外二醇双加氧酶(BphC)在邻苯二酚类物质传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,用于邻苯二酚类物质检测的酶生物传感器中涉及到的酶主要为酪氨酸酶、辣根过氧化物酶、漆酶等,然而这些酶的底物范围宽泛,可催化多种酚类化合物发生反应,导致它们在混合体系中实现对邻苯二酚类物质的选择性检测相当困难。因此,该类传感器的发展方向在于筛选可作用于邻苯二酚类物质的特异性酶构建生物传感器,以期满足环境监测和生物毒理等领域的需求,实现高选择性、高灵敏性、高稳定性的邻苯二酚类物质检测。芳香化合物降解过程中的关键开环断裂酶:外二醇双加氧酶和内二醇双加氧酶,是一类能够以邻苯二酚类化合物为底物进行开环断裂反应的酶,与上述各类酶相比,这类加氧酶对邻苯二酚类化合物的特异性更强,选择性更好。本论文旨在将一种外二醇双加氧酶——2,3-二羟基联苯1,2-双加氧酶(BphC)粗酶提取液,用于邻苯二酚类物质的传感器制备,实现邻苯二酚类物质的特异性、灵敏迅速检测,并为其它酶在传感器制备中的应用提供依据,主要研究内容如下:
     选用两步统计学设计方法对影响重组Escherichia coli BL21(DE3)中BphC表达的因素进行筛选和优化。首先,通过N=12的Plackett-Burman实验设计,对基因工程菌培养过程中十个主要因素进行筛选,确定种液培养基pH、种龄、发酵液接种量、诱导温度是影响BphC表达的四个主要因素。随后,利用表面响应法设计了30组实验对这四个因素进行了考察,确定其最佳组合,结果为:种液pH为6.5;种龄9h;大瓶接种量为0.95%;诱导温度为35℃。在此最佳条件下,获得的BphC酶活力最高可达0.59U/mg蛋白,约为优化前酶活的三倍。SDS-PAGE结果与优化实验结果相符,验证了模型的准确性和稳定性。优化后获得的BphC表达量大,对邻苯二酚具有很高的酶活力,用于后续制作邻苯二酚酶生物传感器可大大节省工作量,为提高BphC在酶生物传感器中的检测性能垫定了基础,对开展实验研究及实际应用具有重要意义。
     考察BphC作为敏感元件用于电化学酶生物传感器的可行性。分别选用ZnO纳米棒、Ti02纳米管、不同掺杂的聚苯胺(PNAI)材料、ZnO溶胶凝胶以静电结合法、吸附法、交联法、包埋法等常规固定方法对BphC在电极上进行固定。研究结果表明BphC粗酶液可以在电极上作为敏感元件用于电化学检测,但上述几种修饰酶电极的方法,其稳定性及灵敏性远不能满足实际应用的需要:ZnO纳米棒修饰锌片电极上的BphC采用静电结合法与电极结合不牢固,易脱落,制备的酶电极性能不稳定,不利于进一步检测;Ti02纳米管/BphC修饰Ti片电极对底物的检测信号不明显,不适合进一步应用;与离子液体及聚邻氨基酚掺杂的PANI相比,未掺杂的PANI修饰电极能很好地保持BphC的酶活且可以用于邻苯二酚检测,但此类方法性能极不稳定;ZnO溶胶凝胶修饰BphC酶电极能很好地保持BphC的酶活,但酶膜易干裂,且电化学重复性较差。因此,改进现有的酶固定化方法和尝试新的有效的酶电极制备方案仍需进一步研究。
     制备BphC酶生物传感器,用于邻苯二酚的电化学检测。固定在聚乙烯醇(PVA)-SiO2凝胶中的BphC能很好地保持活性,制备的酶电极对邻苯二酚表现出很好的电化学响应信号。室温条件下,该酶生物传感器对邻苯二酚标准液的工作曲线线性范围为0.002-0.8mM,相关系数为0.9978,灵敏度为1.268mA/(mM·cm2),检出限为0.428μM (S/N=3)。在苯酚和邻苯二酚共存体系中,BphC酶电极对邻苯二酚有很好的选择性,与裸玻碳电极相比,能将邻苯二酚与苯酚的响应信号较好地分离。该酶生物传感器的制备,为生物降解中的关键酶在环境监测的应用奠定了基础。
     建立BphC-CdTe量子点(QDs)荧光传感体系,实现对邻苯二酚及2,3-二羟基联苯的检测。该体系利用内滤效应引起的量子点荧光猝灭,成功地将BphC这一类芳香化物好氧降解过程中的加氧酶用于荧光检测。建立的BphC-QDs体系中量子点表面不需修饰,BphC不需固定,且能保持较好的活性。BphC-QDs体系对邻苯二酚和2,3-二羟基联苯的检测性能良好,对邻苯二酚和2,3-二羟基联苯的检测限分别可达到0.021μM和2μM,效果较好。BphC-QDs体系对邻苯二酚和2,3-二羟基联苯的选择性较好,苯酚、间苯二酚、对苯二酚的存在,对这两种物质单独检测均没有影响,但当邻苯二酚和2,3-二羟基联苯同时存在时,互相有干扰。
     以基因工程菌中的粗酶为模板原位合成金纳米簇(Au nanoclusters, AuNCs)荧光材料,并结合合成的AuNCs在碱性条件下较稳定的特点以及多巴胺在碱性条件下易氧化成醌类的特点,提出一种基于AuNCs荧光猝灭机制的pH敏感型多巴胺检测方法。pH、蛋白量、氯金酸量均对BphC-AuNCs的合成有较大影响,温度变化对BphC-AuNCs的荧光稳定性影响不大。本研究合成的五种粗酶-AuNCs (BphAB-AuNCs、BphC-AuNCs、 BphD-AuNCs、MfphA-AuNCs和E. coli-AuNCs)荧光量子产率均高于相同条件下以牛血清蛋白为对照合成的AuNCs荧光产率。碱性条件下,多巴胺对五种AuNCs荧光均有猝灭效应,且随着多巴胺浓度增强猝灭效应增强。
To date, many biosensors for the detection of catecholic compounds have been reported based on the utilization of tyrosinase, horseradish peroxidase, or laccase as recognition unit. However, none of these hydroxylases show a specific selectivity in the detection of catecholic compounds because many phenolic compounds can be catalyzed by these enzymes. Therefore, it is necessary to explore novel enzymes in realizing highly selective, stable and sensitive determination of catecholics to meet the requirements in the fields of environmental monitoring and biological toxicology. Ring-cleavage enzymes, containing intradiol dioxygensases and extradiol dioxygenases, can catalyze the ring-cleavage reaction of catecholic compounds. Compared with those reported enzymes used in biosensors, these ring-cleavage enzymes possess more excellent specificity and selectivity for catecholic compounds. The purpose of this study is to fabricate catecholic biosensors utilizing an extradiol dioxygenase,2,3-dihydroxybiphenyl1,2-dioxygenase (BphC), for the sensitive, rapid, and specific detection of catecholic compounds. Moreover, it should give a guide for the application of other available enzymes as sensitive elements in biosensors. The main contents of this study are as follows:
     Firstly, two statistical experimental designs were employed to screen and optimize the factors in the expression of BphC from Escherichia coli BL21(DE3). Ten important factors were evaluated by Plackett-Burman design (PBD, N=12), and four most significant ones, i.e. inducing temperature, pH for seed medium, seed age, and inoculation amount were selected and optimized by Response surface methodology (RSM, N=30). According to the analytical results, the optimal conditions were obtained as follows:inducing temperature35℃, pH6.5for seed medium, seed age9h, and inoculation amount of0.95%. Under the optimal contiditons, the maximal specific activity of BphC was about0.59U/mg protein using catechol as substrate, which was nearly three times of that of before. SDS-PAGE was used to confirm the optimal results. The optimized BphC showed high activity to catechol, which made it more suitable for the construction of catechol biosensor.
