血管生成素特异microRNAs的鉴定与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管生成素(Angiogenin, ANG;亦称RNase A family 5)可以特异性地定位于血管内皮细胞及一些肿瘤细胞的细胞核,在血管新生和肿瘤发生中起重要作用,但其具体的作用机制尚未完全明了。microRNA是一类非编码小RNA,通过在转录后水平对基因表达的调控而影响生物学过程,包括血管生成及肿瘤形成等,但目前并不了解其与ANG的关系。为此,本论文从直接受ANG调控的microRNAs和直接靶向调控ANG的microRNAs两个方面研究了ANG特异的microRNAs及其生物学功能。
     为探索受ANG影响和调控的microRNAs,本论文首先利用microRNA芯片筛选的方法,在血管内皮细胞中鉴定受ANG刺激后表达发生改变的microRNAs。通过筛选,共得到了26个在ANG刺激前后发生差异表达的microRNAs,包括17个上调和9个下调的microRNAs.生物信息学分析显示,这些microRNAs参与多种生物学过程,包括肿瘤发生和转移、血管生成、神经发育、细胞凋亡等。利用数据库MicroCosm,初步预测了这些microRNAs的靶基因。另一方面,本论文利用ChIP-on-Chip方法探索了ANG与microRNAs启动子区的结合情况,发现有121个microRNAs启动子区可能与ANG结合,其中有9个启动子控制的microRNAs与上述利用microRNA芯片筛选得到的受ANG直接调控的microRNAs相同,包括8个上调和1个下调的microRNAs。在此基础上,利用ChIP-QPCR的方法对所得到的部分microRNA启动子区做进一步验证,发现miR-149、miR-17、miR-378和miR-641等确实受ANG的调控,说明ANG具有转录因子的活性,可以通过结合microRNAs的启动子区而对其表达水平进行调控。
     ANG是一个在血管内皮细胞和肿瘤细胞中高表达的蛋白质,本身也可能受到microRNAs的靶向调控。为此,本论文首先通过生物信息学方法预测得到8个可能靶向结合到ANG基因3'UTR的microRNAs,然后分析了它们对ANG mRNA和蛋白质表达水平的影响,发现miR-1208、miR-196b、miR-296、miR-409、miR-570和miR-641共六个microRNAs确实可以调节ANG的表达,并对靶细胞的增殖、迁移、粘附和管腔形成均有一定影响。在此基础上,本论文着重对miR-409进行了较深入的研究,发现miR-409不仅可以抑制内皮细胞的管腔形成和细胞增殖,也可以抑制肿瘤细胞HT1080的增殖及血管拟态;小鼠移植瘤实验也证明了miR-409可以抑制肿瘤的生长、血管生成和转移。进一步,本论文在结肠癌病人的组织中发现miR-409的表达较相应癌旁组织的表达下降,并且miR-409的表达与肿瘤的转移密切相关。以上结果说明ANG本身可以受多种microRNAs的调控,其中miR-409可以直接靶向下调ANG的表达,影响ANG在血管生成及肿瘤发生、发展中的作用。
     综合上述两部分的研究结果,说明ANG不仅可以调控microRNAs的表达,而且其本身也同时被多种microRNAs所调控。通过这些microRNAs组成的调控网络,一方面决定了细胞中ANG的表达水平,另一方面也放大了ANG对细胞行为的影响,从而实现其对血管生成和肿瘤发生的促进作用。
Angiogenin (Angiogenin, RNase A family 5) is a critical factor involved in angiogenesis and tumorigenesis. It can translocate to the nucleus of HUVECs and bind to the genomic DNA, but the mechanism of ANG-induced angiogenesis or tumorigenesis is still unclear. MicroRNAs are small non-coding RNAs, which regulate gene expression post-transcriptionally and are considered to play important roles in many biological events, including angiogenesis and tumorigenesis. However, the microRNAs involved in ANG related biological processes have not identified yet. Thus, exploring both the ANG regulated microRNAs and the microRNAs targeting to ANG are two aspects of this thesis to elucidate the ANG-specific microRNAs and their biological functions.
     To explore the ANG regulated microRNAs, first we employed a microRNA Chip to screen the ANG-specific or ANG-regulated microRNAs in HUVECs. After ANG stimulation, the expressions of 26 microRNAs were altered in HUVECs, including 17 up-regulated microRNAs and 9 down-regulated microRNAs. The function and the potential targets of these microRNAs were analyzed by a bioinformatics approach. Overall, these microRNAs were reported to involve in many biological processes, including tumorigenesis and metabasis, angiogenesis, neural development, and apoptosis. The potential targets of these microRNAs were predicted with the MicroCosm Database. Furthermore, a ChIP-on-Chip assay was carried out to explore whether ANG can bind to microRNA promoters to regulate the transcription of certain microRNAs. Data showed that 121 microRNA promoters could be potentially bound by ANG,9 of which were identified as ANG regulated microRNAs as well, including 8 up-regulated and 1 down-regulated microRNAs. Partial bindings were validated with a ChIP-QPCR assay, including the ANG bindings to miR-149, miR-17, miR-378, and miR-641 promoter regions, suggesting that ANG could up-regulate their transcriptions as a transcriptional factor.
     On the other hand, ANG was reported to be highly expressed in both vessel endothelial cells and tumor cells, suggesting itself might be a regulating target of microRNAs. In order to find the microRNAs targeting to ANG-3'UTR, bioinformatic analysis was employed to predict the potential candidates, and 8 microRNAs were chosen for further validation of their bindings to ANG-3'UTR. Among them, six microRNAs, i.e. miR-1208, miR-196b, miR-296, miR-409, miR-570, and miR-641 could inhibit ANG mRNA and protein expression and show various repression effects on cell proliferation, cell migration, cell adhesion and tubular formation. Especially, miR-409 was found not only to inhibit HUVECs cell proliferation and tubular formation, also inhibit vascular mimicry and cell proliferation of tumor cell HT1080. Furthermore, miR-409 could inhibit tumor growth, angiogenesis and metastasis in in vivo tumor xenografts in nude mice. In addition, the expression of miR-409 in colorectal cancer was lower than the corresponding tumor-adjacent tissues, meanwhile the clinical outcomes of the patients are related with miR-409 expression, expecially tumor metastasis. Thus, ANG could be regulated by different microRNAs, and miR-409 can affect angiogenesis, tumorigenesis and metastasis through negtively regulating ANG expression.
