Al-Ni (Co) alloys [J]. Materials Transactions,2004,45 (4):1180-1183.
    [104]JIAO W, ZHAO D, DING D, et al. Effect of free electron concentration on glass-forming ability of Ca-Mg-Cu system [J]. J Non-Cryst Solids 2012,358 (3):711-714.
    [105]FUJIWARA T, YOKOKAWA T. Universal pseudogap at Fermi energy in quasicrystals [J]. Phys Rev Lett 1991,66 (3):333-336.
    [106]HAFNER J, KRAJCI M. Electronic structure of quasicrystalline Al-Zn-Mg alloys and related crystalline, amorphous, and liquid phases [J]. Phys Rev B,1993,47 (18):11795.
    [107]DE LAISSARDIERE G T, MANH D N, MAGAUD L, et al. Electronic structure and hybridization effects in Hume-Rothery alloys containing transition elements [J]. Phys Rev B, 1995,52 (11):7920.
    [108]LI Y, GUO Q, KALB J, et al. Matching Glass-Forming Ability with the Density of the Amorphous Phase [J]. science,2008,322 (5909):1816.
    [109]BORODIN V. Local atomic arrangements in polytetrahedral materials [J]. Philos Mag A 1999, 79(8):1887-1907.
    [110]MIRACLE D. Efficient local packing in metallic glasses [J]. J Non-Cryst Solids 2004,342 (1): 89-96.
    [111]GASKELL P. On the density of transition metal-metalloid glasses [J]. Acta Metall 1981,29 (7): 1203-1211.
    [112]GASKELL P H. Amorphous Metals [M]. Singapore:World Scientific,1985.
    [113]BUSCHOW K. Short-range order and thermal stability in amorphous alloys [J]. J Phys F:Met Phys 1984,14 (3):593.
    [114]MA D, STOICA A D, WANG X L. Power-law scaling and fractal nature of medium-range order in metallic glasses [J]. Nat Mater 2008,8 (1):30-34.
    [115]MANDELBROT B B, PASSOJA D E, PAULLAY A J. Fractal character of fracture surfaces of metals [J].1984:
    [116]JIANG M, MENG J, GAO J, et al. Fractal in fracture of bulk metallic glass [J]. Intermetallics, 2010,18 (12):2468-2471.
    [117]LEVINE D, STEINHARDT P J. Quasiciystals. Ⅰ. Definition and structure [J]. Physical Review B,1986,34 (2):596.
    [118]SENKOV O, MIRACLE D, KEPPENS V, et al. Development and characterization of low-density Ca-based bulk metallic glasses:An overview [J]. Metall Mater Trans A,2008,39 (8): 1888-1900.
    [119]CALVAYRAC Y, CHEVALIER J, HARMELIN M, et al. On the stability and structure of Cu-Zr based glasses [J]. Philos Mag B 1983,48 (4):323-332.
    [120]VILLARS P, CALVERT L D. Pearson's handbook of crystallographic data for intermetallic phases [M/OL].1985[
    [121]KWON O J, KIM Y, KIM K, et al. Formation of amorphous phase in the binary Cu-Zr alloy system [J]. Met Mater Int 2006,12 (3):207-212.
    [122]WANG X, YIN S, CAO Q, et al. Atomic structure of binary CuZr bulk metallic glass [J]. Appl Phys Lett 2008,92:011902.
    [123]MA D, STOICA A D, WANG X L, et al. Efficient local atomic packing in metallic glasses and its correlation with glass-forming ability [J]. Phys Rev B,2009,80 (1):014202.
    [124]PENG H, LI M, WANG W, et al. Effect of local structures and atomic packing on glass forming ability in CuZr metallic glasses [J]. Appl Phys Lett 2010,96:021901.
    [125]K STER U, HEROLD U. Crystallization of metallic glasses [J]. Glassy Metals Ⅰ,1981:225-259.
    [126]KNELLER E, KHAN Y, GORRES U. ALLOY SYSTEM COPPER-ZIRCONIUM. PART Ⅱ. CRYSTALLIZATION OF THE GLASSES FROM Cu70Zr30 TO Cu26Zr74 [J]. Z Metallkd, 1986,77(3):152-163.
