镉致骨毒效应及预后
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉是一种人体非必需的微量元素,多以硫镉矿形式存在,并常与锌、铅、铜等矿并存。镉在电镀、塑料、半导体、电池等工业中应用广泛,尤其是有色金属矿产开发和冶炼排出的废气、废水和废渣,以及石油等燃料燃烧排出的烟气,都会对环境造成不同程度镉污染。环境镉污染进而可污染农作物和水源,人体因摄入受镉污染的食物和水而造成多系统、多器官的损害。骨骼是镉的主要效应器官之一,镉暴露可导致骨密度下降、骨质疏松发生率增加,并能增加骨折的风险,但是其确切机理不甚清楚,且以往研究多以骨量作为效应指标,关注点也多集中在继发于肾损伤后的骨效应。此外,由于镉在人体的生物半衰期可长达10-30年,而环境镉暴露减少/停止后镉致骨毒效应的预后急待研究。本论文从人群流行病学、动物和细胞三个层面探讨镉致骨毒效应及其相关机理,以及镉暴露减少/停止后的预后改变。
     本研究以1998年中国东南部某镉污染地区流行病学现况调查建立的人群队列资料为基础,在2006年对该队列的部分人群进行了追踪随访:以血镉、尿镉作为镉接触剂量指标,以骨密度及骨质疏松发生率作为效应指标,追踪观察镉暴露中止10年后该地区不同镉接触水平人群的骨密度、骨质疏松发生率改变,并与1998年的研究结果进行比较,探讨环境镉暴露对人群骨代谢不良效应及停止接触后骨效应的预后和可能影响因素。同时,采用镉染毒后中止和镉连续染毒二种大鼠动物模型,应用骨量、骨结构、骨生物力学、骨代谢指标等,进一步探讨镉致骨损伤效应、预后及可能机制,结合对镉致肾损伤效应及其相关性分析,进一步探讨肾损伤程度对骨效应和预后的影响作用。此外,应用间断性和连续性镉染毒对成骨细胞、破骨细胞生物学效应和功能基因表达的影响,尤其是从成骨细胞相关基因及成骨/破骨偶联基因表达的改变,探讨镉致骨不良效应及预后的分子生物学机制。
     人群流行病学研究结果表明:居民在停止食用含镉大米10年后,镉污染区居民血镉、尿镉水平仍明显高于对照组,人群骨密度则呈明显下降趋势,下降幅度与血镉和尿镉水平相关。尤其是血镉水平大于5μg/L的人群和尿镉水平大于10μg/g肌酐的女性人群,骨密度下降趋势更明显,且女性人群骨质疏松的发生率随着血镉和尿镉水平明显增高(x2值分别为9.30和4.51,p<0.05),男性人群骨质疏松的发生率也随着血镉升高而明显增加(χ2值为4.603,p<0.05),但与尿镉含量的相关性并不明显。进一步的相关分析结果表明,在可能影响骨密度的因素中,血镉和年龄对骨密度有明显影响作用(p<0.01)。此外,身高和体重也是影响骨密度的重要因素之一。进一步的对照研究发现,对于女性,骨密度下降幅度与镉暴露中止时人群的基础血镉和尿镉水平有关,即暴露中止时血镉和尿镉水平越高,此后的骨量丢失速率和骨质疏松发生率越高:血镉在5-10μg/L、>10μg/L和尿镉>10μg/g肌酐组女性骨质疏松发生的OR值分别为4.51(1.57-13.54),3.45(0.95-13.6)和4.74(1.82-13.5)。相关分析结果也表明,女性人群骨密度的变化与血镉、尿镉和绝经情况相关(p<0.05),但男性人群中骨密度变化与血镉和尿镉的相关性并不明显。
     动物实验研究结果证实,镉在骨骼中高度蓄积并对骨造成损害,表现为骨量降低(骨密度下降,股骨和腰椎干灰重降低),骨代谢失衡(血清Tracp5b水平升高、OC水平下降),骨骼微结构损伤(骨小梁数量减少、分离度增加),骨骼生物力学性能下降(载荷、应力、断裂能量、抗压强度等下降),骨矿化能力抑制。同时,镉暴露能诱导骨组织金属硫蛋白(MT1和MT2)及RANKL基因的高表达,并对OPG基因表达等产生抑制作用。此外,镉对肾脏尤其是肾小管有明显损害作用,电镜可见肾小管上皮细胞线粒体水肿、嵴缺失、空泡化等改变,高剂量染毒组大鼠可见肾小管上皮细胞的坏死,肾小管功能指标UNAG及尿总蛋白也明显升高,并且与骨密度降低明显相关。但镉对肾脏CYP27b1和CYP24a1基因表达未见明显影响,推测镉对骨骼的毒性效应至少不是完全继发于肾损伤,提示镉对骨骼的直接作用有待进一步关注。预后研究结果表明,间断性镉染毒大鼠即使在中止镉暴露1个月后,骨量、骨结构、骨生物力学性能仍明显低于对照组,骨形成和骨吸收功能同时亢进,以肾小管为主的肾损伤也持续存在。并且,与持续染毒大鼠相比,骨代谢和骨矿盐结构的损伤未见明显恢复,肾功能损伤无明显改善,但肾脏CYP27b1和CYP24a1基因表达未见明显差异。
     进一步的体外实验研究结果表明,镉对成骨细胞和破骨细胞均有直接作用,但镉对破骨细胞的效应剂量明显小于其对成骨细胞的效应剂量:对于成骨细胞,大于0.125μmol/L染毒剂量的镉可明显抑制成骨细胞的增殖、分化、矿化等生物功能,并能降低Ⅰ型胶原、骨桥蛋白、基质金属蛋白酶抑制剂l和基质金属蛋白酶抑制剂2的表达。而对于破骨细胞,0.03μmol/L的染毒剂量即可明显增加TRAP(+)破骨细胞数量并促进骨吸收陷窝形成能力,推测镉对骨的直接作用是以破骨细胞为主要作用靶点。对成骨/破骨偶联基因表达的影响研究表明,镉能明显抑制成骨细胞OPG基因表达,上调RANKL基因表达,即OPG/RANKL通路可能是镉对骨直接作用的重要通路之一。细胞预后效应的研究结果也进一步证明,采用0.5μmol/L镉对成骨细胞染毒48hr后中止暴露24h,镉染毒仍可导致成骨细胞增殖和分化功能的明显抑制;同样,中止暴露3d、5d及7d后,染毒组矿化结节数量和面积仍明显低于对照组,即成骨细胞的矿化能力也不能有效恢复。且与持续镉染毒组比较,间断性镉染毒对成骨细胞增殖、分化和矿化能力的影响作用没有明显差异(p>0.05),即镉暴露中止并不能使镉对成骨细胞生物学功能的损伤作用有效恢复。
     本论文研究表明,环境镉暴露能引起人群骨密度降低,并增加骨质疏松发生率,对女性尤其是绝经后人群的作用更加明显。即使在镉暴露中止10年后,镉对骨骼的影响作用仍然持续存在,表现为降低骨密度、增加骨质疏松发生率,且镉致骨损伤效应的进展情况与暴露中止时的基础血镉和尿镉水平有关。动物研究结果进一步证明,镉能在骨骼中沉积,除了对骨量产生明显影响外,还能改变骨生物力学性能和骨微观结构的完整性,可能与骨吸收功能亢进的高转换状态有关。而即使在极低剂量镉暴露水平,虽然未见明显的肾损伤和骨密度下降,染毒大鼠的骨生物力学性能和骨吸收功能指标Tracp5b就已经有明显改变。此外,间断性染毒大鼠在中止镉暴露后,镉对骨损伤效应仍明显存在,骨量、骨微结构、骨生物力学性能等均没有明显改善,并表现为骨吸收和骨形成功能的亢进即高骨转换状态。但镉染毒动物实验中未发现继发于肾损伤的VitD代谢相关酶即肾1α羟化酶和24α羟化酶基因表达的明显改变。体外研究表明,镉对成骨细胞生物学功能呈抑制作用,而对破骨细胞数和骨吸收活性均有一定促进作用,OPG/RANKL通路可能是镉致骨直接损伤作用的重要通道之一;镉还可能对骨基质相关基因表达,尤其是基质金属蛋白酶抑制剂有一定抑制作用。中止染毒后,镉对成骨细胞的作用仍然持续存在:抑制OB增殖、矿化及分化。应关注镉接触减少或中止后对骨骼的持续影响效应,尤其是对绝经后女性等敏感人群。
Cadmium is one kind of no-essential trace elements existing in the environment as the form of greenockite and coexisting with zinc, lead and copper. Cadmium can be used broadly in industry, such as in electric plating, plastic, semiconductor and batteries fields. The waste air, water and residues discharged through mine exploitation and smelting and smoking produced by fuel burning could result in cadmium pollution. The cadmium existing in environment could enter into the body by food and water and do harm to many system and organs. Bone is one of the target organs for cadmium toxicity. It has been shown that cadmium could decrease bone mineral density, result in osteoporosis and increase the risk of bone fracture, but exact mechanism is still unknown. Most research focus on cadmium effecs on bone mass, including bone mineral density and bone mineral content, and the indirect effects caused by renal dysfuction. However, because of long biological half-life (10-30 years), it is necessary to investigate the prognosis of bone damage after reduction of cadmium exposure. We will investigate bone adverse effect and its prognosis caused by cadmium exposure from the aspects of epidemiological study, animal and cell experiments in this study.