     Taken together, ANG can not only regulate the expression of microRNAs, but its own expression is modulated by microRNAs Through a regulatory network consisting of different microRNAs, the functions of ANG are precisely regulated,to exert its role in angiogenesis and tumorigenesis.
引文
1. Folkman, J., Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med,1995.333(26):p. 1757-63.
    2. Risau, W. and I. Flamme, Vasculogenesis. Annu Rev Cell Dev Biol,1995.11:p. 73-91.
    3. Cross, M.J. and L. Claesson-Welsh, FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci,2001.22(4):p.201-7.
    4. Folkman, J., Tumor angiogenesis:therapeutic implications. N Engl J Med,1971. 285(21):p.1182-6.
    5. Folkman, J. and M. Klagsbrun, Angiogenic factors. Science,1987.235(4787):p. 442-7.
    6. Zetter, B.R., The scientific contributions of M. Judah Folkman to cancer research. Nat Rev Cancer,2008.8(8):p.647-54.
    7. Neri, D. and R. Bicknell, Tumour vascular targeting. Nat Rev Cancer,2005. 5(6):p.436-46.
    8. Bergers, G. and L.E. Benjamin, Tumorigenesis and the angiogenic switch. Nat Rev Cancer,2003.3(6):p.401-10.
    9. Zetter, B.R., Angiogenesis and tumor metastasis. Annu Rev Med,1998.49:p. 407-24.
    10. Weidner, N., et al., Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol,1993.143(2):p.401-9.
    11. Folkman, J., Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med,1995.1(1):p.27-31.
    12. Fett, J.W., et al., Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry,1985.24(20):p.5480-6.
    13. Montero, S., et al., Angiogenin expression and prognosis in primary breast carcinoma. Clin Cancer Res,1998.4(9):p.2161-8.
    14. Chopra, V., T.V. Dinh, and E.V. Hannigan, Circulating serum levels of cytokines and angiogenic factors in patients with cervical cancer. Cancer Invest,1998. 16(3):p.152-9.
    15. Li, D., et al., The observation of angiogenin and basic fibroblast growth factor gene expression in human colonic adenocarcinomas, gastric adenocarcinomas, and hepatocellular carcinomas. J Pathol,1994.172(2):p.171-5.
    16. Shimoyama, S., et al., Distribution of angiogenin and its gene message in colorectal cancer patients and their clinical relevance. Anticancer Res,2002. 22(2B):p.1045-52.
    17. Chopra, V., T.V. Dinh, and E.V. Hannigan, Serum levels of interleukins, growth factors and angiogenin in patients with endometrial cancer. J Cancer Res Clin Oncol,1997.123(3):p.167-72.
    18. Shimoyama, S. and M. Kaminishi, Increased angiogenin expression in gastric cancer correlated with cancer progression. J Cancer Res Clin Oncol,2000. 126(8):p.468-74.
    19. Wechsel, H.W., et al., Renal cell carcinoma:relevance of angiogenetic factors. Anticancer Res,1999.19(2C):p.1537-40.
    20. Barton, D.P., et al., Angiogenic protein expression in advanced epithelial ovarian cancer. Clin Cancer Res,1997.3(9):p.1579-86.
    21. Shimoyama, S., et al., Increased angiogenin expression in pancreatic cancer is related to cancer aggressiveness. Cancer Res,1996.56(12):p.2703-6.
    22. Majumder, P.K., et al., Prostate intraepithelial neoplasia induced by prostate restricted Akt activation:the MPAKT model. Proc Natl Acad Sci U S A,2003. 100(13):p.7841-6.
    23. Miyake, H., et al., Increased angiogenin expression in the tumor tissue and serum of urothelial carcinoma patients is related to disease progression and recurrence. Cancer,1999.86(2):p.316-24.
    24. Eberle, K., et al., The expression of angiogenin in tissue samples of different brain tumours and cultured glioma cells. Anticancer Res,2000.20(3A):p. 1679-84.
    25. Verstovsek, S., et al., Significance of angiogenin plasma concentrations in patients with acute myeloid leukaemia and advanced myelodysplastic syndrome. Br J Haematol,2001.114(2):p.290-5.
    26. Brunner, B., et al., Blood levels of angiogenin and vascular endothelial growth factor are elevated in myelodysplastic syndromes and in acute myeloid leukemia. J Hematother Stem Cell Res,2002.11(1):p.119-25.
    27. Park, Y.W., et al., Lymphangioma involving the mandible:immunohistochemical expressions for the lymphatic proliferation. J Oral Pathol Med,2002.31(5):p. 280-3.
    28. Hartmann, A., et al., Hypoxia-induced up-regulation of angiogenin in human malignant melanoma. Cancer Res,1999.59(7):p.1578-83.
    29. Skoldenberg, E.G, et al., Angiogenesis and angiogenic growth factors in Wilms tumor. J Urol,2001.165(6 Pt 2):p.2274-9.
    30. Hu, G.F., et al., Actin is a binding protein for angiogenin. Proc Natl Acad Sci U S A,1993.90(4):p.1217-21.
    31. Xu, Z., D.M. Monti, and G Hu, Angiogenin activates human umbilical artery smooth muscle cells. Biochem Biophys Res Commun,2001.285(4):p.909-14.
    32. Liu, S., et al., Angiogenin activates Erkl/2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun,2001.287(1):p.305-10.
    33. Kim, H.M., et al., Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells. Biochem Biophys Res Commun,2007.352(2):p. 509-13.
    34. Hu, G, C. Xu, and J.F. Riordan, Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA. J Cell Biochem,2000.76(3):p.452-62.
    35. Hu, G, J.F. Riordan, and B.L. Vallee, Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proc Natl Acad Sci U S A,1994.91(25):p.12096-100.