    [127]KALAY I, KRAMER M, NAPOLITANO R. High-Accuracy X-Ray Diffraction Analysis of Phase Evolution Sequence During Devitrification of Cu50Zr50 Metallic Glass [J]. Metall Mater Trans A,2011,42 (5):1144-1153.
    [128]ZHU Z, ZHANG H, PAN D, et al. Fabrication of Binary Ni-Nb Bulk Metallic Glass with High Strength and Compressive Plasticity [J]. Adv Eng Mater 2006,8 (10):953-957.
    [129]WANG Y, WANG Q, ZHAO J, et al. Ni-Ta binary bulk metallic glasses [J]. Scr Mater 2010,63 (2):178-180.
    [130]OZTURK K, CHEN L Q, LIU Z K. Thermodynamic assessment of the Al-Ca binary system using random solution and associate models [J]. J Alloys Compd 2002,340 (1):199-206.
    [131]GUO F, POON S, SHIFLET G. CaAl-based bulk metallic glasses with high thermal stability [J]. Appl Phys Lett 2004,84 (1):37-39.
    [132]HUANG B, CORBETT J D. Two New Binary Calcium-Aluminum Compounds:Cal3A114, with a Novel Two-Dimensional Aluminum Network, and Ca8A13, an Fe3Al-Type Analogue [J]. Inorg Chem 1998,37 (22):5827-5833.
    [133]CHASON E, GREER A, KELTON K, et al. Structural relaxation of amorphous Pd82Si18: X-ray measurements, electrical-resistivity measurements, and a comparison using the Ziman theory [J]. Phys Rev B,1985,32 (6):3399.
    [134]OKAMOTO H. Pd-Si (Palladium-Silicon) [J]. Journal of phase equilibria,1993,14 (4): 536-538.
    [135]WANG Q, QIANG J, WANG Y, et al. Bulk metallic glass formation in Cu-Zr-Ti ternary system [J]. J Non-Cryst Solids 2007,353 (32-40):3425-3428.
    [136]TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transactions,2005,46 (12):2817-2829.
    [137]WANG D, TAN H, LI Y. Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy system-A metallographic way to pinpoint the best glass forming alloys [J]. Acta Materialia, 2005,53 (10):2969-2979.
    [138]ZHU Z, ZHANG H, DING B, et al. Synthesis and properties of bulk metallic glasses in the ternary Ni-Nb-Zr alloy system [J]. Mater Sci Eng, A,2008,492 (1):221-229.
    [139]YUAN L, PANG C, WANG Y, et al. Understanding the Ni-Nb-Zr BMG composition from a binary eutectic Ni-Nb icosahedral cluster [J]. Intermetallics,2010,18 (10):1800-1802.
    [140]CHEN H, TURNBULL D. Formation, stability and structure of palladium-silicon based alloy glasses [J]. Acta Metall 1969,17 (8):1021-1031.
    [141]PLUMMER J, FIGUEROA I, HAND R, et al. Elastic properties of some bulk metallic glasses [J]. J Non-Cryst Solids 2009,355 (6):335-339.
    [142]MA H, SHI L, XU J, et al. Discovering inch-diameter metallic glasses in three-dimensional composition space [J]. Appl Phys Lett 2005,87:181915.
    [143]ZHENG Q, MA H, MA E, et al. Mg-Cu-(Y, Nd) pseudo-ternary bulk metallic glasses:The effects of Nd on glass-forming ability and plasticity [J]. Scr Mater 2006,55 (6):541-544.
    [144]COUGHANOWR C. Assessment of the Cu-Mg System [J]. Z MetaIlkd,1991,82 (7):574-581.
    [145]ZHANG Y, XU W, TAN H, et al. Microstructure control and ductility improvement of La-Al-(Cu, Ni) composites by Bridgman solidification [J]. Acta Mater 2005,53 (9):2607-2616.