     The study was based on our previous epidemiological study in 1998 in the areas polluted by a smelter which was located in southeast of China. The participants living in these three areas were selected as study object; cadmium in blood and urine collected in 1998 and 2006 were chosen as exposure markers; bone mineral density and prevalence of osteoporosis were picked out as effect markers. We analyzed the bone mineral density and prevalence of osteopososis in 2006 in different areas and different BCd, UCd group and compared the data collected in 2006 with that in 1998 to investigate cadmium damage to bone and bone prognosis after reduction of exposure and the probable related factors. Moreover, animal models for ceasetion exposure and continuous exposure was established to investigate cadmium effect on bone and the prognosis of bone damage and the probable mechanism, using parameters such as bone mass, bone microstructure, biomechanics and metabolic markers. Effect of cadmium on kidney was also observed to discuss the role of kidney in bone damage and prognosis. In vitro study, effects of cadmium on osteoblasts and osteoclasts and the prognosis after discontinuation of cadmium exposure was observed. Gene expression related to osteoblasts and osteoblasts/osteoclasts were determined to investigate the mechanism for cadmium toxicity on cell and prognosis after ceasetion of exposure.
     The BCd and UCd level of inhabitants living in polluted areas were still higher than those of living in control area. The BMD was declined with the increasing BCd and UCd in both sexes, especially in highest level (BCd> 5μg/L, UCd> 10μg/g crea) groups (p< 0.01). It was found that there were significantly differences in the prevalence of osteoporosis among the different BCd groups (x2= 9.30, p< 0.05) and different UCd groups (x2= 4.511, p< 0.05) in women. As for men, the prevalence of osteoporosis increased with the increasing of BCd level (x2= 4.603,p< 0.05), but not obvious correlation was found with the increasing of UCd. Correlation analysis showed significantly negative correlations exist between BMD and age and BCd in both men and women (p< 0.01). BMD also associated with weight, height and BMI. As for prognosis study, the values of the bone mineral density (BMD) change and change percentage were related with the cadmium in blood and urine at baseline. The higher BCd and UCd in 1998, the more change and percentage change in 2006, especially for female population. The prevalence of osteoporosis in 2006 was higher than that in 1998 and increased along with increasing UCd and BCd in both women and men, especially for those subjects in the group having high levels of BCd [BCd> 5μg/L OR= 3.45 (0.95-13.6); BCd> 10μg/L, OR= 4.51(1.57-13.54)] and UCd [UCd> 10μg/g crea, OR= 4.74 (1.82-12.81)] in women. It was found in correlation analysis the absolute and percentage BMD changes correlated positively with UCd and BCd and menopause status in women (p< 0.01) and with age and height and weight in men(p< 0.01), but there was no obvious correlation between the absolute or percentage BMD changes in either UCd or BCd in men.
     In animal study, it was suggested that cadmium could accumulate in bone and cause bone damage. Bone mass (bone mineral density and bone weight), bone biomechanical parameters (load, elastic module, crack energy, stiffness), bone mineralization ablity and some bone related gene expression (OC, I-collagen) decreased after cadmium exposure. Otherwise, bone microstructure (Tb.N, Tb.Sp) damage and bone metabolic dysfunction were also observed. Cadmium could induce MT(ⅠandⅡ), RANKL gene expression and inhibit OPG gene expression in bone tissue. Otherwise, cadmium could induce kidney dysfunction, especially for tubule, such as increasing UNAG level and mitochondria damage, but cadmium had no obvious effects on CYP27bl and CYP24al gene expression. Cadmium toxic effects on bone may not only via indirect way; the direct effects of cadmium on bone need further study. In prognosis study, bone mass, bone microstructure, biomechanical parameters, bone mineralization ability in cadmium exposure group were significantly lower than control. Uncoupling bone remodeling status occurred and renal tubule dysfunction remained. There were no obvious improvement for bone mass, bone microstructure, bone biomechanical parameters, bone mineralization ability, kidney dysfunction and gene expression in discontinual exposure group compared with continual exposure group. CYP27b1 and CYP24a1 gene expression had no obvious dfifference.