     Secondly, the feasibility of utilizing BphC as sensitive element in the biosensor was evaluated by immobilizing BphC on different materials, such as ZnO nanorods, TiO2nanotubes, polyaniline (PANI), ZnO sol-gel, and so on. Electrostatic bonding, adsorption, cross-linking and embedding methods were applied for the immobilization. It was suggested that BphC crude extracts could be used as the sensitive element of biosensor. However, biosensors based on these methods mentioned above can not meet requirements for practical application. For example, the immobilization of BphC on the ZnO nanorods/Zn electrode by electrostatic bonding was not stable enough for the further study; TiO2nanotubes/BphC modified Ti electrode showed poor signal to substrates; BphC immobilized on the undoped PANI modified electrode kept better activity than that immobilized on the ionic liquid or poly(aminophenol) modified electrodes, but the repeatability of these enzyme electrodes was bad; ZnO sol-gel modified BphC enzyme electrode can keep the activity of BphC, but the enzyme membrane was easy to crackle, resulting in the poor performance. Therefore, further study is still needed to improve the common enzyme immobilization methods and to develop novel methods for the fabrication of enzyme electrodes.
     Thirdly, a BphC biosensor for the catechol detection was constructed based on the PVA modified SiO2sol-gel method. BphC embedded in SiO2gel maintained its bioactivity well and presented good eletrocatalytical response to catechol. For catechol detection, the linear amperometric response range of this biosensor was0.002~0.8mM (R2=0.9978). And the sensitivity was1.268mA/(mM·cm) with a detection limit of0.428μM (S/N=3). Furthermore, compared with bare glassy carbon electrode, BphC modified electrode showed better selectivity for catechol in the mixtures of catechol and phenol. The protocol of this enzyme biosensor will open up a new avenue for the application of key enzymes during the biodegradation in environmental monitoring.
     Moreover, a new type of fluorescent biosensing system for catechol and2,3-dihydroxybiphenyl (DHB) was described based on the inner filter effect (IFE) of CdTe quantum dots (QDs) with the combination of BphC, which belonged to dioxygenases during the aerobic biodegradation of aromatic compounds. The QD-BphC system required no complicated surface modification of QDs and no enzyme immobilization, and kept the activity of BphC well. In addition, the QD-BphC system presented good performances for the detection of catecholic compounds, and the detection limits for catechol and DHB were0.02and2μM, respectively. High selectivity to either catechol or DHB can also be observed in the mixtures of other phenolic compounds, such as phenol, hydroquinone and resorcinol. However, when catechol and DHB coexisted, the QD-BphC system could not separate the signals of these two compounds from each other due to the inherent substrate range of BphC.
     At last, a fluorescent gold nanoclusters (AuNCs) in-situ synthesis by five crude enzymes from genetic engineering microorganism in this study. Furthermore, a method for pH-dependent dopamine sensing was proposed based on the quenching of AuNCs fluorescence resulted from the oxidized dopamine-quinone under alkaline conditions. Several factors showed great effects on the synthesis of BphC-AuNCs, including pH, the amounts of enzyme and HAuCl4. The fluorescence of BphC-AuNCs can remain stable towards temperature changes. Moreover, the quantum yields of these five crude enzymes-based AuNCs (BphAB-AuNCs, BphC-AuNCs, BphD-AuNCs, MfphA-AuNCs and E. coli-AuNCs) were all much higher than that of bovine serum albumin (BSA)-based one. Under basic conditions, dopamine can cause fluorescence quenching of these five AuNCs, and the quenching effects enhanced when dopamine was increased.
引文
[1]Pauli A. Antimicrobial properties of catechol derivatives [C].3rd World Congress on Allelopathy, Tsukuba, Japan,2002:26-30.
    [2]Cohen S, Belinky P A, Hadar Y, et al. Characterization of catechol derivative removal by lignin peroxidase in aqueous mixture [J]. Bioresource Technology,2009,100:2247-2253.
    [3]Schweigert N, Zehnder A J B, Eggen R I L. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals [J]. Enviromental Microbiology,2001, 3:81-91.
    [4]胡美华.酚类衍生物的设计合成与阴离子识别研究[C].南昌:南昌大学,2006:43-52.
    [5]Taylor J B, Triggle D J. Comprehensive Medicinal Chemistry Ⅱ [M]. Oxford:Elsevier Science,2006.
