垂体瘤转化基因RNA干扰对胶质瘤细胞增殖、凋亡及化疗敏感性影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:明确垂体瘤转化基因(pituitary tumor transforming gene ,PTTG)的表达与胶质瘤临床病理级别和患者预后的相关性。构建PTTG RNA干扰载体,观察PTTG RNA干扰对细胞增殖、凋亡及对化疗敏感性的影响。
     方法:选择80例胶质瘤手术标本,按WHO胶质瘤分级标准,包括Ⅰ级16例、Ⅱ级22例,Ⅲ级26例、Ⅳ级16例,患者生存时间<12月22例,12-36月41例,>36月17例,复发时间<12月18例,12- 36月39例,>36月23例。免疫组化检测PTTG表达,测定其积分光密度值(IOD)。
     根据PTTG基因cDNA序列,设计针对PTTG基因的3组干扰序列,并设计1组阴性对照序列,克隆到真核表达载体pGenesil-1中,进行酶切鉴定和测序鉴定。将构建好的4组重组质粒分别命名为PTTG-1组,PTTG-2组,PTTG-3组、阴性对照NC(negative control)组。利用RNA干扰技术,将以上shRNA分别转染细胞中,逆转录聚合酶链式反应(RT-PCR)检测PTTGmRNA表达水平、Western Blot检测PTTG蛋白表达水平。
     选取干扰效果最强的shRNA片段转染U251细胞,另用替莫唑胺(temozolomide,TMZ)作用于转染shRNA片段的U251细胞,四甲基偶氮唑盐( methyl thazoy terazolium, MTT)比色法检测细胞生长状况,流式细胞仪检测细胞凋亡。
     结果:免疫组化结果显示80例胶质瘤标本中,其IOD值Ⅰ、Ⅱ、Ⅲ、Ⅳ级分别为0.69±0.06、0.76±0.08、1.32±0.12、1.67±0.15,随着肿瘤级别的增高而升高,各组间比较差异有统计学意义(P<0.05或0.01)。患者复发时间越长,PTTG蛋白表达越低,复发时间越短,PTTG蛋白表达越高,其IOD在复发时间<12月组、12-36月组、>36月组分别为1.60±0.20、0.98±0.10、0.61±0.08,各组间比较差异有统计学意义(P<0.01)。PTTG蛋白表达与生存时间的关系显示患者生存时间越长,PTTG蛋白表达越低,生存时间越短,PTTG蛋白表达越高,其IOD在生存时间<12月组、12-36月组、>36月组分别为1.55±0.14、1.01±0.13、0.65±0.08,各组间比较差异有统计学意义(P<0.01)。
     构建的PTTG RNA干扰序列和阴性对照序列经酶切和基因测序证明插入序列正确,说明PTTG RNA干扰真核表达质粒和阴性对照表达质粒构建成功。
     细胞在转染PTTG干扰载体后,提取细胞的总RNA,经RT-PCR电泳发现,在转染24h后,PTTG-2、PTTG-3即显示出抑制作用,PTTGmRNA表达水平降低,PTTG-1组对目的基因的抑制作用不明显;在转染48h后,各组均显示出抑制作用,但PTTG -3的抑制作用更明显;转染72h后,PTTG-1组有微弱的抑制作用,PTTG -2及PTTG -3组仍有显示明显的抑制作用,但PTTG -3抑制作用较PTTG -2更强烈。
     Western blot检测不同时间PTTG蛋白的变化显示,在转染24h后,PTTG-1、PTTG-2、PTTG -3组对目的基因的抑制作用均不明显;在转染48h后,PTTG-1、PTTG-2、PTTG-3组均显示出抑制作用,但PTTG-3的抑制作用更明显;转染72h小时后,PTTG-1组没有抑制作用,PTTG-2及PTTG -3组仍有显示明显的抑制作用,但PTTG -3抑制作用较PTTG-2更强烈。
     PTTG-3及PTTG-3联合TMZ作用细胞48h后,MTT实验结果显示,细胞生长和存活能力受到明显的影响,细胞增殖活性结果显示OD值在对照组、TMZ组、PTTG -3转染组、PTTG-3联合TMZ组分别为0.85±0.07、0.58±0.06、0.55±0.07、0.41±0.05,TMZ组、PTTG -3转染组、PTTG-3联合TMZ组细胞增殖抑制率分别为(31.56±5.51)%、(35.53±4.60)%、(51.49±6.74)%,PTTG-3组及TMZ组与对照组比较差异具有统计学意义(P<0.01),而PTTG-3联合TMZ组抑制细胞增殖更明显,与PTTG -3组及TMZ组比较差异有统计学意义(P<0.01)。流式细胞仪检测细胞凋亡显示48h对照组凋亡率为(6.29±0.78)%,TMZ组为(33.63±4.88)%,PTTG-3组为(39.61±4.95)%,PTTG -3联合TMZ组为(66.23±7.60)%,PTTG -3组及TMZ组与对照组比较差异差异有统计学意义(P<0.01),而PTTG -3联合TMZ组的凋亡率较PTTG-3组及TMZ组明显增高,组间比较与差异有统计学意义(P<0.01)。
     结论:PTTG与胶质瘤病理级别和预后密切相关,可以作为肿瘤恶性程度和预后的指标, PTTG RNA干扰可以抑制胶质瘤细胞生长,诱导细胞凋亡,且可以增强胶质瘤细胞对化疗药物的敏感性,提高化疗效果。