     It had been shown that cadmium had direct effect on bone cell and the effect concentration of cadmium on osteoclast was lower than that on osteoblast. Cadmium could inhibit proliferation, differentiation and mineralization in osteoblastic cells at relative higher level (> 0.125μmol/L). Otherwise, cadmium inhibited I-collagen, OPN, TIMP 1 and TIMP2 mRNA expression. Low concentration of cadmium (0.03μmol/L) could increase the numbers of osteoclasts (p< 0.05) and enhance pits formation. Osteoclasts may be the target cells of cadmium effects on bone. Low level of cadmium could down-regulate OPG mRNA expression and up-regulate RANKL mRNA expression. In prognosis study, proliferation, differentiation and mineralization of osteoblasts in exposure group were obvious lower than control group. But as for discontinual exposure groups, there were no obvious improvement in proliferation, differentiation and mineralization of osteoblasts compared with continual exposure groups. No obvious recovery status was found in osteoblasts after reduction of cadmium exposure for short-term time.
     It suggested in this study that cadmium could decrease bone mineral density, increase the prevalence of osteoporosis, in particularly for women; the adverse effects of Cd on bone remained after the main source of Cd exposure had been blocked for about 10 years. Bone status was related with the BCd and UCd level at baseline.Animal study showed that cadmium could accumulate in bone and influence bone mass, bone biomechanics, bone microstructure and bone metabolic markers which may be as a result of increasing of bone reabsorption and kidney dysfunction. At low level that no obvious renal dysfunction was observed, we have observed cadmium effects on biomechanics and bone reabsorption markers (Tracp5b). The effects of cadmium on bone persisted for a period of time, no obvious improvement for bone mass, bone microstructure and bone biomechanical parameters were found in discontinual exposure group which may be also as a result of uncoupling of bone remodeling and kidney dysfunction. In animal study, cadmium may have no obvious influence on VitD metabolic enzyme, CYP27bl and CYP24al gene expression. In vitro study, cadmium had direct effect on osteoblasts and osteoclasts and OPG/RANKL pathway may play important role. Cadmium may also inhibit matrix formation by decreasing matrix related gene expression, such as TIMP. Cadmium effects on osteoblasts still remained after marked reduction of exposure, proliferation, differentiation and mineralization had no obvious recovery. More attention should be paid on cadmium effect on health after reduction/discontinuation of exposure, expecially for postmenopausal women.
引文
1. Nordberg GF. Cadmium and health in the 21st Century-historical remarks and trends for the future [J]. BioMetals,2004,17:485-489.
    2. World Health Organization 1992. Cadmium. Environ Health Criteria Document, 134,146-151.
    3.刘杰.镉的毒性和毒理学研究进展[J].中华劳动卫生职业病杂志,1998,16(1):2-4.
    4. Nordberg GF. Current issues in low-dose cadmium toxicology:nephrotoxicity and Carcinogenicity [J]. Environ. Sci.1996,4:133-147.
    5. Staessen JA, Roels HA, Emelianov D, et al. Environment exposure to cadmium, forearm bone density, and risk of fractures:prospective population study [J]. The Lancet,1999,353:1140-1144.
    6. Aitio A, Tritscher A. Effects on health of cadmium-WHO approaches and conclusions [J]. BioMetals,2004,17:491.
    7. Comelekoglu U, Yalin S, Bagis S, et al. Low-exposure cadmium is more toxic on osteoporotic rat femoral bone:mechanical, biochemical, and histopathological evaluation [J]. Ecotoxicol Environ Safety,2007,66:267-271.
    8.廖二元,谭利华.代谢性骨病学[M].人民卫生出版社,2003.
    9. Berglund M, Akesson A, Bjellerup P, et al. Metal-bone interactions [J]. Toxicology Letters,2000,112-113:219-225.
    10. Taiyi Jin, Gunnar Nordberg, Tingting Ye, et al. Osteoporosis and renal dysfunction in a general population exposed to cadmium in China [J]. Environmental Research, 2004,96:353-359.
    11. Horiguchi H, Oguma E, et al. Environmental exposure to cadmium at a level insuffcient to induce renal tubular dysfunction does not affect bone density among female Japanese farmers [J]. Environmental Research,2005,97:83-92.
    12. Blumenthal NC, Cosma, V Skyler D, et al. The effect of cadmium on the formation and properties of hydroxyapatite in vitro and its relation to cadmium toxicity in the skeletal system [J]. Calcif. Tissue. Int,1995,56:316-322.
    13. Regunathan A, Glesne DA, Wilson AK, et al. Microrray analysis of changes in bone cell gene expression early after cadmium gavage in mice [J]. Toxicol. Appl. Pharmacol,2003,191,272-293.
    14. Jarup L, Alfven T, Persson B, et al. Cadmium may be a risk factor for osteoporosis [J]. Occup.Environ.Med,1998,55,435-439.
    15. Brzoska MM, Majewska K, Moniuszko-Jakoniuk J. Mechanical properties of femoral diaphysis and femoral neck of female rats chronically exposed to various level of cadmium [J]. Calcif. Tissue. Int,2005,76:287-298.
    16. Comelekoglu U, Yalin S, Bagis S, et al. Low-exposure cadmium is more toxic on osteoporotic rat femoral bone:mechanical, biochemical, and histopathological evaluation [J]. Ecotoxicol. Environ. Safety,2007,66:267-271.
    17. Stein MS, Packham DK, Ebeling PR. Prevalence and risk factors for osteopenia in dialysis patients [J]. Am. J. Kidney. Dis,1996,28:515-522.
    18. Uriu K, Morimoto I, Kai K, et al. Uncoupling between bone formation and resorption in ovariectomized rats with chronic cadmium exposure [J]. Toxicol. Appl. Pharmacol,2000,164:264-272.
    19. Wilson AK, Cerny EA, Smith BD, et al. Effects of cadmium on osteoclast formation and activity in vitro [J]. Toxicol.Appl. Pharmacol,1996,140(2):451-460.
    20. Kazantzis G. Cadmium, osteoporosis and calcium metabolism [J]. Biometals,2004, 17(5):493-498.
    21. Akesson A, Bjellerup P, Lundh T, Lidfeldt J, Nerbrand C, Samsioe G, et al.. Cadmium-induced effects on bone in a population-based study of women [J]. Environ. Health. Perspect,2006,114:830-834.
    22. Piscator M. In Cadmium in the environment, Friberg L, Piscator M and Nordberg G. eds:Chemical Rubber CO, Cleveland,1971.
    23. Stewart M and Hughes E. Urinary beta-2-microglobin in the biological monitoring of cadmium workers [J]. Br. J. Ind. Med,1981,38:170.
    24. Roles H, Djubgang J, Buchet JP, et al. Evolution of cadmium-induced renal dysfunction in workers removed from exposure [J]. Scand. J. Work. Environ. Health, 1982,8:191.
    25. Diarmid MA, Freeman CS, Grossman EA, et al. Follow up of biologic monitoring results in cadmium workers removed from exposure [J]. Am. J. Ind. Med,1997,32: 261-267.