    [6]SunY, Cui H, Li Y, et al. Determination of some catechol derivatives by a flow injection electrochemiluminescent inhibition method [J]. Talanta,2000,53:661-666.
    [7]Liu J, Mori A. Monoamine metabolism provides an antioxidant defense in the brain against oxidant-and free radical-induced damage [J]. Archives of Biochemistry and Biophysics,1993,302:118-127.
    [8]Miura T, Muraoka S, Ogiso T. Antioxidant activity of adrenergic agents derived from catechol [J]. Biochemical Pharmacology,1998,55:2001-2006.
    [9]Miura T, Muraoka S, Fujimoto Y, et al. DNA damage induced by catechol derivatives [J]. Chemico-Biological Interactions,2000,126:125-136.
    [10]Halliwell B, Aruoma O I. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems [J]. FEBS Letters,1991,281:9-19.
    [11]Morin B, Davies M J, Dean R T. The protein oxidation product 3,4-dihydroxyphenylalanine (DOPA) mediates oxidative DNA damage [J]. Biochemical Journal,1998,330:1059-1067.
    [12]Subramanyam R, Mishra 1 M. Treatment of catechol bearing wastewater in an upflow anaerobic sludge blanket (UASB) reactor:sludge characteristics [J]. Bioresource Technology,2008,99: 8917-8925.
    [13]Mizukami Y, Sawai Y, Yamaguchi Y. Simultaneous analysis of catechins, gallic acid, strictinin, and purine alkaloids in green tea by using catechol as an internal standard [J]. Journal of Agricultural and Food Chemistry,2007,55:4957-4964.
    [14]Hee J C, Young J Y. Mathematical modeling and simulation of catechol production from benzoate using resting cells of Pseudomonas putida [J]. Process Biochemistry,1997,32:423-432.
    [15]Moldoveanu S C, Kiser M. Gas chromatography/mass spectrometry versus liquid chromatography/ fluorescence detection in the analysis of phenols in mainstream cigarette smoke [J]. Journal of Chromatography,2007,1141:90-97.
    [16]Dykstra P, Hao J J, Koev S T, et al. An optical MEMS sensor utilizing a chitosan film for catechol detection [J]. Sensors and Actuators B:Chemical,2009,138:64-70.
    [17]Bard A J. Eletroanalytical chemistry:a series of advances [M]. New York:Marcel Dekker, Inc,1990: 221-374.
    [18]Tarley C R T, Kubota L T. Molecularly-imprinted solid phase extraction of catechol from aqueous effluents for its selective determination by differential pulse voltammetry [J]. Analytica Chimica Acta, 2005,548:11-19.
    [19]Su L, Mao L Q. Gold nanoparticle/alkanedithiol conductive films self-assembled onto gold electrode: electrochemistry and electroanalytical application for voltammetric determination of trace amount of catechol [J]. Talanta,2006,70:68-74.
    [20]Lin H, Gan T, Wu K. Sensitive and rapid determination of catechol in tea samples using mesoporous Al-doped silica modified electrode [J]. Food Chemistry,2009,113:701-704.
    [21]Ghanem M A. Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode [J]. Electrochemistry Communications,2007,9:2501-2506.
    [22]Qi H L, Zhang C X. Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes [J]. Electroanalysis,2005,17:832-838.
    [23]Wang L, Huang P F, Bai J Y, et al. Covalent modification of a glassy carbon electrode with penicillamine for simultaneous determination of hydroquinone and catechol [J]. Microchimica Acta, 2007,158:151-157.
    [24]Lunsford S K, Choi H, Stinson J, et al. Voltammetric determination of catechol using a sonogel carbon electrode modified with nanostructured titanium dioxide [J]. Talanta,2007,73:172-177.
    [25]Zhang H, Zhao J S, Liu H T, et al. Electrochemical determination of diphenols and their mixtures at the multiwall carbon nanotubes/poly(3-methylthiophene) modified glassy carbon electrode [J]. Microchimica Acta,2010,169:277-282.
    [26]Li M, Ni F, Wang Y L, et al. Sensitive and facile determination of catechol and hydroquinone simultaneously under coexistence of resorcinol with a Zn/Al layered doubled hydroxide film modified glassy carbon electrode [J]. Electroanalysis,2009,21:1521-1526.
    [27]Zhang Q, Qu Y Y, Zhang X W, et al. Extradiol dioxygenase-SiO2 sol-gel modified electrode for catechol and its derivatives detection [J]. Biosensors and Bioelectronics,2011,26:4362-4367.
    [28]Shang N.G, Papakonstantinou P, McMullan M, et al. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes [J]. Advanced Functional Materials,2008,18:3506-3514.
    [29]Zhao D M, Zhang X H, Feng L J, et al. Simultaneous determination of hydroquinone and catechol at PASA/MWNTs composite film modified glassy carbon electrode [J]. Colloids and Surfaces B: Biointerfaces,2009,74:317-321.
    [30]Bai J, Guo L, Ndamanisha J C, et al. Electrochemical properties and simultaneous determination of dihydroxybenzene isomers at ordered mesoporous carbon-modified electrode [J]. Journal of Applied Electrochemistry,2009,39:2497-2503.
    [31]Zhang J, Lei J P, Liu Y Y, et al. Highly sensitive amperometric biosensors for phenols based on polyaniline-ionic liquid-carbon nanofiber composite [J]. Biosensors and Bioelectronics,2009,24: 1858-1863.
    [32喻致详.生物传感器及其在医学上的应用[J].基础医学与临床,1984,4:17-23.
    [33]方卢秋.生物传感器的原理及其应用[J].涪陵师范学院学报,2003,S1:158-160.
    [34]Park B W, Yoon D Y, Kim D S. Recent progress in bio-sensing techniques with encapsulated enzymes [J]. Biosensors and Bioelectronics,2010,26:1-10.
    [35]Gill I, Ballesteros A. Bioencapsulation within synthetic polymers (Part 1):sol-gel encapsulated biological [J]. Trends in Biotechnology,2000,18:282-296.
    [36]Stefan R, Van Staden J F, Aboul-Euein H Y. Electrochemical sensors in bio-analysis [M]. New York: CRC Press,2001.