Objective:To investigate the relationship between the expression of pituitary tumor transforming gene (PTTG) protein and pathological grade, prognosis in glioma。To constructed recombinant expression vector PTTG, and glioma U251 cell line was treated with recombinant expression vector PTTG and PTTG shRNA combined with temozolomide(TMZ), proliferation,apoptosis and chemotherapeutic sensitivity of glioma cells were observed.
     Methods:The protein expression of PTTG was detected by immunostaining assay using Streptavidin-Peroxidase (S-P) method in 80 cases of glioma. Of the 80 cases,16 cases were with pathological gradeⅠ,22 with gradeⅡ,26 with gradeⅢ,16 with gradeⅣ.The survival time was <12 months in 22 cases,12-36 months in 41 cases and >36 months in 17 cases, recurencs time was<12 months in 18 cases,12-36 months in 39 cases and >36 months in 23 cases.
     Three potential shRNA target sites were identified on the PTTG and recombined shRNA-PTTG plasmid. One negative control sequence was designed. The three recombine shRNA-PTTG plasmids and the negative control plasmid were detected by enzyme digestion and sequencing analysis,and named as PTTG-1,PTTG-2,PTTG-3,the negative control was named as NC(negative control),which were transiently transfected into U251 cell lines via lipofectamine 2000 respectively.
     After the recombinant PTTG shRNA expression vector was transfected into cells,PTTG mRNA was dectected by reverse transcription polymerase chain reaction (RT-PCR) ,the protein expression of PTTG was dectected by western blot.
     Select the validest shRNA , the glioma U251 cell line was treated with PTTG shRNA and PTTG shRNA combined with TMZ ,MTT assay was used to detected cell proliferation, the apoptosis of U251 cell line was evaluated by flow cytometry.
     Results : Of the 80 cases, the IOD in gradeⅠ,Ⅱ,Ⅲ,Ⅳwere 0.69±0.06,0.76±0.08,1.32±0.12,1.67±0.15 respectively,the protein expression of PTTG increased with the increasing of pathological grade of glioma,there were signifcantly difference between the groups(P<0.05 or 0.01).The expression of PTTG protein in survival groups were 1.60±0.20,0.98±0.10,0.61±0.08 respectively,the expression of PTTG protein in recurrence groups were 1.55±0.14,1.01±0.13,0.65±0.08 respectively,there were significantly difference among the survival groups or recurrence groups (P< 0.01) .
     Successful construction of vector PTTG was comfirmed by enzyme digestion and sequencing analysis.