    26. Kido T, Honda R, Tsuritani I, et al. Progress of renal dysfunction in inhabitants environmentally exposed to cadmium [J]. Arch. Environ. Health,1988,43: 213.
    27. Hotz P, Buchet JP, Bernard A, et al. Renal effects of low-level environmental cadmium exposure:5-years follow up of subcohort from the Cadmibel study [J]. The Lancet,1999,354:1508-1513.
    28.吴训伟,金泰廙.镉性肾损害可逆性研究进展[J].工业卫生与职业病,2000,26(4):254-256.
    29.吴训伟,金泰廙,黄波,周袁芬.镉致作业工人肾功能损害可逆性研究初探[J].劳动医学,2001,18(2):84-86.
    30. Wu X, Liang Y, Jin T, et al. Renal effects evolution in a Chinese population after reduction of cadmium exposure in rice [J]. Environ. Res,2008,108:233-238.
    31. Jin T, Nordberg M, Frech W, et al. Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (ChinaCad) [J]. BioMetals,2002,15:397-410.
    32. Jin T, Nordberg G, Wu X, et al. Urinary N-acetyl-μ-d-glucosaminidase isoenzymes as biomarker of renal dysfunction caused by cadmium in a general population [J]. Environ. Res. A.1998,81:167-173.
    33. Consensus Development Conference. Diagnosis, prophylaxis and treatment of osteoporosis [J]. Am. J. Med,1993,94:646-650.
    34. Consensus Development Conference. Diagnosis, prophylaxis and treatment of osteoporosis [J]. American Journal of Medicine,1991,90:107-110.
    35. Bruce HM, Samuel RN. Diagnosis and treatment of osteoporosis [J]. Annu. Rev. Med,1993,44:265-277.
    36. Stein MS, Packham DK, Ebeling PR. Prevalence and risk factors for osteopenia in dialysis patients [J]. Am. J. Kidney. Dis,1996,28:515-522.
    37. World Medical Association. Declaration of Helsinki. Fifth revision,2000.
    38. Wang H, Zhu G, Shi, Y, et al. Influence of environmental cadmium exposure on forearm bone density[J]. J. Bone. Miner. Res,2003,18:553-560.
    39. Kjellstrom T.1992. Mechanism and epidemiology of bone effects of cadmium. In: Cadmium in the human environment. Symposium:25 Sep 1991, Gargnano, Italy, pp. 301-310.
    40. Guoying Zhu, Hongfu Wang, Yongxin Shi, et al. Environmental cadmium exposure and forearm bone density [J]. Biometals,2004,17(5):499-503.
    41.金泰廙,孔庆瑚,叶葶葶等.镉致人体健康损害的环境流行病学研究[J].中华劳动卫生职业病,2002,19(1):10-16.
    42.GB2762-2005.食品污染物限量标准[S].中华人民共和国国家标准.北京:中国标准出版社,2005.
    43.孙涛,汪家旺.骨密度无损测定方法简介及最新进展[J].中国医疗设备,2009,24(1):49-51.
    44. International Osteoporosis Foundation. IOF annual report [R].2008.
    45. World Health Organizati. Prevention and management of osteoporosis [R]. World Health Organ Tech Rep Ser,2003,921:1-164.
    46.朴俊红,庞莲萍,刘忠厚等.中国人口状况及原发性骨质疏松症诊断标准和发生率[J].中国骨质疏松杂志,2002,8(1):1-7.
    47. Gu WJ, Rennie KL, Lin X, et al. Differences in bone mineral status between urban and rural Chinese men and women [J]. Bone,2007,41:393-399.
    48. Prentice A. Diet, nutrition and the prevention of osteoporosis [J]. Public. Health. Nutrition,2003,7(1A),227-243.
    49. Yao WJ, Wu CH, Wang ST. Differential changes in regional bone mineral density in healthy Chinese:age-related and sex-dependent [J]. Calcif. Tissue. Int,2001,68: 330-336.
    50. Vahter M, Akesson A, Liden C, et al. Gender differences in the disposition and toxicity of metals [J]. Environ. Res,2007,104:85-95.
    51. Bhattacharyya MH, Sacco-Gibson NA, Peterson DP. Cadmium-induced bone loss: increased susceptibility in female beagles after ovariectomy. IARC Sci Publ,1992, 118:279-286.
    52. Omote S, Kido T, Nishijo M, et al. Urinary type Ⅰ-collagen cross-linked n-telopeptides in inhabitants 18 years after cessation of exposure to cadmium in japan [J]. Bull. Environ. Contain. Toxicol,2006,76:187-194.
    53.赵肃,王任群,邱玉鹏等.沈阳市镉污染区居民尿镉及骨密度调查[J].中国公共卫生,2005,21(11):1333-1334.
    54. Buchet JP, Lauwery R, Roels H, et al. Renal effects of cadmiunl body burden of the general population [J]. Lancet,1990,226:699-702.
    55. Brzoska MM, Moniuszko-Jakoniuk J. Effect of low-level lifetime exposure to cadmium on calciotropic hormones in aged female rats [J]. Arch. Toxicol,2005, 79(11):636-46.
    56. Nogawa K, Kobayashi E, Yamada Y, Honda R, Kido T, Tsuritani I, Ishizaki M. Parathyroid hormone concentration in the serum of people with cadmium-induced renal damage[J]. Int.Arch. Occup. Environ. Health,1984,54(3):187-193.
    57. Kjellstrom T.1986. Effects of cadmium on bone, on vitamin D, and calcium metabolism. In:Cadmium and Health:A toxicological and epidemiological appraisal, 1986, Boca Raton (FL), USA, pp.111-158.
    58. Tsuritani I, Honda R, Ishizaki M, et al. Impairment of vitamin D metabolism due to environmental cadmium exposure, and possible relevance to sex-related differences in vulnerability to the bone damage [J]. J.Toxicol. Environ. Health,1992,37 (4): 519-33.
    59. Nogawa K, Tsuritani I, Kido T, et al. Mechanism for bone disease found in inhabitants environmentally exposed to cadmium decreased serum 1-alpha 25 dihydroxyvitamin D level[J]. Int. Arch. Occup. Environ. Health,1987,59 (1), 21-30.
    60. Kazantzis G. Cadmium, osteoporosis and calcium metabolism [J]. BioMetals, 2004,17:493-498.
    61. Miyahara T, Takata M, Mori-Uchi S, Miyata M, Nagai M, Sugure A, Matsusista M, Kozuka H, Kuze S.Stimulative effects of cadmium on bone resorption in neonatal parietal bone resorption [J]. Toxicology,1992,73(1):93-98.
    62. Brzo'ska MM, Moniuszko-Jakoniuk J. Low-level lifetime exposure to cadmium decreases skeletal mineralization and enhances bone loss in aged rats [J]. Bone,2004, 35:1180-1191.