    36. Hu, G.F., J.F. Riordan, and B.L. Vallee, A putative angiogenin receptor in angiogenin-responsive human endothelial cells. Proc Natl Acad Sci U S A,1997. 94(6):p.2204-9.
    37. Jimi, S., et al., Modulation by bovine angiogenin of tubular morphogenesis and expression of plasminogen activator in bovine endothelial cells. Biochem Biophys Res Commun,1995.211(2):p.476-83.
    38. Hu, G.F., Neomycin inhibits angiogenin-induced angiogenesis. Proc Natl Acad Sci U S A,1998.95(17):p.9791-5.
    39. Moroianu, J. and J.F. Riordan, Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc Natl Acad Sci U S A,1994.91(5):p.1677-81.
    40. Fu, X., et al., mAngiogenin-3, a target gene of oncoprotein E2a-Pbxl, encodes a new angiogenic member of the angiogenin family. Growth Factors,1999.17(2): p.125-37.
    41. Tsuji, T., et al., Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res, 2005.65(4):p.1352-60.
    42. Hirukawa, S., et al., Neamine inhibits xenografic human tumor growth and angiogenesis in athymic mice. Clin Cancer Res,2005.11(24 Pt 1):p.8745-52.
    43. Yoshioka, N., et al., A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation. Proc Natl Acad Sci U S A,2006.103(39):p.14519-24.
    44. Olson, K.A., et al., Angiogenin antagonists prevent tumor growth in vivo. Proc Natl Acad Sci U S A,1995.92(2):p.442-6.
    45. Olson, K.A., et al., Prevention of human prostate tumor metastasis in athymic mice by antisense targeting of human angiogenin. Clin Cancer Res,2001.7(11): p.3598-605.
    46. Yamasaki, S. and P. Anderson, Reprogramming mRNA translation during stress. Curr Opin Cell Biol,2008.20(2):p.222-6.
    47. Anderson, P. and N. Kedersha, Stress granules:the Tao of RNA triage. Trends Biochem Sci,2008.33(3):p.141-50.
    48. Yamasaki, S., et al., Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol,2009.185(1):p.35-42.
    49. Fu, H., et al., Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett,2009.583(2):p.437-42.
    50. Thompson, D.M. and R. Parker, The RNase Rnylp cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol,2009. 185(1):p.43-50.
    51. Emara, M.M., et al., Angiogenin-induced tiRNAs promote stress-induced stress granule assembly. J Biol Chem,2010.
    52. Kim, V.N., J. Han, and M.C. Siomi, Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol,2009.10(2):p.126-39.
    53. Lee, Y., et al., The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature,2003.425(6956):p.415-9.
    54. Kim, V.N., MicroRNA precursors in motion:exportin-5 mediates their nuclear export. Trends Cell Biol,2004.14(4):p.156-9.
    55. Hutvagner, G, et al., A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science,2001.293(5531):p. 834-8.
    56. Gregory, R.I., et al., Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell,2005.123(4):p.631-40.
    57. Kuehbacher, A., et al., Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res,2007.101(1):p.59-68.
    58. Suarez, Y., et al., Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res,2007.100(8):p.1164-73.
    59. Fasanaro, P., et al., MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem, 2008.283(23):p.15878-83.
    60. Harris, T.A., et al., MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule I. Proc Natl Acad Sci U S A,2008.105(5):p.1516-21.
    61. Poliseno, L., et al., MicroRNAs modulate the angiogenic properties of HUVECs. Blood,2006.108(9):p.3068-71.
    62. Wang, S., et al., The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell,2008.15(2):p.261-71.
    63. Fish, J.E., et al., miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell,2008.15(2):p.272-84.
    64. Kuhnert, F., et al., Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development,2008.135(24):p.3989-93.
    65. Crawford, M., et al., MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun,2008.373(4):p.607-12.
    66. Guo, C., et al., The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer,2008.47(11):p. 939-46.
    67. Tavazoie, S.F., et al., Endogenous human microRNAs that suppress breast cancer metastasis. Nature,2008.451(7175):p.147-52.
    68. He, L., et al., A microRNA polycistron as a potential human oncogene. Nature, 2005.435(7043):p.828-33.
    69. Dews, M., et al., Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet,2006.38(9):p.1060-5.
    70. Ventura, A., et al., Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell,2008.132(5):p. 875-86.
    71. Wurdinger, T., et al., miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell,2008.14(5):p.382-93.
    72. Lee, D.Y., et al., MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A, 2007.104(51):p.20350-5.
    73. Pulkkinen, K., et al., Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett,2008.582(16):p.2397-401.
    74. Tsai, Y.H., et al., The M type K15 protein of Kaposi's sarcoma-associated herpesvirus regulates microRNA expression via its SH2-binding motif to induce cell migration and invasion. J Virol,2009.83(2):p.622-32.
    75. Chen, Y. and D.H. Gorski, Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood,2008.111(3):p.1217-26.
    76. Felicetti, F., et al., The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res,2008.68(8):p.2745-54.
    77. Davis, B.N., et al., Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem,2009.284(6):p.3728-38.
    78. Hua, Z., et al., MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE,2006.1:p. e116.
    79. Wang, C.H., et al., MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression. PLoS ONE,2008.3(6):p. e2420.
    80. Wang, X.H., et al., MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol,2009.36(2):p.181-8.
    81. Kim, G.H., et al., Translational control of FOG-2 expression in cardiomyocytes by microRNA-130a. PLoS ONE,2009.4(7):p. e6161.
    82. Otsuka, M., et al., Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest,2008.118(5):p.1944-54.
    83. Roush, S. and F.J. Slack, The let-7 family of microRNAs. Trends Cell Biol,2008. 18(10):p.505-16.
    84. Guo, C.J., et al., miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell:An essential role for apoptosis. J Hepatol,2009.50(4):p. 766-78.
    85. Martin, M.M., et al., MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem,2006.281(27):p.18277-84.
    86. Martin, M.M., et al., The human angiotensin Ⅱ type 1 receptor+1166 A/C polymorphism attenuates microrna-155 binding. J Biol Chem,2007.282(33):p. 24262-9.
    87. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res,2005.33(20):p. e179.