     Total RNA was eluted after the U251 cells were transfected, RT-PCR technique was used to measure the expression of PTTG mRNA. Compared with control group, PTTG -3 showed inhibiting effect after 24h, the inhibiting effect of PTTG-1,PTTG-2 were insidiously. PTTG-1,PTTG-2 and PTTG -3 showed inhibiting effect after 48,however, inhibiting effect of PTTG-3 was stronglyest. After 72h, PTTG-1 had no inhibiting effect, PTTG-2 had a weak inhibiting effect, PTTG -3 still had a strong inhibiting effect. Western blot was used to measure the expression of PTTG protein, compared with control group, PTTG -1,PTTG -2,PTTG-3 showed no inhibiting effect at 24h. PTTG -1,PTTG-2 and PTTG-3 showed inhibiting effect at 48h,however, inhibiting effect of PTTG -3 was stronglyest. PTTG -1 had no inhibiting effect, PTTG -2 had a weak inhibiting effect, PTTG still had a strong inhibiting effect at 72h.
     The outcome of MTT showed that the growth and survive were influenced after PTTG -3 and PTTG-3 combined with TMZ, the OD of control group,TMZ group, PTTG -3 group and PTTG-3 combined with TMZ group were 0.85±0.07,0.58±0.06,0.55±0.07,0.41±0.05,inhibitory rate of TMZ group,PTTG -3 group and PTTG-3 combined with TMZ group were(31.56±5.51)%,(35.53±4.60)%,(51.49±6.74)% respectively, there was a statistically significance between control group and PTTG-3 group or TMZ group, and there was a statistically significance between group PTTG-3 combined with TMZ and PTTG -3 group and TMZ group.
     The apoptosis rate at 48h of control group、TMZ、PTTG -3 group、PTTG-3 combined with TMZ group were(6.29±0.78)%,(33.63±4.88)%,(39.61±4.95)%,(66.23±7.60)% respectively in the flow cytometry analysis, there was a statistically significance between control group and PTTG-3 group or TMZ group, and there was a statistically significance between group PTTG-3 combined with TMZ and PTTG -3 group or TMZ group.
     Conclsion:The expressions of PTTG protein were related to pathological grade and the prognosis of glioma, and can be considered as the indicator of the maligant degree and the prognosis, PTTG RNA interference may inhibit the cell proliferation and induce apoptosis in glioma cells ,which can upregulate chemotherapeutic sensitivity.
引文
1. Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG) [J]. Mol Endocrinol,1997,11(4):433-441.
    2. Prestegarden L, Svendsen A, Wang J, et al. Glioma cell populations grouped by different cell type markers drive brain tumor growth[J].Cancer Res, 2010,70 (11):4274-4279.
    3. Viapiano MS, Matthews RT, Hockfield S, et al. A novel membrane-associated glycovariant of BEHAB/brevican is up-regulated during rat brain development and in a rat model of invasive glioma[J]. J Biol Chem, 2003,278(35):33239-33247.
    4. Horbinski C, Wang G, Wiley CA,et al.. YKL-40 is directly produced by tumor cells and is inversely linked to EGFR in glioblastomas[J]. Int J Clin Exp Pathol, 2010 ,3 (3):226-237.
    5. Wykosky J, Palma E, Gibo DM, et al. Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor[J]. Oncogene. 2008, 27(58):7260-7273.
    6. Brun M, Coles JE, Monckton EA, et al. Nuclear factor I regulates brain fatty acid-binding protein and glial fibrillary acidic protein gene expression in malignant glioma cell lines[J]. J Mol Biol, 2009,391(2):282-300.
    7. Angelastro JM, LaméMW. Overexpression of CD133 promotes drug resistance in C6 glioma cells[J]. Mol Cancer Res, 2010,8(8):1105-1115.
    8. Brun M, Coles JE, Monckton EA, et al.Nuclear factor I regulates brain fatty acid-binding protein and glial fibrillary acidic protein gene expression in malignant glioma cell lines[J]. J Mol Biol. 2009 ,391(2):282-300.
    9. Bhoopathi P, Chetty C, Gujrati M, et al. The role of MMP-9 in the anti-angiogenic effect of secreted protein acidic and rich in cysteine[J]. Br J Cancer, 2010,102(3):530-540.
    10. van Nifterik KA, van den Berg J, van der Meide WF, et al. Absence of the MGMTprotein as well as methylation of the MGMT promoter predict the sensitivity fortemozolomide[J]. Br J Cancer, 2010,103(1):29-35.
    11. Gulati S, Ytterhus B, Granli US, et al. Overexpression of c-erbB2 is a negativeprognostic factor in anaplastic astrocytomas Diagn[J]. Pathol, 2010,5:18.