    63. Malgorzata M. Brzo'skaT, Janina Moniuszko-Jakoniuk Bone metabolism of male rats chronically exposed to cadmium [J]. Toxicology and Applied Pharmacology,2005, 207:195-211.
    64. Gregory JL. The effect of cadmium on cytosolic free calcium, protein kinase c, and collagen synthesis in rat osteosarcoma (ros 17/2.8) cells [J]. Toxicology and Applied Pharmacology,1997,143:189-195.
    65. Mazorra MT, Rubio JA, Blasco J. Acid and alkaline phosphatase activities in the clam Scrobicularia plana:Kinetic characteristics and effects of heavy metals [J]. Comp. Biochem. Physiol. B,2002,131(2):241
    66. Schutte R, Nawrot TS, Richart T, et al. Bone Resorption and Environmental Exposure to Cadmium in Women:A Population Study [J]. Environ. Health. Perspect, 2008,116:777-783.
    67. Miyahara T, Takata M, Miyata M, et al. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures [J]. Bull. Environ. Contam. Toxicol,1991,47:283-287.
    68. Christoffersen J, Christoffersen M R, Larsen R, et al. Interaction of Cadmium Ions with Calcium Hydroxyapatite Crystals:A Possible Mechanism Contributing to the Pathogenesis of Cadmium-Induced Bone Diseases [J]. Calcif.Tissue.Int,1988,42: 331-339.
    69.钱光人,白红梅,孙福成等.含镉羟基磷灰石的形成及其稳定性[J].无机材料学报.2008,23(5):1016-1020.
    70. Horiguchi H, Oguma E, Sasaki S, et al. Environmental exposure to cadmium at a level insufficient to induce renal tubular dysfunction does not affect bone density among female Japanese farmers [J]. Environ. Res,2005,97:83-92.
    71.雷立健.镉对胰脏的毒性作用[D].上海:复旦大学.2005.
    72.赵伯阳.日本镉毒理学研究现况[J].中华劳动卫生职业病杂志,1983,1(4):242.
    73. Prentice A. Is nutrition important in osteoporosis? [J] Proceedings of the Nutrition Society,1997,56:357-67.
    74. Osteoporosis overview. The National Institute of Health,2009.
    75.杨学斌,肖萍,仲伟鉴等.镉对去卵巢大鼠骨密度和肾功能的影响[J].卫生毒理学杂志,2002,16(3):157-159.
    76. Kawashima H, Nomiyama H and Nomiyama K. Chronic exposure to cadmium did not impair vitamin D metabolism in monkeys [J]. Environmental Research,1988, 46(1):48-58.
    77. Engstrom A, Staffan S, Jonas L, et al. Cadmium-induced bone effect is not mediated via low serum 1,25-dihydroxy vitamin D[J]. Environ. Res,2009,109(2): 188-192.
    78. Yaziji H, Janckila AJ, Lear SC, et al. Immunohistochemical detection of tartrate-resistant acid phosphatase in non-hematopoietic human tissues[J]. Am. J. Clin. Pathol,1995,104:397-402.
    79. Lam Kw, Li CY, Yam LT, et al. Comarison of tartrate-resistant acid phosphatase in Gaucher's disease and leukemic reticuloendotheliosis [J]. Clin.Biochem,1981,14: 177-181.
    80. Halleen JM, Alatalo SL, Suominen H, et al. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption [J]. J. Bone. Miner. Res,2000,15: 1337-1345.
    81. Janckila AJ, Neustadt Dh, Nakasato YR, et al. Serum tartrate-resistant acid phosphatase isforms in rheumatoid arthritis [J]. Clin. Chim. Acta,2002,320:49-58.
    82. Halleen JM, Alatalo SL, Janckila AJ,et al. Serum tartrate-resistant acid phosphatase is a specific and sensitive marker of bone resorption [J]. Clin. Chem, 2001,47:597-600.
    83. Alatalo SL, Peng Z, Janckila AJ, et al. A novel immunoassay for the determination of tartrate-resistant acid phosphatase 5b from rat serum [J]. J. Bone. Miner. Res,2003, 18:134-139.
    84. Rissanen JP, Suominen MI, Oksala R, et al. The ratio of osteoclast activity/osteoclast number (CTX/TRACP5b) is a useful parameter in experimental rat models of osteoporosis [J].2006, J Bone Miner Res,21(Suppl 1):Abstract SU105.
    85. Chu P, Chao TY, Lin YFet al. Correlation between histomophometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis [J]. Am. J. Kidney. Dis,2003,41:1052-1059.
    86. Oda N, Sogawa CA, Sogawa N, et al. Metallothionein expression and localization in rat bone tissue after cadmium injection [J]. Toxicology Letters,2001,123(supl): 143-150.
    87. Lacey DL, Timms E, Tan HL et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. [J] Cell,1998,93(1):165-176.
    88. Simonet WS, Lacey DL, Dunstan CR et al. Osteoprotegerin:a novel secreted protein involved in the regulation of bone density [J]. Cell,1997,89:309-319.
    89. Cao J, Venton L, Sakata T, et al. Expression of RANKL and OPG correlates with age-related bone loss in male c57bl/6 mice [J]. J. Bone. Miner. Res,2003,18(2): 270-277.
    90. Suzuki Y, Morita I, Yamane Y, Murota S. Preventive effect of zinc against cadmium-induced bone resorption [J]. Toxicology,1990,14,62(1):27-34.
    91. Regunathan A, Cerny EA, Villarreal J, Bhattacharyya MH. Role of fos and src in cadmium-induced decreases in bone mineral content in mice [J]. Toxicology and Applied Pharmacology,2002,185(1):25-40.
    92. Nogawa K, Kobayashi E, Yamada Y, et al. Parathyroid hormone concentration in the serum of people with cadmium-induced renal damage[J]. Int. Arch. Occup. Environ. Health,1984,54(3):187-193.
    93. Johnson RS, Spiegelman BM, and Papaioannou V. Pleiotropic effects of a null mutation in the c-fos proto-oncogene [J]. Cell,1992,71:577-586.
    94. Wang ZQ, Ovitt C, Grigoriadis A E, et al. Bone and haematopoietic defects in mice lacking c-fos [J]. Nature,1992,360:741-745.
    95. Axelsson B, Piscator M. Renal damage after prolonged exposure to cadmium [J]. Arch. Environ. Health,1966,12:360.
    96. Nomiyama K and Nomiyama H.Reversibility of cadmium-induced health effects in rabbits [J]. Environmental Health Perspectives,1984,54:201.
    97.王洪复.骨细胞图谱与骨细胞体外培养技术[M].上海:上海科学技术出版社,2001,62、64.
    98. Fotakis G, Cemeli E, Anderson D, Timbrell JA. Cadmium chloride-induced DNA and lysosomal damage in a hepatoma cell line [J]. Toxicology in Vitro,2005,19(4): 481-489.