    88. Shapiro, R., J.F. Riordan, and B.L. Vallee, Characteristic ribonucleolytic activity of human angiogenin. Biochemistry,1986.25(12):p.3527-32.
    89. Kishimoto, K., et al., Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene,2005.24(3):p. 445-56.
    90. Gottardo, F., et al., Micro-RNA profiling in kidney and bladder cancers. Urol Oncol,2007.25(5):p.387-92.
    91. Hariharan, M., et al., Targets for human encoded microRNAs in HIV genes. Biochem Biophys Res Commun,2005.337(4):p.1214-8.
    92. Chim, S.S., et al., Detection and characterization of placental microRNAs in maternal plasma. Clin Chem,2008.54(3):p.482-90.
    93. Hu, Z., et al., Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat,2009.30(1):p. 79-84.
    94. Liu, H., et al., Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma. BMC Syst Biol,2010.4:p. 51.
    95. Liu, X., et al., Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology,2010. 398(1):p.57-67.
    96. Schaefer, A., et al., Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer,2010.126(5):p.1166-76.
    97. Wang, M., et al., Common genetic variants in pre-microRNAs are associated with risk of coal workers'pneumoconiosis. J Hum Genet,2010.55(1):p.13-7.
    98. Lee, Y.S. and A. Dutta, MicroRNAs:small but potent oncogenes or tumor suppressors. Curr Opin Investig Drugs,2006.7(6):p.560-4.
    99. Cho, W.C., OncomiRs:the discovery and progress of microRNAs in cancers. Mol Cancer,2007.6:p.60.
    100. Wang, S. and E.N. Olson, AngiomiRs--key regulators of angiogenesis. Curr Opin Genet Dev,2009.19(3):p.205-11.
    101. Mendell, J.T., MicroRNAs:critical regulators of development, cellular physiology and malignancy. Cell Cycle,2005.4(9):p.1179-84.
    102. Soukup, G.A., Little but loud:small RNAs have a resounding affect on ear development. Brain Res,2009.1277:p.104-14.
    103. Wang, G., W. Mao, and S. Zheng, MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett,2008.582(25-26):p.3663-8.
    104. Miko, E., et al., Differentially expressed microRNAs in small cell lung cancer. Exp Lung Res,2009.35(8):p.646-64.
    105. Sonkoly, E., M. Stahle, and A. Pivarcsi, MicroRNAs:novel regulators in skin inflammation. Clin Exp Dermatol,2008.33(3):p.312-5.
    106. Bostjancic, E. and D. Glavac, Importance of microRNAs in skin morphogenesis and diseases. Acta Dermatovenerol Alp Panonica Adriat,2008.17(3):p.95-102.
    107. Greither, T., et al., Elevated expression of microRNAs 155,203,210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer,2010.126(1): p.73-80.
    108. Lena, A.M., et al., miR-203 represses'stemness'by repressing DeltaNp63. Cell Death Differ,2008.15(7):p.1187-95.
    109. Feber, A., et al., MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg,2008.135(2):p.255-60; discussion 260.
    110. Furuta, M., et al., miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis, 2010.31(5):p.766-76.
    111. McCarthy, J J., MicroRNA-206:the skeletal muscle-specific myomiR. Biochim Biophys Acta,2008.1779(11):p.682-91.
    112. Verghese, E.T., et al., Small is beautiful:microRNAs and breast cancer-where are we now? J Pathol,2008.215(3):p.214-21.
    113. Negrini, M. and G.A. Calin, Breast cancer metastasis:a microRNA story. Breast Cancer Res,2008.10(2):p.203.
    114. Williams, A.H., et al., MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science,2009.326(5959):p. 1549-54.
    115. Song, G., Y. Zhang, and L. Wang, MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J Biol Chem, 2009.284(46):p.31921-7.
    116. Politz, J.C., E.M. Hogan, and T. Pederson, MicroRNAs with a nucleolar location. RNA,2009.15(9):p.1705-15.
    117. Tsitsiou, E. and M.A. Lindsay, microRNAs and the immune response. Curr Opin Pharmacol,2009.9(4):p.514-20.
    118. Pedersen, I. and M. David, MicroRNAs in the immune response. Cytokine,2008. 43(3):p.391-4.
    119. Sonkoly, E., M. Stahle, and A. Pivarcsi, MicroRNAs and immunity:novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol,2008.18(2):p.131-40.
    120. Vasilatou, D., et al., The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol,2010.84(1):p.1-16.
    121. Garzon, R. and C.M. Croce, MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol,2008.15(4):p.352-8.
    122. Nervi, C., et al., Emerging role for microRNAs in acute promyelocytic leukemia. Curr Top Microbiol Immunol,2007.313:p.73-84.
    123. Dang, C.V., Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res,2010.70(3):p.859-62.
    124. Dang, C.V., A. Le, and P. Gao, MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res,2009.15(21):p.6479-83.
    125. Chhabra, R., et al., Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and-independent apoptosis in human embryonic kidney cells. PLoS ONE,2009.4(6):p. e5848.
    126. Kong, K.Y., et al., MIR-23A microRNA cluster inhibits B-cell development. Exp Hematol,2010.
    127. Lin, Z., et al., miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci U S A,2009.106(29):p.12103-8.
    128. Gao, P., et al., c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature,2009.458(7239):p. 762-5.
    129. Huse, J.T., et al., The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev,2009. 23(11):p.1327-37.
    130. Wong, C.F. and R.L. Tellam, MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem,2008.283(15):p.9836-43.
    131. Sander, S., et al., MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood,2008.112(10):p.4202-12.
    132. Visone, R., et al., Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene,2007.26(54):p.7590-5.
    133. Tsai, N.P., Y.L. Lin, and L.N. Wei, MicroRNA mir-346 targets the 5'-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem J,2009.424(3):p.411-8.
    134. Weber, F., et al., A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab,2006.91(9):p.3584-91.
    135. Alsaleh, G, et al., Bruton's tyrosine kinase is involved in miR-346-related regulation of IL-18 release by lipopolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J Immunol,2009.182(8):p.5088-97.