    [37]Jin W, Brennan J D. Properties and application of proteins encapsulated within sol-gel derived materials [J]. Analytica Chimica Acta,2002,461:1-36.
    [38]Chaudhury N K, Gupta R, Gulia S. Sol-gel technology for sensor applications [J]. Defence Science Journal,2007,57:241-253.
    [39]Lei C X, Hu S Q, Gao N, et al. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode [J]. Bioelectrochemistry,2004,65:33-39.
    [40]Gupta R, Kumar A. Retracted:molecular imprinting in sol-gel matrix [J]. Biotechnology Advances, 2008,26:533-547.
    [41]Lukowiak A, Strek W. Sensing abilities of materials prepared by sol-gel technology [J]. Journal of Sol-Gel Science and Technology,2009,50:201-215.
    [42]Wang B, Zhang J, Dong S. Silica sol-gel composite film as an encapsulation matrix for the construction of an amperometrictyrosinase-based biosensor [J]. Biosensors and Bioelectronics,2000, 15:397-402.
    [43]Zejlia H, Hidalgo-Hidalgo de Cisnerosc J L, Naranjo-Rodriguezc I, et al. Phenol biosensor based on Sonogel-Carbon transducer with tyrosinase alumina sol-gel immobilization [J]. Analytica Chimica Acta,2008,612:198-203.
    [44]Yu J H, Ju H X. Preparation of porous Titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method [J]. Analytical Chemistry,2002,74:3579-3583.
    [45]Li J, Chia L S, Goh N K, et al. Silica sol-gel immobilized amperometric biosensor for the determination of phenolic compounds [J]. Analytica Chimica Acta,1998,362:203-211.
    [46]Liu Z M, Liu Y L, Yang H F, et al. A mediator-free tyrosinase biosensor based on ZnO sol-gel matrix [J]. Electroanalysis,2005,17:1065-1070.
    [47]Kim M A, Lee W Y. Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film [J]. Analytica Chimica Acta,2003,479:143-150.
    [48]Kumar D, Sharma R C. Advances in conductive polymers [J]. European Polymer Journal,1998,34: 1053-1060.
    [49]Cosnier S, Gondran C H. Fabrication of biosensors by attachment of biological macromolecules to electro polymerized conducting films [J]. Analusis,1999,27:558-563.
    [50]Barlett P N, Cooper J M. A review of the immobilization of enzymes in electropolymerised films [J]. Journal of Electroanalytical Chemistry,1993,362:1-12.
    [51]Rahman M A, Park D S, Shim Y B. A performance comparison of choline biosensors:anodic or cathodic detections of H2O2 generated by enzyme immobilized on a conducting polymer [J]. Biosensors and Bioelectronics,2004,19:1565-1571.
    [52]Harwood G W J, Pouton C W. Amperometric enzyme biosensors for the analysis of drugs and metabolites [J]. Advanced Drug Delivery Reviews,1996,18:163-191.
    [53]Amine A, Mohammadi H, Bourais I, et al. Enzyme inhibition-based biosensors for food safety and environmental monitoring [J]. Biosensors and Bioelectronics,2006,21:1405-1423.
    [54]Geetha S, Roa C R K, Vijayan M, et al. Biosensing and drug delivery by polypyrrole [J]. Analytica Chimica Acta,2006,568:119-125.
    [55]Ahuja T, Mir I A, Kumar D, et al. Biomolecular immobilization on conducting polymers for biosensing applications [J]. Biomaterials,2007,28:791-805.
    [56]El Kaotit M, Bouchta D, Zejli H, et al. A simple conducting polymer-based biosensor for the detection of atrazine [J]. Analytical Letters,2004,37:1671-1681.
    [57]Ivanov A N, Evtugyn G A, Lukachova L V, et al. New polyaniline-based potentiometric biosensor for pesticides detection [J]. IEEE Sensors Journal,2003,3:333-340.
    [58]Rahman M A, Park D S, Chang S C, et al. The biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ion determinations [J]. Biosensors and Bioelectronics,2006,21: 1116-1124.
    [59]Vedrine C, Fabiano S, Tran-Minh C. Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support [J]. Talanta,2003,59:535-544.
    [60]Tan Y Y, Guo X X, Zhang J H, et al. Amperometric catechol biosensor based on polyaniline-polyphenol oxidase [J]. Biosensors and Bioelectronics,2010,25:1681-1687.
    [61]Zhang J, Lei J P, Liu Y Y, et al. Highly sensitive amperometric biosensors for phenols based on polyaniline-ionic liquid-carbon nanofiber composite [J]. Biosensors and Bioelectronics,2009,24: 1858-1863.
    [62]Cosnier S, Innocent C. A new strategy for the construction of a tyrosinase-based amperometric phenol and o-diphenol sensor [J]. Bioelectrochemistry and Bioenergetics,1993,31:147-160.
    [63]Wang P, Liu M, Kan J Q. Amperometric phenol biosensor based on polyaniline [J]. Sensors and Actuators B:Chemical,2009,140:577-584.
    [64]Akyilmaz E, Kozgus O, Turkmen H, et al. A mediated polyphenol oxidase biosensor immobilized by electropolymerization of 1,2-diamino benzene [J]. Bioelectrochemistry,2010,78:135-140.
    [65]Lahiff E, Lynam C, Gilmartin N, et al. The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors [J]. Analytical and Bioanalytical Chemistry,2010, 398:1575-1589.
    [66]Li J, Ng H T, Cassell A, et al. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection [J]. Nano Letters,2003,3:597-602
    [67]Woolley A T, Guillemette C, Cheung C L, et al. Direct haplotyping of kilobase-size DNA using carbon nanotube probes [J]. Nature Biotechnology,2000,18:760-763.
    [68]Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science,2001,293:1289-1292.
    [69]Wu L N, Zhang X J, Ju H X. Detection of NADH and ethanol based on catalytical activity of soluble carbon nanofiber with low overpotential [J]. Analytical Chemistry,2007,79:453-458.
    [70]Wu L, Zhang X J, Ju H X. Amperometric glucose sensor based on catalytic reduction of dissolved oxygen at soluble carbon nanofiber [J]. Biosensors and Bioelectronics,2007,23:479-484.