    12. Lymbouridou R, Soufla G, Chatzinikola AM, et al. Down-regulation of K-ras andH-ras in human brain gliomas[J]. Eur J Cancer, 2009,5(7):1294-1303.
    13. Calzolari F, Appolloni I, Tutucci E, et al. Tumor progression and oncogene addictionin a PDGF-B-induced model of gliomagenesis[J]. Neoplasia, 2008,10(12):1373-1382.
    14. Contestabile A. Regulation of transcription factors by nitric oxide in neurons and inneural-derived tumor cells[J]. Prog Neurobiol. 2008 ,84(4):317-328.
    15. Bredel M, Scholtens DM, Harsh GR, et al. A network model of a cooperative geneticlandscape in brain tumors[J]. JAMA, 2009,302(3):261-275.
    16. Sinn B, Tallen G, Schroeder G, et al. Caffeine confers radiosensitization ofPTEN-deficient malignant glioma cells by enhancing ionizing radiation-induced G1arrest and negatively regulating Akt phosphorylation[J]. Mol Cancer Ther2010,9(2):480-488.
    17. Idema S, Lamfers ML, van Beusechem VW, Noske DP, AdDelta24 and thep53-expressing variant AdDelta24-p53 achieve potent anti-tumor activity in gliomawhen combined with radiotherapy[J]. J Gene Med, 2007,9(12):1046-1056.
    18. Wakabayashi T, Natsume A, Hatano H, et al. p16 promoter methylation in the serum asa basis for the molecular diagnosis of gliomas[J]. Neurosurgery, 2009,64(3):455-462.
    19. McGillicuddy LT, Fromm JA, Hollstein PE, et al. Proteasomal and genetic inactivationof the NF1 tumor suppressor in gliomagenesis[J]. Cancer Cell. 2009,16(1):44-54.
    20. Trojan J, Cloix JF, Ardourel MY, et al. Insulin-like growth factor type I biology andtargeting in malignant gliomas. Neuroscience, 2007,145(3):795-811.
    21. Shibuya M. Brain angiogenesis in developmental and pathological processes:therapeutic aspects of vascular endothelial growth facto[J]. FEBS J, 2009,276(17):4636-4643.
    22. Cobbs CS, Soroceanu L, Denham S, et al.Human cytomegalovirus induces cellulartyrosine kinase signaling and promotes glioma cell invasiveness[J]. J Neurooncol,2007,85(3):271-280.
    23. Kakar SS. Molecular cloning, genomic organization, and identification of the promoterfor the human pituitary tumor transforming gene (PTTG) [J]. Gene,1999,240(2):317-324.
    24. Kim CS, Ying H, Willingham MC,et al. The pituitary tumor-transforming genepromotes angiogenesis in a mouse model of follicular thyroid cancer.Carcinogenesis[J]. 2007,28(5):932-939.
    25. Kakar SS, Malik MT. Suppression of lung cancer with siRNA targeting PTTG[J]. Int JOncol, 2006,29(2):387-395.
    26. Watkins RJ, Read ML, Smith VE, et al. Pituitary tumor transforming gene bindingfactor: a new gene in breast cancer[J]. Cancer Res, 2010,70(9):3739-3749.
    27. El-Naggar SM, Malik MT, Kakar SS. Small interfering RNA against PTTG: a noveltherapy for ovarian cancer[J]. Int J Oncol, 2007,31(1):137-1343.
    28. Su MC, Hsu HC, Liu YJ, et al Overexpression of pituitary tumor-transforming gene-1in hepatocellular carcinoma[J]. Hepatogastroenterology. 2006,53(68):262-265.
    29. Minematsu T, Egashira N, Kajiya H, et al. PTTG is a secretory protein in humanpituitary adenomas and in mouse pituitary tumor cell lines[J]. Endocr Pathol.2007,18(1):8-15.
    30. Espina AG, Méndez-Vidal C, Moreno-Mateos MA, et al. Induction of Dlk1 by PTTG1inhibits adipocyte differentiation and correlates with malignant transformation [J].Mol Biol Cell, 2009,20(14):3353-3362.