    136. Xu, C.F., C.H. Yu, and Y.M. Li, Regulation of hepatic microRNA expression in response to ischemic preconditioning following ischemia/reperfusion injury in mice. Omics,2009.13(6):p.513-20.
    137. Zhu, Y, et al., A MicroRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophr Res,2009.109(1-3):p.86-9.
    138. Khudayberdiev, S., R. Fiore, and G. Schratt, MicroRNA as modulators of neuronal responses. Commun Integr Biol,2009.2(5):p.411-3.
    139. Muinos-Gimeno, M., et al., Allele variants in functional MicroRNA target sites of the neurotrophin-3 receptor gene (NTRK3) as susceptibility factors for anxiety disorders. Hum Mutat,2009.30(7):p.1062-71.
    140. Pizzimenti, S., et al., MicroRNA expression changes during human leukemic HL-60 cell differentiation induced by 4-hydroxynonenal, a product of lipid peroxidation. Free Radic Biol Med,2009.46(2):p.282-8.
    141. Song, G. and L. Wang, A conserved gene structure and expression regulation of miR-433 and miR-127 in mammals. PLoS ONE,2009.4(11):p. e7829.
    142. Song, G. and L. Wang, Transcriptional mechanism for the paired miR-433 and miR-127 genes by nuclear receptors SHP and ERRgamma. Nucleic Acids Res, 2008.36(18):p.5727-35.
    143. Song, G. and L. Wang, MiR-433 and miR-127 arise from independent overlapping primary transcripts encoded by the miR-433-127 locus. PLoS ONE, 2008.3(10):p. e3574.
    144. Robertus, J.L., et al., Specific expression of miR-17-5p and miR-127 in testicular and central nervous system diffuse large B-cell lymphoma. Mod Pathol,2009. 22(4):p.547-55.
    145. Bhaskaran, M., et al., MicroRNA-127 modulates fetal lung development. Physiol Genomics,2009.37(3):p.268-78.
    146. Yan, L.X., et al., MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA,2008.14(11):p.2348-60.
    147. Wagner-Ecker, M., et al., MicroRNA expression after ionizing radiation in human endothelial cells. Radiat Oncol,2010.5:p.25.
    148. Leucci, E., et al., B-cell differentiation in EBV-positive Burkitt lymphoma is impaired at posttranscriptional level by miRNA-altered expression. Int J Cancer, 2010.126(6):p.1316-26.
    149. Tryndyak, V.P., et al., Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog,2009.48(6):p.479-87.
    150. Lee, J.W., et al., Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res,2008.14(9):p.2535-42.
    151. Dixon-McIver, A., et al., Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS ONE,2008.3(5):p. e2141.
    152. Lujambio, A. and M. Esteller, CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle,2007.6(12):p.1455-9.
    153. Saito, Y., et al., Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell,2006.9(6):p.435-43.
    154. Kefas, B., et al., The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci,2009. 29(48):p.15161-8.
    155. Liang, Z., et al., Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol,2010.79(6):p.817-24.
    156. Du, C., et al., MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol,2009. 10(12):p.1252-9.
    157. Tang, Y.F., et al., Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells. Omics,2009. 13(4):p.331-6.
    158. Ferretti, E., et al., Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. Embo J,2008.27(19):p. 2616-27.
    159. Kahai, S., et al., MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7. PLoS ONE,2009. 4(10):p.e7535.
    160. Pedersen, A.W., et al., Phenotypic and functional markers for lalpha,25-dihydroxyvitamin D(3)-modified regulatory dendritic cells. Clin Exp Immunol,2009.157(1):p.48-59.
    161. Song, G., et al., MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology,2010.51(5):p.1735-43.
    162. Gao, Y., et al., An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1 alpha 3'untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis,2009.30(12):p.2064-9.
    163. Wang, Y.X., et al., Initial study of microRNA expression profiles of colonic cancer without lymph node metastasis. J Dig Dis,2010.11(1):p.50-4.
    164. Guo, J., et al., Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol,2009.24(4):p. 652-7.
    165. Bruchova, H., et al., Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol,2007.35(11):p.1657-67.
    166. Liu, Y., et al., Genomic Analysis of miRNAs in an Extreme Mammalian Hibernator, the Arctic Ground Squirrel. Physiol Genomics,2010.
    167. Joglekar, M.V., V.S. Parekh, and A.A. Hardikar, New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab,2007. 18(10):p.393-400.
    168. Castelli, E.C., et al., In silico analysis of microRNAS targeting the HLA-G 3' untranslated region alleles and haplotypes. Hum Immunol,2009.70(12):p. 1020-5.
    169. Velu, C.S., A.M. Baktula, and H.L. Grimes, Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood,2009.113(19):p.4720-8.
    170. Tay, Y., et al., Insights into the regulation of a common variant of HMGA2 associated with human height during embryonic development. Stem Cell Rev, 2009.5(4):p.328-33.
    171. Lui, W.O., et al., Patterns of known and novel small RNAs in human cervical cancer. Cancer Res,2007.67(13):p.6031-43.
    172. Popovic, R., et al., Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood,2009.113(14):p.3314-22.
    173. Yekta, S., I.H. Shih, and D.P. Bartel, MicroRNA-directed cleavage of HOXB8 mRNA. Science,2004.304(5670):p.594-6.
    174. Kawasaki, H. and K. Taira, MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf),2004(48): p.211-2.
    175. Cohen, A., et al., Alterations in micro-ribonucleic acid expression profiles reveal a novel pathway for estrogen regulation. Endocrinology,2008.149(4):p. 1687-96.
    176. Morin, R.D., et al., Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res,2008. 18(4):p.610-21.
    177. Schotte, D., et al., Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia,2009. 23(2):p.313-22.
    178. Ohlsson Teague, E.M., et al., MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol,2009.23(2):p.265-75.
    179. Cicatiello, L., et al., Estrogen receptor alpha controls a gene network in luminal-like breast cancer cells comprising multiple transcription factors and microRNAs. Am J Pathol,2010.176(5):p.2113-30.