    [71]Freeman R, Willner I. Optical molecular sensing with semiconductor quantum dots (QDs) [J]. Chemical Society Reviews,2012,41:4067-4085.
    [72]Liu Y Y, Su G X, Zhang B, et al. Nanoparticle-based strategies for detection and remediation of environmental pollutants [J]. Analyst,2011,136:872-877.
    [73]Liu A, Wei M D, Honma I, et al. Biosensing properties of titanatenanotube films:selective detection of dopamine in the presence of ascorbate and uric acid [J]. Advanced Functional Materials,2006,16: 371-376.
    [74]Weng J, Xue J M, Wang J, et al. Gold-cluster sensors formed electrochemically at boron-doped-diamond electrodes:detection of dopamine in the presence of ascorbic acid and thiols [J]. Advanced Functional Materials,2005,15:639-647.
    [75]Wu L, Feng L Y, Ren J S, et al. Electrochemical detection of dopamine using porphyrin-functionalized grapheme [J]. Biosensors and Bioelectronics,2012,34:57-62.
    [76]Wang Z H, Liu J, Liang Q L, et al. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid [J]. Analyst,2002,127:653-658.
    [77]Huang J S, Liu Y, Hou H Q, et al. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode [J]. Biosensors and Bioelectronics,2008,24:632-637.
    [78]Mao Y, Bao Y, Gan S Y, et al. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element [J]. Biosensors and Bioelectronics,2011,28:291-297.
    [79]Abbaspour A, Noori A. A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine [J]. Biosensors and Bioelectronics,2011, 26:4674-4680.
    [80]Njagi J, Chernov M M, Leiter J C, et al. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor [J]. Analytical Chemistry,2010,82:989-996.
    [81]Liu S, Xing X R, Yu J H, et al. A novel label-free electrochemical aptasensor based on graphene-polyaniline composite film for dopamine determination [J]. Biosensors and Bioelectronics, 2012,36:186-191.
    [82]Freeman R, Finder T, Bahshi L, et al.β-Cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis [J]. Nano Letters,2009,9:2073-2076.
    [83]Yuan J P, Guo W W, Wang E K. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide [J]. Analytical Chemistry,2008,80: 1141-1145.
    [84]Zheng Y, Wang Y, Yang X R. Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles [J]. Sensors and Actuators B:Chemical,2.011,156:95-99.
    [85]Baron R, Zayats M, Willner I. Dopamine-,L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles:assays for the detection of neurotransmitters and of tyrosinase activity [J]. Analytical Chemistry,2005,77:1566-1571.
    [86]Mason J R, Cammack R. The electron-transport proteins of hydroxylating bacterialdioxygenases [J]. Annual Review of Microbiology,1992,46:277-305.
    [87]Harayama S, Kok M, Neidle E L, et al. Functional and evolutionary relationships among diverse oxygenases [J]. Annual Review of Microbiology,1992,46:565-601.
    [88]Horinouchi M, Yamamoto T, Taguchi K, et al. Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441[J]. Microbiology,2001,147:3367-3375.
    [89]Dai S D, Vaillancourt F H, Maaroufi H, et al. Identification and analysis of a bottleneck in PCB biodegradation [J]. Nature Structural Biology,2002,9:934-939.
    [90]Harayama S, Rekik M. Bacterial aromatic ring-cleavage enzymes are classified into two different gene families [J]. The Journal of Biological Chemistry,1989,264:15328-15333.
    [91]Miyazawa D, Mukerjee-Dhar G, Shimura M, et al. Genes for Mn(Ⅱ)-dependent NahC and Fe(Ⅱ)-ndependent NahH located in close proximity in the thermophilic naphthalene and PCB degrader, Bacillus sp. JF8:cloning and characterization [J]. Microbiology,2004,150:993-1004.
    [92]Gibello A, Ferrer E, Martin M, et al.3,4-Dihydroxyphenylacetate 2,3-dioxygenase from Klebsiella pneumoniae, a Mg2+ -containing dioxygenase involved in aromatic catabolism [J]. Biochemical Journal, 1994,301:145-150.
    [93]Han S, Eltis L D, Timmis K N, et al. Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad [J]. Science,1995,270:976-980.
    [94]Uragami Y, Senda T, Sugimoto K, et al. Crystal structures of substrate free and complex forms of reactivated BphC, an extradiol type ring-cleavage dioxygenase. Journal of Inorganic Biochemistry, 2001,83:269-279.
    [95]Kita A, Kita S, Fujisawa I, et al. An archetypical extradiol-cleaving catecholic dioxygenase:the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2 [J]. Structure,1999,7:25-34.
    [96]Neau D B. Structural studies of the 1,2-dihydroxynaphthalene dioxygenase, DoxG, reveal features that permit the cleavage of 4-substituted catechols [D]. USA:Purdue University,2004.
    [97]Vetting M W, Wackett L P, Que Jr L, et al. Crystallographic comparison of manganese- and iron-dependent homoprotocatechuate 2,3-dioxygenases [J]. Journal of Bacteriology,2004,186: 1945-1958.
    [98]Senda T, Sugiyama K, Narita H, et al. Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102 [J]. Journal of Molecular Biology,1996,255:735-752.
    [99]Sugimoto K, Senda T, Aoshima H, et al. Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions [J]. Structure,1999,7:953-965.
    [100]Titus G P, Mueller H A, Burgner J, et al. Crystal structure of human homogentisate dioxygenase [J]. Nature Structural Biology,2000,7:542-546.
    [101]Mitchell R A, Kang H H, Henderson L M, et al. Inactivation during functioning of 3-hydroxyanthranilate oxidase resulting from oxidation of bound ferrous iron [J]. The Journal of Biological Chemistry,1963,238:1151-1155.
    [102]Klecka G M, Gibson D T, et al. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol [J]. Applied and Environmental Microbiology,1981,41:1159-1165.
    [103]Davis J K, He Z, Somerville C C, et al. Genetic and biochemical comparison of 2-aminophenol 1,6-dioxygenase of Pseudomonas pseudoalcaligenes JS45 to weta-cleavage dioxygenases:divergent evolution of 2-aminophenol weta-cleavage pathway [J]. Archives of Microbiology,1999,172: 330-339.