    31. Yan S, Zhou C, Lou X, et al. PTTG overexpression promotes lymph node metastasis inhuman esophageal squamous cell carcinoma [J]. Cancer Res, 2009,69(8):3283-3290.
    32. Tena-Suck ML, Ortiz-Plata A, Galán F, et al. Expression of epithelial cell adhesion molecule and pituitary tumor transforming gene in adamantinomatous craniopharyngioma and its correlation with recurrence of the tumor[J]. Ann Diagn Pathol, 2009,13(2):82-88.
    33. Morita K, Takano K, Yasufuku-Takano J, et al. Expression of pituitary tumour-derived, N-terminally truncated isoform of fibroblast growth factor receptor 4 (ptd-FGFR4) correlates with tumour invasiveness but not with G-protein alpha subunit (gsp) mutation in human GH-secreting pituitary adenomas[J]. Clin Endocrinol , 2008,68 (3):435-441.
    34. Gürlek A, Karavitaki N, Ansorge O, et al. What are the markers of aggressiveness in prolactinomas? Changes in cell biology, extracellular matrix components, angiogenesis and genetics[J]. Eur J Endocrinol. 2007,156(2):143-153.
    35. Kim JW, Song JY, Lee JM, et al. Expression of pituitary tumor-transforming gene in endometrial cancer as a prognostic marker[J]. Int J Gynecol Cancer, 2008 ,18 (6):1352-1359.
    36. Boelaert K, McCabe CJ, Tannahill LA,et al. Pituitary tumor transforming gene and fibroblast growth factor-2 expression: potential prognostic indicators in differentiated thyroid cancer [J].J Clin Endocrinol Metab,2003,88(5):2341-2347.
    37. Kim DS, Franklyn JA, Boelaert K, et al. Pituitary tumor transforming gene (PTTG) stimulates thyroid cell proliferation via a vascular endothelial growth factor/kinase insert domain receptor/inhibitor of DNA binding-3 autocrine pathway [J]. J Clin Endocrinol Metab, 2006,91(11):4603-4611.
    38. Minematsu T, Suzuki M, Sanno N, et al. PTTG overexpression is correlated with angiogenesis in human pituitary adenomas[J]. Endocr Pathol, 2006,17(2):143-153.
    39. Pei L,Melmed S.Isolation and characterization of a pituitary tumor-transforming gene(PTTG)[J].Mol Endocrinol,1997,11 (4):433-441·
    40. Zhang X,Horwitz GA,Prezant TR,et al.Structure, ex-pression, and function of human pituitary tumor-transforming gene (PTTG)[J].Mol Endocrinol, 1999,13(1):156-166.
    41 .Dominguze A,Ramos-morales F,Romero,et al.hPTTG,a human homologue of rat PTTG is overexpressed in hematopoietic neoplasms.Evidence for a transcriptional activationfunction of hPTTG[J]. Oncogene,1998,17(17):2187-2193·
    42. Boelaert K, Smith VE, Stratford AL, et al. PTTG and PBF repress the human sodium iodide symporter. Oncogene, 2007,26(30):4344-4356.
    43. Mo Z, Zu X, Xie Z, et al. Antitumor effect of F-PBF(beta-TrCP)-induced targeted PTTG1 degradation in HeLa cells[J]. J Biotechnol, 2009,139(1):6-11.
    44. Tong Y, Tan Y, Zhou C, et al. Pituitary tumor transforming gene interacts with Sp1 to modulate G1/S cell phase transition[J]. Oncogene. 2007 ,26(38):5596-5605.
    45. Clem AL, Hamid T, Kakar SS. Characterization of the role of Sp1 and NF-Y in differential regulation of PTTG/securin expression in tumor cells [J]. Gene, 2003,322(11):113-121.
    46. Dreijerink KM, H?ppener JW, Timmers HM, et al. Mechanisms of disease: multiple endocrine neoplasia type 1-relation to chromatin modifications and transcription regulation. Nat Clin Pract Endocrinol Metab. 2006 ,2(10):562-570.
    47. Chamaon K, Kanakis D, Mawrin C, et al. Transcripts of PTTG and growth factors bFGF and IGF-1 are correlated in pituitary adenomas[J]. Exp Clin Endocrinol Diabetes, 2010,118(2):121-126.