    180. Corbetta, S., et al., Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr Relat Cancer, 2010.17(1):p.135-46.
    181. Tay, Y., et al., MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature,2008.455(7216):p.1124-8.
    182. Kushibiki, T., Photodynamic therapy induces microRNA-210 and-296 expression in HeLa cells. J Biophotonics,2009.
    183. Wang, L.L., et al., Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod,2009.24(3):p.562-79.
    184. Tang, X., et al., Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA,2009. 15(2):p.287-93.
    185. Folkman, J., Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 2002.29(6 Suppl 16):p.15-8.
    186. Denli, A.M., et al., Processing of primary microRNAs by the Microprocessor complex. Nature,2004.432(7014):p.231-5.
    187. Bohnsack, M.T., K. Czaplinski, and D. Gorlich, Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA,2004.10(2):p.185-91.
    188. Bernstein, E., et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001.409(6818):p.363-6.
    189. O'Donnell, K.A., et al., c-Myc-regulated microRNAs modulate E2F1 expression. Nature,2005.435(7043):p.839-43.
    190. Levens, D., Disentangling the MYC web. Proc Natl Acad Sci U S A,2002.99(9): p.5757-9.
    191. Ngo, C.V., et al., An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype. Cell Growth Differ,2000.11(4):p. 201-10.
    192. Brandvold, K.A., P. Neiman, and A. Ruddell, Angiogenesis is an early event in the generation of myc-induced lymphomas. Oncogene,2000.19(23):p.2780-5.
    193. Cole, M.D. and S.B. McMahon, The Myc oncoprotein:a critical evaluation of transactivation and target gene regulation. Oncogene,1999.18(19):p.2916-24.
    194. Paroo, Z., et al., Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell,2009.139(1):p.112-22.
    195. Qi, H.H., et al., Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature, 2008.455(7211):p.421-4.
    196. Zeng, Y., et al., Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem J,2008.413(3):p.429-36.
    197. Eulalio, A., I. Behm-Ansmant, and E. Izaurralde, P bodies:at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol,2007.8(1):p.9-22.
    198. Heo, I., et al., TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell,2009.138(4):p.696-708.
    199. Zhao, Y. and D. Srivastava, A developmental view of microRNA function. Trends Biochem Sci,2007.32(4):p.189-97.
    200. Silver, S J., et al., Functional screening identifies miR-315 as a potent activator of Wingless signaling. Proc Natl Acad Sci U S A,2007.104(46):p.18151-6.
    201. Mohri, T., et al., Human CYP2E1 is regulated by miR-378. Biochem Pharmacol, 2009.79(7):p.1045-52.
    202. Navarro, A., et al., Regulation of JAK2 by miR-135a:prognostic impact in classic Hodgkin lymphoma. Blood,2009.114(14):p.2945-51.
    203. Sober, S., M. Laan, and T. Annilo, MicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochem Biophys Res Commun,2009.391(1):p.727-32.
    204. Bartel, D.P., MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004.116(2):p.281-97.
    205. Eulalio, A., et al., Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev,2007.21(20):p.2558-70.
    206. Aleman, L.M., J. Doench, and P.A. Sharp, Comparison of siRNA-induced off-target RNA and protein effects. RNA,2007.13(3):p.385-95.
    207. Grimson, A., et al., MicroRNA targeting specificity in mammals:determinants beyond seed pairing. Mol Cell,2007.27(1):p.91-105.
    1. Kapranov, P., A.T. Willingham, and T.R. Gingeras, Genome-wide transcription and the implications for genomic organization. Nat Rev Genet,2007.8(6):p. 413-23.
    2. Bachellerie, J.P., J. Cavaille, and A. Huttenhofer, The expanding snoRNA world. Biochimie,2002.84(8):p.775-90.
    3. Kiss, T., Small nucleolar RNAs:an abundant group of noncoding RNAs with diverse cellular functions. Cell,2002.109(2):p.145-8.
    4. Vidovic, I., et al., Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol Cell,2000.6(6):p.1331-42.
    5. Klein, D.J., et al., The kink-turn:a new RNA secondary structure motif. Embo J, 2001.20(15):p.4214-21.
    6. Wang, H., et al., Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. Embo J, 2000.19(3):p.317-23.
    7. Tollervey, D., et al., Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell,1993.72(3):p.443-57.
    8. Hoang, C. and A.R. Ferre-D'Amare, Cocrystal structure of a tRNA Psi55 pseudouridine synthase:nucleotide flipping by an RNA-modifying enzyme. Cell, 2001.107(7):p.929-39.
    9. Kim, V.N., J. Han, and M.C. Siomi, Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol,2009.10(2):p.126-39.
    10. Lee, Y.S. and A. Dutta, MicroRNAs in Cancer. Annu Rev Pathol,2008.
    11. Lee, Y., et al., MicroRNA maturation:stepwise processing and subcellular localization. EMBO J,2002.21(17):p.4663-70.
    12. Lee, Y., et al., MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 2004.23(20):p.4051-60.
    13. Cai, X., C.H. Hagedorn, and B.R. Cullen, Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004.10(12):p.1957-66.
    14. Borchert, G.M., W. Lanier, and B.L. Davidson, RNA polymerase Ⅲ transcribes human microRNAs. Nat Struct Mol Biol,2006.13(12):p.1097-101.
    15. Lee, Y., et al., The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature,2003.425(6956):p.415-9.
    16. Han, J., et al., Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell,2006.125(5):p.887-901.
    17. Han, J., et al., Posttranscriptional crossregulation between Drosha and DGCR8. Cell,2009.136(1):p.75-84.
    18. Kim, V.N., MicroRNA precursors in motion:exportin-5 mediates their nuclear export. Trends Cell Biol,2004.14(4):p.156-9.
    19. Lund, E., et al., Nuclear export of microRNA precursors. Science,2004. 303(5654):p.95-8.
    20. Hutvagner, G, et al., A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science,2001.293(5531):p. 834-8.
    21. Chendrimada, T.P., et al., TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature,2005.436(7051):p.740-4.
    22. Lee, Y, et al., The role of PACT in the RNA silencing pathway. Embo J,2006. 25(3):p.522-32.
    23. Gregory, R.I., et al., Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell,2005.123(4):p.631-40.
    24. Du, T. and P.D. Zamore, microPrimer:the biogenesis and function of microRNA. Development,2005.132(21):p.4645-52.
    25. Lewis, B.P., et al., Prediction of mammalian microRNA targets. Cell,2003. 115(7):p.787-98.
    26. Forman, J.J., A. Legesse-Miller, and H.A. Coller, A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A,2008.105(39):p.14879-84.