    [104]Vaillancourt F H, Labbe G, Drouin N M, et al. The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates [J]. The Journal of Biological Chemistry,2002,277:2019-2027.
    [105]Lendenmann U, Spain J C.2-aminophenol 1,6-dioxygenase:a novel aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes JS45 [J]. Journal of Bacteriology,1996,178: 6227-6232.
    [106]Kobayashi T, Ishida T, Horiike K, et al. Overexpression of Pseudomonas putida catechol 2,3-dioxygenase with high specific activity by genetically engineered Escherichia coli [J]. The Journal of Biological Chemistry,1995,117:614-622.
    [107]Arras T, Schirawski J, Unden G, et al. Availability of O2 as a substrate in the cytoplasm of bacteria under aerobic and microaerobic conditions [J]. Journal of Bacteriology,1998,180:2133-2136.
    [108]Dunwell J M, Culham A, Carter C E, et al. Evolution of functional diversity in the cupin superfamily [J]. Trends in Biochemical Sciences,2001,26:740-746.
    [109]Eltis L D, Bolin J T. Evolutionary relationships among extradiol dioxygenases [J]. Journal of Bacteriology,1996,178:5930-5937.
    [110]Vaillancourt F H, Bolin J T, Eltis L D. The ins and outs of ring-cleaving dioxygenases [J]. Critical Reviews in Biochemistry and Molecular Biology,2006,41:241-267.
    [111]Mars A E, Kasberg T, Kaschabek S R, et al. Microbial degradation of chloroaromatics:use of the weta-cleavage pathway for mineralization of chlorobenzene [J]. Journal of Bacteriology,1997,179: 4530-4537.
    [112]Riegert U, Heiss G, Fischer P, et al. Distal cleavage of 3-chlorocatechol by an extradiol dioxygenase to 3-chloro-2-hydroxymuconic semialdehyde [J]. Journal of Bacteriology,1998,180:2849-2853.
    [113]Groce S L, Lipscomb J D. Aromatic ring cleavage by homoprotocatechuate 2,3-dioxygenase:role of His200 in the kinetics of interconversion of reaction cycle intermediates [J]. Biochemistry,2005,44: 7175-7188.
    [114]Vaillancourt F H, Han S, Fortin P D, et al. Molecular basis for the stabilization and inhibition of 2,3-dihydroxybiphenyl 1,2-dioxygenase by t-butanol [J]. The Journal of Biological Chemistry,1998, 273:34887-34895.
    [115]Vaillancourt F H, Barbosa C J, Spiro T G, et al. Definitive evidence for monoanionic binding of 2,3-dihydroxybiphenyl to 2,3-dihydroxybiphenyl 1,2-dioxygenase from UV resonance Raman spectroscopy, UV/Vis absorption spectroscopy, and crystallography [J]. Journal of the American Chemical Society,2002,124:2485-2496.
    [116]Shu L, Chiou Y M, Orville A M, et al. X-ray absorption spectroscopic studies of the Fe(Ⅱ) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism [J]. Biochemistry, 1995,34:6649-6659.
    [117]Sanvoisin J, Langley G J, Bugg T D H, et al. Mechanism of extradiol catechol dioxygenases: evidence for a lactone intermediate in the 2,3-dihydroxyphenylpropionate 1,2-dioxygenase reaction [J]. Journal of the American Chemical Society,1995,117:7836-7837.
    [118]Pieper D H. Aerobic degradation of polychlorinated biphenyls [J]. Applied Microbiology and Biotechnology,2005,67:170-191.
    [119]Ohtsubo Y, Kudo T, Tsuda M, et al. Strategies for bioremediation of polychlorinated biphenyls [J]. Applied Microbiology and Biotechnology,2004,65:250-258.
    [120]任河山,王颖,赵化冰,等.酚降解菌株的分离、鉴定和在含酚废水生物处理中的应用[J].环境科学,2008,29:482-487.
    [121]Timmis K N, Steffan R J, Unterman R. Designing microorganisms for the treatment of toxic wastes [J]. Annual Review of Microbiology,1994,48:525-557.
    [122]Fortin P D, Macpherson I, Neau D B, et al. Directed evolution of a ring-cleaving dioxygenase for polychlorinated biphenyl degradation [J]. The Journal of Biological Chemistry,2005,280: 42307-42314.
    [123]Wei J S, Zhou Y, Xu T, et al. Rational design of catechol-2,3-dioxygenase for improving the enzyme characteristics [J]. Applied Biochemistry and Biotechnology,2000,162:116-126.
    [124]OECD. Biotechnology for clean industrial products and processes [M]. Paris:OECD,1998.
    [125]Buhler B, Schmid A, Hauer B, et al. Xylene monooxygenase catalyzes the multistep oxygenation of toluene and pseudocumene to corresponding alcohols, aldehydes, and acids in Escherichia coli JM101 [J]. The Journal of Biological Chemistry,2000,275:10085-10092.
    [126]Meyer A, Held M, Schmid A, et al. Synthesis of 3-tert-butylcatechol by an engineering monooxygenase [J]. Biotechnology and Bioengineering,2003,81:518-524.
    [127]Christinet L, Burdet F X, Zaiko M, et al. Characterization and functional identification of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandifiora [J]. Plant Physiology,2004,134:265-274
    [128]夏东翔,汪美先.邻苯二酚2,3-双加氧酶显色标志基因研究进展[J].中国生物工程杂志,1993,13:26-29.
    [129]吕鹏.洋葱伯克霍尔德氏菌L68菌株邻苯二酚2,3-双加氧酶分离纯化、酶学性质、基因筛选及应用的研究[D].山东大学,2006.
    [130]Zucolotto V, Pinto A P, Tumolo T, et al. Catechol biosensing using a nanosturctured layer-by-layer film containing Cl-catechol 1,2-dioxygenase [J]. Biosensors and Bioelectronics,2006,21: 1320-1326.
    [131]Andreescu S, Sadik O A. Trends and challenges in biochemical sensors for clinical and environmental monitoring [J]. Pure and Applied Chemistry,2004,76:861-878.