    99. Nzengue Y, Steiman R, Garrel C, et al. Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line:Role of glutathione in the resistance to cadmium [J]. Toxicology,2008,243(1-2):193-206.
    100. Jiuli Zhang, Yequan Fu, Jinlong Li, et al. Effects of subchronic cadmium poisoning on DNA methylation in hens[J]. Environmental Toxicology and Pharmacology,2009,27(3):345-349.
    101. Hidekazu Fujimaki, Masami Ishido, Keiko Nohara. Induction of apoptosis in mouse thymocytes by cadmium [J]. Toxicology Letters,2000,115(2):99-105.
    102.吴训伟,金泰廙,李秋云.镉与细胞凋亡[J].卫生毒理学杂志,2000,14(4):247
    103.常秀丽,金泰廙,陈亮等.镉对人胚肾细胞凋亡和血红素氧合酶-1表达的影响[J].中华劳动卫生职业病杂志,2006,24(1):16.
    104. Anne Lutzen, Sascha Emilie Liberti, Lene Juel Rasmussen. Cadmium inhibits human DNA mismatch repair in vivo [J]. Biochemical and Biophysical Research Communications,2004,321(1):21-25.
    105. Bertin G, Averbeck D. Cadmium:cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review) [J]. Biochimie, 2006,88(11):1549.
    106. Stec B, Holtz KM, Kantrowitz R. A revised mechanism for the alkaline phosphatase reaction involving three metal ions [J]. J. Mol. Biol,2000,299(5):1303.
    107. Hoshi K, Ejiri S, Ozawa H. Localizational alterations of calcium, phosphorus, and calcification-related organics such as proteoglycans and alkaline phosphatase during bone calcification[J]. J. Bone.Miner. Res,2001,16(2):289
    108. Conconi MT, Tommasini M, Muratori E, et al. Essential amino acids increase the growth and alkaline phosphatase activity in osteoblasts cultured in vitro[J]. Il Farmaco, 2001,56(11):755.
    109. Mazorra MT, Rubio JA, Blasco J. Acid and alkaline phosphatase activities in the clam Scrobicularia plana:Kinetic characteristics and effects of heavy metals [J]. Comp. Biochem. Physiol. B,2002,131(2):241.
    110. Carlsson L, Lundholm CE. Characterisation of the effects of cadmium on the release of calcium and the activity of some enzymes from neonatal mouse calvaria in culture [J]. Comp. Biochem. Physiol,1996,115(3):251.
    111. Iwami K, Moriyama T. Comparative effect of cadmium on osteoblastic cells and osteoclastic cells [J]. Arch. Toxicol,1993,67(5):352.
    112. Gur E, Waner T, Barushka-Eizik O, et al. Effect of cadmium on bone repair in young rats [J]. Toxicol. Environ. Health,1995,45(3):249.
    113. Miyahara T, Yamada H, Takeuchi M, et al. Inhibitory effects of cadmium on in vitro calcification of a clonal osteogenic cell, MC3T3-E1 [J]. Toxicol. Appl. Pharmacol,1988,96(1):52.
    114. Jian Lu, Taiyi Jin, Gunnar Nordberg, Monica Nordberg. Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium [J]. Toxicology and Applied Pharmacology, 2005,206 (2):150-156.
    115. Kagi, JHR, Nordberg M. Metallothionein. Birkhauser Verlag,1979, Basel/ Boston/Stuttgart.
    116. Brendan F Boyce, Lianping Xing. Functions of RANKL/RANK/OPG in bone modeling and remodeling [J]. Archives of Biochemistry and Biophysics,2008,473(2): 139-146.
    117. Wang C, Brown S, Bhattacharyya MH. Effect of cadmium on bone calcium and 45Ca in mouse dams on a calcium-deficient diet:Evidence of Itai-Itai-like syndrome [J]. Toxicol. Appl. Pharmacol,1994,127(2):320.
    1. Kazantzis G Cadmium, osteoporosis and calcium metabolism [J], Biometals,2004, 17(5):493-498.
    2. Aitio A, Tritscher A. Effects on health of cadmium-WHO approaches and conclusions [J]. Biometals,2004,17(5):491.
    3. Nicaud P, Lafitte A, Gros A. Symptoms of chronic cadmium intoxication. Arch Mal Prof Med Trav Secur Soc,1942,4:192-202
    4. Friberg L. Proteinuria and kidney injury among workmen exposed to cadmium and nickel dust. J Ind Hyg Toxicol,1948,30:2-36
    5. Nordberg G F. Cadmium and health in the 21st Century-historical remarks and trends for the future [J]. Biometals,2004,17(5):485-489.
    6.祖艳群,李元,陈海燕,等.昆明市蔬菜及其土壤中铅、镉、铜和锌含量水平及污染评价[J].云南环境科学,2003,22(增刊):55-57.
    7. Cui Y J, Zhu Yg, Zhai R H, et al. Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China [J]. Environ Inter,2005,31(6): 1784-790.
    8. Li Jt, Qiu J W, Wang X W, et al. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China [J]. Environ Pollut,2006,143(1): 159-165.
    9. Deng H, Ye ZH, Wong MH. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China [J]. Environ Pollut, 2004,132(1):29-40.
    10.宋波,陈同斌,郑袁明等.北京市菜地土壤和蔬菜镉含量及其健康风险分析[J].环境科学学报,2006,26(8):1343-1353.
    11. Lozano G, Hardisson A, Gutie'Rezl AJ. Lead and cadmium levels in coastal benthic algae (seaweeds) of Tenerife, Canary Islands [J]. Environ Inter,2003,28(7):627-631.
    12. Yusuf A A, Arowolo T A, Bamgbose O. Cadmium, copper and nickel levels in vegetables from industrial and residential areas of Lagos City, Nigeria [J]. Food Chem Toxicol,2003,41(3):375-378.
    13. Jarup L, Alfven T. Low level cadmium exposure, renal and bone effects-the OSCAR study [J]. Biometals,2004,17(5):505-509.
    14. Jin T Y, Wu X W, Tang Y Q, et al. Environmental epidemiological study and estimation of benchmark dose for renal dysfunction in a cadmium-polluted area in China [J]. Biometals,2004,17(5):525-530.
    15. Sisman A R, Bulbul M, Coker C, et al. Cadmium exposure in tobacco workers: possible renal effects [J]. J Trace Elem Med Biol,2003,17 (1):51-55.
    16. Trzcinka-Ochocka M, Jakubowski M, Razniewska G, et al. The effects of environmental cadmium exposure on kidney function:the possible in.uence of age [J]. Environ Res,2004,95(2):143-150.
    17. Il'Yasova D, Schwartz GG. Cadmium and renal cancer [J]. Toxicol Appl Pharmacol, 2005,207(2):179-186.
    18. Honda R, Tsuritani I, Noborisaka Y, et al. Urinary cadmium excretion is correlated with calcaneal bone mass in Japanese women living in an urban area [J]. Environ Res, 2003,91(2):63-70.