    27. Tay, Y, et al., MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature,2008.455(7216):p.1124-8.
    28. Orom, U.A., F.C. Nielsen, and A.H. Lund, MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell,2008.30(4): p.460-71.
    29. Grimson, A., et al., MicroRNA targeting specificity in mammals:determinants beyond seed pairing. Mol Cell,2007.27(1):p.91-105.
    30. Lingel, A. and M. Sattler, Novel modes of protein-RNA recognition in the RNAi pathway. Curr Opin Struct Biol,2005.15(1):p.107-15.
    31. Liu, J., et al., Argonaute2 is the catalytic engine of mammalian RNAi. Science, 2004.305(5689):p.1437-41.
    32. Pillai, R.S., S.N. Bhattacharyya, and W. Filipowicz, Repression of protein synthesis by miRNAs:how many mechanisms? Trends Cell Biol,2007.17(3):p. 118-26.
    33. Jackson, R.J. and N. Standart, How do microRNAs regulate gene expression? Sci STKE,2007.2007(367):p. rel.
    34. Lim, L.P., et al., Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature,2005.433(7027):p.769-73.
    35. Farh, K.K., et al., The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science,2005.310(5755):p.1817-21.
    36. Stark, A., et al., Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell,2005.123(6):p.1133-46.
    37. Bushati, N. and S.M. Cohen, microRNA Functions. Annu Rev Cell Dev Biol, 2007.
    38. Hornstein, E. and N. Shomron, Canalization of development by microRNAs. Nat Genet,2006.38 Suppl:p. S20-4.
    39. Bartel, D.P. and C.Z. Chen, Micromanagers of gene expression:the potentially widespread influence of metazoan microRNAs. Nat Rev Genet,2004.5(5):p. 396-400.
    40. Houwing, S., et al., A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell,2007.129(1):p.69-82.
    41. Stefani, G and F.J. Slack, Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol,2008.9(3):p.219-30.
    42. Aravin, A.A., et al., Developmentally regulated piRNA clusters implicate MILI in transposon control. Science,2007.316(5825):p.744-7.
    43. O'Donnell, K.A. and J.D. Boeke, Mighty Piwis defend the germline against genome intruders. Cell,2007.129(1):p.37-44.
    44. Malone, C.D. and G.J. Hannon, Small RNAs as guardians of the genome. Cell, 2009.136(4):p.656-68.
    45. Lin, H. and A.C. Spradling, A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development,1997.124(12):p.2463-76.
    46. Cox, D.N., et al., A novel class of evolutionarily conserved genes defined bypiwi are essential for stem cell self-renewal. Genes Dev,1998.12(23):p.3715-27.
    47. Farazi, T.A., S.A. Juranek, and T. Tuschl, The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development,2008.135(7):p.1201-14.
    48. Aravin, A.A., et al., Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol,2001.11(13):p.1017-27.
    49. Aravin, A.A., et al., The small RNA profile during Drosophila melanogaster development. Dev Cell,2003.5(2):p.337-50.
    50. Vagin, V.V., et al., A distinct small RNA pathway silences selfish genetic elements in the germline. Science,2006.313(5785):p.320-4.
    51. Brennecke, J., et al., Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell,2007.128(6):p.1089-103.
    52. Gunawardane, L.S., et al., A slicer-mediated mechanism for repeat-associated siRNA 5'end formation in Drosophila. Science,2007.315(5818):p.1587-90.
    53. Saito, K., et al., Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev,2006.20(16):p.2214-22.
    54. Klattenhoff, C. and W. Theurkauf, Biogenesis and germline functions of piRNAs. Development,2008.135(1):p.3-9.
    55. Aravin, A.A., et al., A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell,2008.31(6):p.785-99.
    56. Truss, M., et al., HuSiDa--the human siRNA database:an open-access database for published functional siRNA sequences and technical details of efficient transfer into recipient cells. Nucleic Acids Res,2005.33(Database issue):p. D108-11.
    57. Chalk, A.M., et al., siRNAdb:a database of siRNA sequences. Nucleic Acids Res, 2005.33(Database issue):p. D131-4.
    58. Czech, B., et al., An endogenous small interfering RNA pathway in Drosophila. Nature,2008.453(7196):p.798-802.
    59. Watanabe, T., et al., Endogenous siRNAsfrom naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature,2008.453(7194):p.539-43.
    60. Tam, O.H., et al., Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature,2008.453(7194):p.534-8.
    61. Babiarz, J.E., et al., Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev, 2008.22(20):p.2773-85.
    62. Chapman, E.J. and J.C. Carrington, Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet,2007.8(11):p.884-96.
    63. Wang, X.H., et al., RNA interference directs innate immunity against viruses in adult Drosophila. Science,2006.312(5772):p.452-4.
    1. Bartel, D.P., MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004.116(2):p.281-97.
    2. Lim, L.P., et al., Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature,2005.433(7027):p.769-73.
    3. Kim, V.N., J. Han, and M.C. Siomi, Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol,2009.10(2):p.126-39.
    4. Parker, R. and H. Song, The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol,2004.11(2):p.121-7.
    5. Houseley, J., J. LaCava, and D. Tollervey, RNA-quality control by the exosome. Nat Rev Mol Cell Biol,2006.7(7):p.529-39.
    6. Lingel, A. and M. Sattler, Novel modes of protein-RNA recognition in the RNAi pathway. Curr Opin Struct Biol,2005.15(1):p.107-15.