    [132]Liu Z J, Liu B H, Kong J L, et al. Probing trace phenols based on mediator-free alumina sol-gel-derived tyrosinase biosensor [J]. Analytical Chemistry,2000,79:4707-4712.
    [133]Marcela C R, Mariela R M, Carlos E A, et al. Enzymatic biosensor for the electrochemical detection of 2,4-dinitrotoluene biodegradation derivatives [J]. Talanta,2006,68:1671-1676.
    [134]Torrecilla J S, Mena M L, Yanez-Sedeno P, et al. Quantification of phenolic compounds in olive oil mill wastewater by artificial neural network/laccase biosensor [J]. Journal of Agricultural and Food Chemistry,2007,55:7418-7426.
    [135]Zucolotto V, Pinto A P A, Tumolo T, et al. Catechol biosensing using a nanostructured layer-by-layer film containing Cl-catechol 1,2-dioxygenase [J]. Biosensors and Bioelectronics,2006,21: 1320-1326.
    [136]吕鹏,史建国,冯东,等.邻苯二酚双加氧酶传感器的研究[J].中国环境科学,2005,25:491-493.
    [137]Senda T, Sugiyama K, Narita H, et al. Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102 [J]. Journal of Molecular Biology,1996,255:735-752.
    [138]Li A, Qu Y Y, Zhou J T, et al. Enzyme-substrate interaction and characterization of a 2,3-dihydroxybiphenyl 1,2-dioxygenase from Dyella ginsengisoli LA-4 [J]. FEMS Microbiology Letters,2009,292:231-239.
    [139]Plackett R L, Burman J P. The design of optimum multifactorial experiments [J]. Biometrika,1946, 33:305-325.
    [140]Pan H F, Xie Z P, Bao W N, et al. Optimization of culture conditions to enhance cis-epoxysuccinate hydrolase production in Escherichia coli by response surface methodology [J]. Biochemical Engineering Journal,2008,42:133-138.
    [141]杨欣伟,林伟铃,田宝玉,等.果胶酶高产菌株EIM-6的筛选鉴定及其液体发酵产酶条件优化[J].福建师范大学学报:自然科学版,2009,25:68-73.
    [142]Abdel-Fattah Y R, E1-Enshasy H A, Soliman N A, et al. Bioprocess development for production of alkaline protease by Bacillus pseudofirmus Mn6 through statistical experimental designs [J]. Journal of Microbiology Biotechnology,2009,19:378-386.
    [143]Gennaro P D, Conforti P, Lasagni M, et al. Dioxygenation of naphthalene by Pseudomonas fluorescens N3 dioxygenase:optimization of the process parameters [J]. Biotechnology and Bioengineering,2006,93:511-518.
    [144]Lu Y, Mei L H. Optimization of fermentation conditions for P450 BM-3 monooxygenase production by hybrid design methodology [J]. Journal of Zhejiang University Science B,2007,8:27-32.
    [145]Park B W, Yoon D Y, Kim D S. Recent progress in bio-sensing techniques with encapsulated enzymes [J]. Biosensors and Bioelectronics,2010,26:1-10.
    [146]Ronkainen N J, Halsall H B, Heineman W R. Electrochemical biosensors [J]. Chemical Society Reviews,2010,39:1747-1763.
    [147]Lu N, Quan X, Li J Y, et al. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability [J]. The Journal of Physical Chemistry C,2007, 111:11836-11842.
    [148]Mathebe N G R, Morrin A, Iwuoha E I. Electrochemistry and scanning electron microscopy of polyaniline/peroxidase-based biosensor [J]. Talanta,2004,64:115-120.
    [149]Huang W S, Humphrey B D, MacDiarmid A G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes [J]. Journal of the Chemical Society, Faraday Transactions,1986,82:2385-2400.
    [150]Tan Y Y, Guo X X, Zhang J H, et al. Amperometric catechol biosensor based on polyaniline-polyphenol oxidase [J]. Biosensors and Bioelectronics,2010,25:1681-1687.
    [151]Yan W, Feng X M, Chen X J, et al. A super highly sensitive glucose biosensor based on Au nanoparticles-AgCl@polyaniline hybrid material [J]. Biosensors and Bioelectronics,2008,23: 925-931.
    [152]Mu S L. Catechol sensor using poly(aniline-co-o-aminophenol) as an electron transfer mediator [J]. Biosensors and Bioelectronics,2006,21:1237-1243.
    [153]Mu S L. Electrochemical copolymerization of aniline and o-aminophenol [J]. Synthetic Metals,2004, 143:259-268.
    [154]Ren X L, Chen D, Meng X W, et al. Zinc oxide nanoparticles/glucose photoelectrochemical system for the fabrication of biosensor [J]. Journal of Colloid and Interface Science,2009,334:183-187.
    [155]武宝得,张国梅,高春光, 等.生物传感器的应用研究进展[J].中国生物工程杂志,2004,24: 65-69.
    [156]Doong R A, Tsai H C. Immobilization and characterization of sol-gel-encapsulated acetylcholinesterase fiber-optic biosensor [J]. Analytica Chimica Acta,2001,434:239-246.
    [157]Tsai H C, Doong R A. Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor [J]. Biosensors and Bioelectronics,2005,20:1796-1804.
    [158]Chen Q, Kenausis G L, Heller A. Stability of oxidases immobilized in silica gels [J]. Journal of the American Chemical Society,1998,120:4582-4585.
    [159]Williams A K, Hupp J T. Sol-gel-encapsulated alcohol dehydrogenase as a versatile, environmentally stabilized sensor for alcohols and aldehydes [J]. Journal of the American Chemical Society,1998, 120:4366-4371.
    [160]Tsai H C, Doong R A. Simultaneous determination of renal clinical analytes in serum using hydrolase- and oxidase-encapsulated optical array biosensors [J]. Analytical Biochemistry,2004,334: 183-192.
    [161]Zukowski M M, Gaffney D F, Speck D, et al. Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene [J]. Proceedings of the National Academy of Sciences,1983,80:1101-1105.