    19. Zhu GY, Wang H F, Shi YX et al. Environmental cadmium exposure and forearm bone density [J]. Biometals,2004,17(5):499-503.
    20. Akesson A,Bjellerup P, Lundh T, et al. Cadmium-induced effects on bone in a population-based study of women [J]. Environ Health Perspect,2006,114(6):830-834.
    21. Horiguchi H, Oguma E, Sasaki S, et al. Environmental exposure to cadmium at a level insuf.cient to induce renal tubular dysfunction does not affect bone density among female Japanese farmers [J]. Environ Res,2005,97(1):83-92.
    22. Jin T Y, Nordberg G F, Ye TT, et al. Osteoporosis and renal dysfunction in a general population exposed to cadmium in China [J]. Environ Res,2004,96(3):353-359.
    23. Wang C, Brown S, Bhattacharyya M H. Effect of cadmium on bone calcium and 45Ca in mouse dams on a calcium-deficient diet:Evidence of Itai-Itai-like syndrome [J]. Toxicol Appl Pharmacol,1994,127(2):320-330.
    24. Garnero P, Delmas P D. An immunoassay for type Ⅰ collagen 1 helicoidal peptide 620-633, a new marker of bone resorption in osteoporosis [J]. Bone,2003,32(1):20-26.
    25. Hannon R A, Clowes J A, Eagleton AC, et al. Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption [J]. Bone,2004,34(1):187-194.
    26. Garcia T A, Corredor L. Biochemical changes in the kidneys after perinatal intoxication with lead and/or cadmium and their antagonistic effects when coadministered [J]. Ecotoxicol Environ Safety,2004,57(2):184-189.
    27. Ahn D W, Chung J M, Kim,J Y, et al. Inhibition of renal Na+/H+ exchange in cadmium-intoxicated rats [J]. Toxicol Appl Pharmacol,2005,204(1):91-98.
    28. Takaki A, Jimi S, et al. Long-term cadmium exposure accelerates age-related mitochondrial changes in renal epithelial cells [J]. Toxicology,2004,203(1-3): 145-154.
    29. Prozialeck WC Evidence that E-Cadherin may be a target for cadmium toxicity in epithelial cells [J]. Toxicol Appl Pharmacol.2000,164(3):231-249.
    30. Sant'Ana M G, Moraes R, Bernardi M M. Toxicity of cadmium in Japanese quail: Evaluation of body weight, hepatic and renal function, and cellular immune response [J]. Environ Res,2005,99(2):273-277.
    31. Stoev S D, Grozeva N, Simeonov R, et al. Experimental cadmium poisoning in sheep[J]. Exp Toxic Pathol,2003; 55(4):309-314.
    32. Brzoska M M, Moniuszko-Jakoniuk J. Low-level lifetime exposure to cadmium decreases skeletal mineralization and enhances bone loss in aged rats [J]. Bone,2004, 35(5):1180-1191.
    33. Malgorzata M. Brzoska T, Janina M J. Bone metabolism of male rats chronically exposed to cadmium [J]. Toxicol Appl Pharmacol,2005,207(3):195-211.
    34. Comelekoglu U, Yalin S, Bagis S, et al. Low-exposure cadmium is more toxic on osteoporotic rat femoral bone:Mechanical, biochemical, and histopathological evaluation [J]. Ecotox icol Environ Safety,2007,66(2):267-271.
    33. Noel L, Guerin T, Kolf-Clauw M. Subchronic dietary exposure of rats to cadmium alters the metabolism of metals essential to bone health [J]. Food Chem Toxicol,2004, 42(8):1203-1210
    35. Bertin G, Averbeck D. Cadmium:cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review) [J]. Biochimie,2006, 88(11):1549-1559.
    36.刘占旗,战景明.镉诱导大鼠肾细胞早期凋亡及bax基因表达的实验研究[J].中国职业医学,2006,33(3):190-192.
    37.常秀丽,金泰廙,陈亮等.镉对人胚肾细胞凋亡和血红素氧合酶-1表达的影响[J].中华劳动卫生职业病杂志,2006,24(1):16-19.
    39. Xie JX, Shaikh ZA. Cadmium induces cell cycle arrest in rat kidney epithelial cells in G2/M phase [J]. Toxicology,2006,224(1-2):56-65.
    40. Regunathan K, Glesne D A, Wilson A K, et al. Microarray analysis of changes in bone cell gene expression early after cadmium gavage in mice[J]. Toxicol Appl Pharmacol,2003,191(3):272-293.
    41. Bhattacharyya M H, Valdez M, Tormos K, et al. Role of CCN1 protein in osteoclast-mediated bone resorption after low-level cadmium [J]. Bone,2006,38(3, Supplement):24.
    1.刘杰.镉的毒性和毒理学研究进展[J].中华劳动卫生职业病杂志,1998,16(1):2-4.
    2.廖惠珍,王章敬等.维生素B1对镉致肾毒性干预作用研究[J].营养学报,2002,14(2):200-201.
    3.陈慧中,徐兆发等.茶多酚、VitC对镉急性毒性影响的实验研究[J].中国工业医学杂志,2003,16(1):12-13.
    4.徐兆发,王文仲等.GSH、维生素C和DMPS对镉亚慢性毒性影响的实验研究[J].环境与职业卫生,2002,19(3):191.
    5.郭孝成,何进华.维生素C抗镉的胚胎毒效应[J].卫生毒理学杂志,1994,8(3):10-11.
    6. Kurata Y, Katsuta O, Hiratsuka H, et al. Intravenous 1alpha,25[OH]2 vitamin D3 (calcitriol) pulse therapy for bone lesions in a murine model of chronic cadmium toxicosis[J]. International Journal of Experimental Pathology,2001,82(1):43-53.
    7.徐兆发,Zahir A Shaikh. GSH和维生素E对镉毒性的影响[J].中国工业医学杂志,2001,14(6):342-345.
    8. Erin AN, Spirin MM,Tabidze LV,et al. Formation of alpha-tocopherol complexes with fatty acids.A hypothetical mechanism of stabilization of biomembranes by vitamin E[J]. Biochimica et Biophysica Acta,1984,774(1):96-102.
    9.苏敏,黄悦等.VitE对慢性染镉肝细胞凋亡的拮抗作用[J].解剖学研究,2004,26(1):19-20.
    10.苏敏,黄悦,许庭良,姜俸蓉.维生素E对慢性染镉肾小体滤过屏障超微结构损伤的保护作用[J].解剖学研究,2008,30(4):264-266.
    11.李红,王克跃,孙安盛等.锌对镉致大鼠含锌酶活性降低的保护作用[J].环境与职业学,2005,22(2):143-144.
    12.卢国栋,金泰廙等.饮水中镉接触致大鼠前列腺损伤与锌的保护作用[J].卫生毒理学杂志,2004,18(3):154-156.