    48. Chamaon K, Kirches E, Kanakis D,et al. Regulation of the pituitary tumor transforming gene by insulin-like-growth factor-I and insulin differs between malignant and non-neoplastic astrocytes[J]. Biochem biophysi Res Commun, 2005,331(1):86-92.
    49. Thompson AD, Kakar SS. Insulin and IGF-1 regulate the expression of the pituitary tumor transforming gene (PTTG) in breast tumor cells[J]. FEBS letters,2005,579(14):3195-3200.
    50. Stock M, Schafer H, Fliegauf M, et al. Identification of novel genes of the bone-specific transcription factor Runx2. J Bone Miner Res,2004,19(6):959-972.
    51. Yu R, Cruz-Soto M, Calzi S, et al. Murine pituitary tumor-transforming gene functions as a securin protein in insulin-secreting cell[J]. J Endocrinol. 2006,191(1):45-53.
    52. Pemberton HN, Franklyn JA, Boelaert K, et al. Separase, securin and Rad21 in neural cell growth[J]. J Cell Physiol, 2007,213(1):44-50.
    53. Yu R, Heaney AP, Lu W, et al . Pituitary tumor transforming gene causes aneuploidy and p53-dependent and p53-independent apoptosis[J].J Biol Chem. 2000,275 (47):36502-36505.
    54. Pei L. Identification of c-myc as a down-stream target for pituitary tumor-transforming gene[J]. J Biol Chem, 2001,276(11):8484-8491.
    55. Tfelt-Hansen J, Schwarz P, Terwilliger EF, et al. Calcium-sensing receptor induces messenger ribonucleic acid of human securin, pituitary tumor transforming gene, in rat testicular cance[J]. Endocrinology,2003,144(12):5188- 5193.
    56. Tfelt-Hansen J. Expression and regulation of pituitary tumor transforming gene in Leydig testis cancer and astrocyte and astrocytoma cells[J]. Dan Med Bull, 2008 ,55(1):17-46.
    57. Wu BW,Ma D,Li DF, et al. Expression of human pituitary tumor transforming gene
    1 in colorectal cancer detected with real-time fluorescent quantitative PCR and its clinical significance[J].Ai Zheng, 2008 ,27(11):1217-1221.
    58. Boelaert.K, McCabe CJ, Tannahill LA, et al. Pituitary Tumor Transforming Gene and Fibroblast Growth Factor-2 Expression: Potential Prognostic Indicators in Differentiated Thyroid Cancer J Clin Endocrinol Metab. 2003 ;88(5):2341-7.
    59. Shibata Y, Haruki N, Kuwabara Y, et al. Expression of PTTG (pituitary tumor transforming gene) in esophageal cancer [J]. Jpn J Clin Oncol, 2002,32(7):233-237.
    60. Solbach C, Roller M, Fellbaum C, et al. PTTG mRNA expression in primary breast cancer: a prognostic marker for lymph node invasion and tumor recurrence[J]. Breast, 2004,13(1):80-81.
    61. Zhang EE, Liu AC, Hirota T,et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells[J]. Cell, 2009,139(1):199-210.
    62. Rubinson DA,Dillon CP,Kwiatkowski AV,et al. A lentivirus-based system to functionally silence genes in primary mammalian cells,stem cells and transgenic mice by RNA interference[J].Nat Genet,2003,33(3):401-406.
    63. Sijen T,Fleenor J,Simmer F,et al.On the role of RNA amplification in dsRNA-triggered gene silencin g [J].Cell,2001,107(4):465-476.
    64. Sharma S, Rao A. RNAi screening: tips and techniques[J]. Nat Immunol, 2009,10(8):799-804.
    65. Qin XF, Dong SA, Irvin SY, et al.Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5[J].Proe Natl Acad,2003,100(1):183-188.
    66. von Eije KJ, ter Brake O, Berkhout B. Human immunodeficiency virus type 1 escape is restricted when conserved genome sequences are targeted by RNA interference[J]. J Virol,2008 ,82(6):2895-2903.
    67. Saga K, Tamai K, Kawachi M, et al. Functional modification of Sendai virus by siRNA[J]. J Biotechnol, 2008, 133(3):386-394.