    7. Orban, T.I. and E. Izaurralde, Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA,2005.11(4):p.459-69.
    8. Yekta, S., I.H. Shih, and D.P. Bartel, MicroRNA-directed cleavage of HOXB8 mRNA. Science,2004.304(5670):p.594-6.
    9. Bagga, S., et al., Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell,2005.122(4):p.553-63.
    10. Wu, L. and J.G. Belasco, Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol, 2005.25(21):p.9198-208.
    11. Giraldez, A.J., et al., Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science,2006.312(5770):p.75-9.
    12. Wu, L., J. Fan, and J.G. Belasco, MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A,2006.103(11):p.4034-9.
    13. Chendrimada, T.P., et al., MicroRNA silencing through RISC recruitment of eIF6. Nature,2007.447(7146):p.823-8.
    14. Eulalio, A., et al., Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev,2007.21(20):p.2558-70.
    15. Behm-Ansmant, I., et al., mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev,2006.20(14):p.1885-98.
    16. Mishima, Y., et al., Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr Biol,2006.16(21):p.2135-42.
    17. Kawasaki, H. and K. Taira, MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf),2004(48): p.211-2.
    18. Behm-Ansmant, I., J. Rehwinkel, and E. Izaurralde, MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol,2006.71:p.523-30.
    19. Ding, L. and M. Han, GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol,2007.
    20. Eulalio, A., I. Behm-Ansmant, and E. Izaurralde, P bodies:at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol,2007.8(1):p.9-22.
    21. Wakiyama, M., et al., Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev,2007. 21(15):p.1857-62.
    22. Aleman, L.M., J. Doench, and P.A. Sharp, Comparison of siRNA-induced off-target RNA and protein effects. RNA,2007.13(3):p.385-95.
    23. Grimson, A., et al., MicroRNA targeting specificity in mammals:determinants beyond seed pairing. Mol Cell,2007.27(1):p.91-105.
    24. Merrick, W.C., Cap-dependent and cap-independent translation in eukaryotic systems. Gene,2004.332:p.1-11.
    25. Kapp, L.D. and J.R. Lorsch, The molecular mechanics of eukaryotic translation. Annu Rev Biochem,2004.73:p.657-704.
    26. Wells, S.E., et al., Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell,1998.2(1):p.135-40.
    27. Derry, M.C., et al., Regulation of poly (A)-binding protein through PABP-interacting proteins. Cold Spring Harb Symp Quant Biol,2006.71:p. 537-43.
    28. Russell, D.W. and L.L. Spremulli, Identification of a wheat germ ribosome dissociation factor distinct from initiation factor eIF-3. J Biol Chem,1978. 253(19):p.6647-9.
    29. Jackson, R.J., Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem Soc Trans,2005.33(Pt 6):p.1231-41.
    30. Pillai, R.S., et al., Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science,2005.309(5740):p.1573-6.
    31. Humphreys, D.T., et al., MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly (A) tail function. Proc Natl Acad Sci U S A,2005.102(47):p.16961-6.
    32. Mathonnet, G., et al., MicroRNA Inhibition of Translation Initiation in Vitro by Targeting the Cap-Binding Complex eIF4F. Science,2007.
    33. Kiriakidou, M., et al., An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell,2007.129(6):p.1141-51.
    34. Marcotrigiano, J., et al., Cocrystal structure of the messenger RNA 5' cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell,1997.89(6):p. 951-61.
    35. Sanvito, F., et al., The beta4 integrin interactor p27(BBP/eIF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly. J Cell Biol, 1999.144(5):p.823-37.
    36. Si, K. and U. Maitra, The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor. Mol Cell Biol,1999.19(2):p.1416-26.
    37. Basu, U., et al., The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol Cell Biol,2001.21(5):p.1453-62.
    38. Petersen, C.P., et al., Short RNAs repress translation after initiation in mammalian cells. Mol Cell,2006.21(4):p.533-42.
    39. Lytle, J.R., T.A. Yario, and J.A. Steitz, Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR. Proc Natl Acad Sci U S A,2007.104(23):p.9667-72.
    40. Nottrott, S., M.J. Simard, and J.D. Richter, Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol,2006. 13(12):p.1108-14.
    41. Maroney, P.A., et al., Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol,2006.13(12):p.1102-7.
    42. Olsen, P.H. and V. Ambros, The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. DevBiol,1999.216(2):p.671-80.
    43. Parker, R. and U. Sheth, P bodies and the control of mRNA translation and degradation. Mol Cell,2007.25(5):p.635-46.
    44. Jakymiw, A., et al., Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol,2005.7(12):p.1267-74.
    45. Meister, G, et al., Identification of novel argonaute-associated proteins. Curr Biol,2005.15(23):p.2149-55.
    46. Liu, J., et al., MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol,2005.7(7):p.719-23.
    47. Leung, A.K., J.M. Calabrese, and P.A. Sharp, Quantitative analysis ofArgonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci U S A,2006.103(48):p.18125-30.
    48. Bhattacharyya, S.N., et al., Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell,2006.125(6):p.1111-24.
    49. Chu, C.Y. and T.M. Rana, Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol,2006.4(7):p. e210.
    50. Liu, J., et al., A role for the P-body component GW182 in microRNA function. Nat Cell Biol,2005.7(12):p.1261-6.
    51. Chang, J., et al., miR-122, a mammalian liver-specific microRNA, is processed from her mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol,2004.1(2):p.106-13.
    52. Eulalio, A., et al., P-body formation is a consequence, not the cause, of RNA-mediatedgene silencing. Mol Cell Biol,2007.27(11):p.3970-81.
    53. Pauley, K.M., et al., Formation of GW bodies is a consequence of microRNA genesis. EMBO Rep,2006.7(9):p.904-10.
    54. Anderson, P. and N. Kedersha, RNA granules. J Cell Biol,2006.172(6):p. 803-8.
    55. Mazroui, R., et al., Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation. Mol Biol Cell,2006.17(10):p.4212-9.
    56. Kedersha, N., et al., Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol,2005.169(6):p.871-84.
    57. Wilczynska, A., et al., The translational regulator CPEB1 provides a link between dcpl bodies and stress granules. J Cell Sci,2005.118(Pt 5):p.981-92.
    58. Leung, A.K. and P.A. Sharp, microRNAs:A Safeguard against Turmoil? Cell, 2007.130(4):p.581-5.