    [146]DAVIS L. Strengths and stiffnesses of metallic glasses [J]. Scr Metall 1976,10 (10):937-940.
    [147]EGAMI T, DMOWSKI W, HE Y, et al. Structure of bulk amorphous Pd-Ni-P alloys determined by synchrotron radiation [J]. Metall Mater Trans A,1998,29 (7):1805-1809.
    [148]WADA T, QIN F, WANG X, et al. Formation and bioactivation of Zr-Al-Co bulk metallic glasses [J]. J Mater Res 2009,24 (09):2941-2948.
    [149]INOUE A, ZHANG T, NISHIYAMA N, et al. Preparation of 16 mm Diameter Rod of Amorphous Zr65A17.5Nil0Cul7.5 Alloy [J]. Mater Trans JIM,1993,34:1234-1234.
    [150]ECKERT J, MATTERN N, ZINKEVITCH M, et al. Crystallization behavior and phase formation in Zr-Al-Cu-Ni metallic glass containing oxygen [J]. Mater Trans JIM,1998,39 (6): 623-632.
    [151]GEBERT A, ECKERT J, SCHULTZ L. Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65A17.5Cu17.5Ni10 metallic glass [J]. Acta Mater 1998,46 (15): 5475-5482.
    [152]LOUZGUINE-LUZGIN D V, MIRACLE D B, LOUZGUINA-LUZGINA L, et al. Comparative analysis of glass-formation in binary, ternary, and multicomponent alloys [J]. Journal of Applied Physics,2010,108 (10):103511-103511-103518.
    [153]CHEN H. Glassy metals [J]. Rep Prog Phys 2000,43 (4):353.
    [154]CHOI-YIM H, XU D, JOHNSON W. Ni-based bulk metallic glass formation in the Ni"CNb"CSn and Ni"CNb"CSn"CX (X= B, Fe, Cu) alloy systems [J]. Applied Physics Letters, 2003,82:1030.
    [155]STOCKDALE D. Numerical Relationships in Binary Metallic Systems [J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences,1935,152 (875):81-104.
    [156]YAVARI A R. Solving the puzzle of eutectic compositions with'Miracle glasses'[J]. Nat Mater 2005,4(1):2-3.
    [157]KEAR B H, GIESSEN B, COHEN M. Rapidly solidified amorphous and crystalline alloys [M]. Cambridge Univ Press,1982.
    [158]LI Y. Bulk metallic glasses:Eutectic coupled zone and amorphous formation [J]. Jom,2005,57 (3):60-63.
    [159]ZENG K, H M L INEN M, LUKAS H. A new thermodynamic description of the Cu-Zr system [J]. Journal of phase equilibria,1994,15 (6):577-586.
    [160]WANG N, LI C, DU Z, et al. The thermodynamic re-assessment of the Cu-Zr system [J]. Calphad,2006,30 (4):461-469.
    [161]ZHOU S, NAPOLITANO R. Phase stability for the Cu-Zr system:First-principles, experiments and solution-based modeling [J]. Acta Materialia,2010,58 (6):2186-2196.
    [162]ARIAS D, ABRIATA J. Cu-Zr (copper-zirconium) [J]. Journal of phase equilibria,1990,11 (5): 452-459.
    [163]SUBRAMANIAN P, LAUGHLIN D. The Cu-Hf (copper-hafnium) system [J]. Journal of phase equilibria,1988,9 (1):51-56.
    [164]KEJUN Z, XIANZHANG Z, ZHANPENG J. A thermodynamic calculation of the Ni-Nb phase diagram [J]. Journal of alloys and compounds,1992,179 (1):177-185.
    [165]ZENG K, JIN Z. Thermodynamic modeling of intermetallic compounds in the Ni-Nb system [J]. Scripta Metallurgica et Materialia;(United States),1992,26:
    [166]ZHOU S, WANG Y, CHEN L-Q, et al. Solution-based thermodynamic modeling of the Ni-Ta and Ni-Mo-Ta systems using first-principle calculations [J]. Calphad,2009,33 (4):631-641.