    68. Poluri A, Sutton RE. Titers of HIV-based vectors encoding shRNAs are reduced by a dicer-dependent mechanism[J]. Mol Ther. 2008 ,16(2):378-386.
    69. Simpson KJ, Selfors LM, Bui J, et al.Identification of genes that regulate epithelial cell migration using an siRNA screening approach[J]. Nat Cell Biol. 2008,10(9):1027-1038.
    70. Martinez J, Patkaniowska A, Urlaub H, et al.. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi.Cell. 2002 ;110(5):563-74.
    71. Aoki Y,Cioca DP,Oidaira H,et al.RNA interference may be more potent than antisense RNA in human cancer cell lines[J].Clin Exp Pharmacol Physiol, 2003,30(1-2):96-102.
    72. Reynolds A,Leake D,Boese Q,et al.Rational siRNA design for RNA interference. Nat Biotechnol,2004,22(3):326-330.
    73. He XS,Rong YH,Su Q,et al.Expression of p16 gene and Rb protein in gastric carcinoma and their clinicopathological significance[J].World J Gastroenterol, 2005,11 (15):2218-2223.
    74. Yoshinari K,Miyagishi M,Taira K.Effects on RNAi of the tight structure,sequence and position of the targeted region[J].Nucleic Acids Res,2004,32(2):691-699.
    75. Henschel A,Buchholz F,Habermann B.DEQOR:a web-based tool for the design and quality control of siRNA[J].Nucleic Acids Res,2004,32(3):113-120.
    76. Naito Y,Yamada T,Ui-Tei K,et al.siDirect:highly effective,target-specific siRNA design software for mammalian RNA interference[J].Nucleic Acids Res,2004,32(3):124-129.
    77. Holle L,Hicks L,Song W,et al.Bcl-2 targeting siRNA expressed by a T7 vector system inhibits human tumor cell growth in vitro [J].Int J Oncol,2004,24(3):615-621.
    78. Miyagishi M,Taira K.U6 promoter-driven siRNAs with four uridine 3'overhangs efficiently suppress targeted gene expression in mammalian cells[J].Nat Biotechnol, 2002,20(5):497-500.
    79. Sui G,Soohoo C,Affar el B,et al.A DNA vector-based RNAi technology to suppress gene expression in mammalian cells[J].Proc Natl Acad Sci , 2002,99(8):5515-5520.
    80. Yokota T,Miyagishi M,Hino T,et al.siRNA-based inhibition specific for mutant SOD1 with single nucleotide alternation in familial ALS,compared with ribozyme and DNA enzyme[J].Biochem Biophys Res Commun,2004,314(1):283-291.
    81. Furnan FB, Fenton T, Bachoo RM, et a.l Malignant astrocytic glioma: genetics, biology and paths to treatment[J]. Genes Dev,2007, 21: 2683-2710.
    82. Bueno MJ, CastroLP, Malumbres M, et al. Control of cell proliferation pathways by microRNAs[ J]. Cell Cycle, 2008, 7(2): 3143-3148.
    83. Baulcombe D.RNA silencing Diced defence [J].Nature,2001,409(6818): 295-296.
    84. Baldwin R M,Parolin D A,Lorimer I A.Regulation of glioblastoma cell invasion by PKC iota and RhoB [J].Oncogene,2008,27(25):3587-3595.
    85. Okhrimenko H,Lu W,Xiang C,et al.Protein kinase C-epsilon regulates theapoptosis and survival of glioma cells [J].Cancer Res,2005,65(16):7301-7309.
    86. Amos S,Mut M,diPierro C G,et al.Protein kinase C-alpha-mediated regulation of low-density lipoprotein receptor related protein and urokinase increases astrocytoma invasion [J].Cancer Res,2007,67(21):10241-10251.
    87. Fan QW, Weiss WA. RNA interference against a glioma-derived allele of EGFR induces blockade at G2M.Oncogene. 2005 ,24(5):829-837.
    88. Leong CT, Ong CK, Tay SK, et al. Silencing expression of UO-44 (CUZD1) using small interfering RNA sensitizes human ovarian cancer cells to cisplatin in vitro.Oncogene. 2007 ,;26(6):870-80.
    89.Singh A, Boldin-Adamsky S, Thimmulappa RK, et al.RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy.Cancer Res. 2008 ;68(19):7975-84.