    13.龚朋飞,袁慧等.硒拮抗镉毒性的研究[J].兽药与饲料添加剂,2003,8(1):19-22.
    14.高希宝,史丽等.锌、硒对镉致大鼠听力损伤影响的研究[J].山东大学学报,2005,43(5):442-444.
    15. Jones MM,Xu C, Ladd PA. Selenite suppression of cadmium-induced testicular apoptosis [J]. Toxicology,1997,116(1-3):169-175.
    16.余日安,陈学敏.硒对镉诱导的在体大鼠肝细胞DNA损伤、细胞凋亡和细胞增殖的影响[J].中华预防医学杂志,2004,38(3):155-158.
    17. Wahba ZZ, Rhodes SW, et al. Protective effects of selenium on cadmium toxicity in rats:role of altered toxicokinetics and metallothionein[J]. Journal of Toxicology& Environmental Health,1993,38(2):171-182.
    18. Miller JC, Landesman R. Reduction of heavy metal toxicity to Xenophus embryos by magnesium ions [J]. Bulletin of Environmental Contamination& Toxicology,1978, 20(1):93-95.
    19.罗圣庆,Marilyn C.Plowman等.镁对镍、钴、锌、镉离子致蟾蜍胚胎毒性的影响[J].环境与职业医学,2002,19(1):17-19.
    20.连祥霖,连微峰等.钼对亚急性镉中毒大鼠肾损伤的影响[J].工业卫生与职业病,2000,26(3):177-178.
    21.赵长峰,姜会敏等.锰对镉致孕鼠毒性的拮抗研究[J].中国公共卫生.2001,17(8):709-710.
    22. Ren XY, Zhou Y, Zhang JP,et al. Metallothionein gene expression under different time in testicular Sertoli'and spermatogenic cells of rats treated with cadmium[J]. Reproductive Toxicology 2003,17(2):1554-1558.
    23.杨巧媛,董胜璋.锌金属硫蛋白对镉致肝肾损伤的修复作用研究[J].中国公共卫2002,18(12):1416-1417.
    24. Miller JC, Prasad S, Singh S. Chelation in metal intoxication:influence of cysteine or N-acetyl cysteine on the efficacy of 2,3-dimercaptopropane-l-sulphonate in the treatment of cadmium toxicity[J]. Joural of Applied Toxicology,2002,22(1):67-71.
    25.关坤,徐兆发,张芳林,邓小强,冯雪英,王飞.N-乙酰半胱氨酸对镉致大鼠肝线粒体损伤的影响[J].环境与健康杂志,2008,25(8):683-685.
    26. Gubrelay U, Mathur R, Kannan GM, et al. Role of S-adenosyl-L-methionine in potentiating cadmium mobilization by diethylenetriamine penta acetic acid in mice [J].Cytobios,2001,104(406):99-105.
    27. Lynn S, Lai HT, Kao SM, et al. Cadmium inhibits DNA strand break rejoining in methyl methanesulfonate-treated CHO-K1 cells[J]. Toxicology and Applied Pharmacology,1997,144(1):171-176.
    28.叶萌,韩春姬,韩龙哲.牛磺酸对氯化镉诱发的小鼠骨髓微核的保护作用[J].延边大学学报,2002,25(1):17-18.
    29. Nair PP, Davis KE, Shami S,et al. The induction of SOS function in Escherichia coli K-121/PQ37 by 4-nitroquinoline oxide (4-NQO) and fecapentaenes-12 and-14 is bile salt sensitive:implication for colon carcinogenesis [J]. Mut Res,2000,447(2): 179-85.
    30.曹建平,廖惠珍,汪雪莲.复方核酸对镉致大鼠精子畸形的抑制作用[J].中国公共卫生,2002,18(9):1042.
    31.姜傥,关伟明等.钙超载与氧自由基:镉致离体肾小管上皮细胞损伤中的作用及联系[J].中华肾病杂志,1995,4(11):72-75.
    32.裴秀丛,徐兆发.异搏定和氯丙嗪对镉慢性肾毒性影响的实验研究[J].工业卫生与职业病,2004,30(3):146-148.
    33.马东星,赵金垣,王超等.新型络合剂对大鼠肾镉促排作用初探[J].中华劳动卫生职业病杂志,1998,16(1).
    34.陈敏,谢吉民,宋霞.几种螯合剂对镉致小鼠肝脏毒性解毒作用比较[J].江苏大学学报,2005,26(2):179-181.
    35. Khandelwal S, Tandon SK. Time related influence of alpha-mercapto-beta-(2-furyl) acrylic acid (MFA) in cadmium toxicity [J]. Biomedical& Environmental Sciences, 1991,4(3):304-309.
    36.朱萍萍,廖惠珍等.复方冬虫夏草对镉致大鼠毒性的拮抗作用[J].中国公共卫生,2001,17(3):238.
    37.梁培育,李治勇等.黄芪注射液对氯化镉致睾丸和附睾毒性的拮抗作用[J].中国药物与临床,2004,4(4):264-267.
    38.吴小南,陆祖福等.慈菇对镉致急性肝损伤中TNF-α-mRNA表达的影响[J].中国公共卫生,2002,18(11):1312-1313.
    39.刘秀英,王翔朴等.甘草甜素和齐墩果酸对镉中毒肾损害的影响[J].中国公共卫生,2002,18(6):604-666.
    40.庞慧民,朱玉琢,刘念稚.益母草对硫酸镉诱发的小鼠骨髓细胞微核率的影响[J].吉林大学学报(医科版),2002,28(5):463-464.
    41.余振喜,刘兰琦.羽扇豆醇和羽扇豆醇亚油酸酯对镉诱导的大鼠肝毒性的防护作用[J]. 国外医药·植物药分册,2002,15;17(4):166-167.
    42.吴红赤,杨谦,孟逾冰,于海涛,彭艳.槲皮素对镉致大鼠急性肾损伤治疗作用[J].中华预防医学杂志,2009,43(1):79-80.
    43. Chao-Chin Hu, Wen-Kang Chen, Pel-Hu Liao, et al. Synergistic effect of cadmium chloride and acetaldehyde on cytotoxicity and its prevention by quercetin and glycyrrhizin[J]. Mutation Research,2001,496:117-127.
    44.杜琰琰,李少群,石同幸.绞股蓝总皂甙对氯化镉所致睾丸生殖细胞毒性的影响[J].现代预防医学,2002,29(1):7-8.
    45. Muller L, Menzel H. Studies on the efficacy of lipoate and dihydrolipoate in the alteration of cadmium toxicity in isolated hepatocytes [J]. Biochimica Biophysica Acta,1990,1052(3):386-391.
    46. Masufumi, Takiguchi, Nathan J. Cherrington, Dylan P Hartley.et al Cyproterone acetate induces a cellular tolerance to cadmium in rat liver epithelial cells involving reduced cadmium accumulation[J]. Toxicology,2001,165:13-25.