    [162]Liu L J, Zhang F, Xi F N, et al. Highly sensitive biosensor based on bionanomultilayer with water-soluble multiwall carbon nanotubes for determination of phenolics [J]. Biosensors and Bioelectronics,2008,24:306-312.
    [163]Fan Q, Shan D, Xue H G, et al. Amperometric phenol biosensor based on laponite clay-chitosan nanocomposite matrix [J]. Biosensors and Bioelectronics,2007,22:816-821.
    [164]Wang P, Liu M, Kan J Q. Amperometric phenol biosensor based on polyaniline [J]. Sensors and Actuators B:Chemical,2009,140:577-584.
    [165]Rodriguez M C, Rivas G A. Glassy carbon paste electrodes modified with polyphenol oxidase: analytical applications [J]. Analytica Chimica Acta,2002,459:43-51.
    [166]Liu Y, Qu X H, Guo H W, et al. Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite [J]. Biosensors and Bioelectronics,2006,21:2195-2201.
    [167]Tsai H C, Doong R A. Preparation and characterization of urease-encapsulated biosensors in poly(vinyl alcohol)-modified silica sol-gel materials [J]. Biosensors and Bioelectronics,2007,23: 66-73.
    [168]杨靖,陈杰瑢,张建民,等.二氧化硅溶胶反应物的配比对性能的影响研究[J].西安工程科技学院学报,2007,21:126-130.
    [169]黄淑芳,姜忠义,吴洪,等.溶胶-凝胶法固定化酶的问题与解决途径[J].高分子通报,2003,5:28-35.
    [170]芦贻春,李再耕.pH值对硅溶胶凝胶化过程的影响[J].耐火材料,1995,29:326-328,335.
    [171]Bruggink C, Poorthuis B J H M, Piraud M, et al. Glycan profiling of urine, amniotic fluid and ascitic fluid from galactosialidosis patients reveals novel oligosaccharides with reducing end hexose and aldohexonic acid residues [J]. FEBS Journal,2010,277:2970-2986.
    [172]Xu X H, Lu P, Zhou Y M, et al. Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA [J]. Materials Science and Engineering:C,2009,29:2160-2164.
    [173]Orozco J, Jimenez-Jorquera C, Fernandez-Sanchez C. Gold nanoparticle-modified ultramicroelectrode arrays for biosensing:a comparative assessment [J]. Bioelectrochemistry,2009, 75:176-181.
    [174]Jia L, Xu J P, Li D, et al. Fluorescence detection of alkaline phosphatase activity with β-cyclodextrin-modified quantum dots [J]. Chemical Communications,2010,46:7166-7168.
    [175]Yuan J P, Guo W W, Wang E K, et al. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide [J]. Analytical Chemistry,2008, 80:1141-1145.
    [176]Peng H, Zhang L J, Kjallman T H M, et al. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA [J]. Journal of the American Chemical Society, 2007,129:3048-3049.
    [177]Chan Y H, Chen J X, Liu Q S, et al. Ultrasensitive copper (Ⅱ) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots [J]. Analytical Chemistry,2010,82: 3671-3678.
    [178]Liu M, Zhao H M, Quan X, et al. Signal amplification via cation exchange reaction:an example in the ratiometric fluorescence probe for ultrasensitive and selective sensing of Cu(Ⅱ) [J]. Chemical Communications,2010,46:1144-1146.
    [179]Yuan J P, Guo W W, Wang E K. Quantum dots-bienzyme hybrid system for the sensitive determination of glucose [J]. Biosensors and Bioelectronics,2008,23:1567-1571.
    [180]Sapsford K E, Berti L, Medintz I L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations [J]. Angewandte Chemie International Edition,2006. 45:4562-4589.
    [181]Clapp A R, Medintz I L, Mattoussi H, et al. Forster resonance energy transfer investigations using quantum-dot fluorophores [J]. ChemPhysChem,2006,7:47-57.
    [182]Zheng J, Nicovich P R, Dickson R M. Highly fluorescent noble-metal quantum dots [J]. Annual Review of Physical Chemistry,2007,58:409-431.
    [183]Shang L, Dong S J, Nienhaus G U. Ultra-small fluorescent metal nanoclusters:synthesis and biological application [J]. Nanotoday,2011,6:401-418.
    [184]Xie J P, Zheng Y G, Ying J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters [J]. Journal of the American Chemical Society,2009,131:888-889.
    [185]Wen F, Dong Y H, Feng L, et al. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing [J]. Analytical Chemistry,2011,83:1193-1196.
    [186]Wei H, Wang Z D, Zhang J, et al. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme [J]. Nature Nanotechnology,2011,6:93-97.
    [187]Kawasaki H, Hamaguchi K, Osaka I, et al. pH-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission [J]. Advanced Functional Materials,2011, 21:3508-3515.
    [188]Chen T H, Tseng W L. (Lysozyme Type VI)-stabilized Au8 clusters:synthesis mechanism and application for sensing of glutathione in a single drop of blood [J]. Small,2012,8:1912-1919.
    [189]Liu X, Cheng L X, Lei J P, et al. Dopamine detection based on its quenching effect on the anodic electrochemiluminescence of CdSe quantum dots [J]. Analyst,2008,133:1161-1163.
    [190]Yuan J P, Guo W W, Yang X R, et al. Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots [J]. Analytical Chemistry,2009,81:362-368.
    [191]Uematsu T, Waki T, Torimoto T, et al. Systematic studies on emission quenching of cadmium telluride nanoparticles [J]. The Journal of Physical Chemistry C,2009,113:21621-21628.
    [192]Lee K R, Kang I J. Effects of dopamine concentration on energy transfer between dendrimer-QD and dye-labeled antibody [J]. Ultramicroscopy,2009,109:894-898.
    [193]Gill R, Freeman R, Xu J P, et al. Probing biocatalytic transformations with CdSe-ZnS QDs [J]. Journal of the American Chemical Society,2006,128:15376-15377.
    [194]Banerjee S, Kar S, Perez J M, et al. Quantum dot-based OFF/ON probe for detection of glutathione [J]. The Journal of Physical Chemistry C,2009,113:9659-9663.
    [195]Medintz 1 L, Stewart M H, Trammell S A, et al. Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing [J]. Nature,2010,9:676-684.