    90. Wang YH, Xiong J, Wang SF, et al .Lentivirus-mediated shRNA targeting insulin-like growth factor-1 receptor (IGF-1R) enhances chemosensitivity of osteosarcoma cells in vitro and in viv o [J] . Mol Cell Biochem, 2010 , 341(1-2):225-233.
    91. Yavari K, Taghikhani M, Ghannadi Maragheh M, et al. Downregulation of IGF-IR expression by RNAi inhibits proliferation and enhances chemosensitization of human colon cancer cells[J]. Int J Colorectal Dis, 2010,25(1):9-16.
    1. Jorgensen R.Altered gene expression in plants due to trans interactions between homologous genes[J].Trends Biotechnol,1990,8(5):340-344.
    2. Cogoni C,Romano N,Macino G.Suppression of gene expression by homologus transgenes[J].AntonieVan Leeuwenhoek,1994,65(3):205-209
    3. Guo S,Kemphues KJ.par-1,a gene required for establishing polarity in C.elegans embryos,encodes putative Ser/Thr kinase that is asymmetrically distributed[J].Cell, 1995,81:611-620.
    4. Fire A,Xu SQ,Montgomery MK,et al.Potent and specific genetic interference by double-stranded RNA in C.elegans[J].Nature,1998,391(6669):806-811.
    5. Brand S.Antisense-RNA regulation and RNA interference[J].Biochem Biophys Arta,2002, 1575(1-3):215-256.
    6. Hammond SM,Caudy AA,HannonGJ.Post-transcriptional gene silencing bydouble- stranded RNA[J].Nature Rev Gen,2001,2:110-119.
    7. Bass BL.Double-stranded RNA as a template for gene silencing[J].Cell,2000 (3):235 -238.
    8. Bernstein E,Caudy AAA,Hammond SM et al.Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Nature 2001,409(6818):363-366.
    9. Knight SW,Bass B L.A role for the RNaseⅢenzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans[J].Science,2001,293:2269-2271.
    10. Ketting R F,Fischer S E,Bernstein E,et al.Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C elegans [J].Genes ,2001, 15:2654-2659
    11. Gregory J.Hannon.RNA interference[J].Nature,2002,418:244-251
    12. Chiu YL,Rana TM. RNAi in human cells:basic structural and functional feature of small Interference RNA[J].Mol Cell,2002,10(3):549-561
    13. Martubez J,Patkaniowska A,Urlaub H,et al.Single-stranded antisense siRNAs guidetarget RNA cleavage in RNAi[J].Cell,2002,110(5):563-574
    14. Elabshir J,Harborth SM,Endeckel W,et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J].Nature,2001,411:494-498
    15. Tabara H,Yigit E,Siomi H,et al.The dsRNA binding Protein RDE-4 interacts with RDE-l,DCR-I,and a DExH-box helicase to direct RNAi in C.elegan s [J].Cell,2002, 109(7):861-871
    16. Provost P,Dishary D,Doucet J,et al.Ribonuclease activity and RNA binding of recombinant human Dicer.Embo J,2002,21(21):5864-5874
    17. Schwarz D S,Hutvagner G,Haley B,Zamore PD.Evidence that siRNA function as guides,not primers,in the Drosophila and human RNAi pathways[J].Mol Cell,2002,10 (3): 537-548.
    18. Ramaswamy G,Slack FJ.siRNA:A guide for RNA silencing[J].Chem Biol.2002 ,9 (10):1053-1055.
    19. Zamore PD.Ancient pathways programmed by small RNA[J].Science,2002,296(5571): 1265-1269
    20. Lee RC,Ambros V.An extensive class of small RNAs in Caenorhabditis elegans[J]. Science,2001,294(5543):862-864.
    21. SharpPA, ZamorePD.RNA interference[J].Seienee,2000,287(10):2431-2433.
    22. BrufnmelkampTR,BernardsR,AgamiR.Asystem for stable expression of short interfering RNAs in mammalianeells[J].Seienee,2002,296(5567):550-553. 23. Elbashir SM,Harborth J,Weber K,et al.Analysis of gene function in somatic mammalian cells using small interfering RNAs[J].Methods.2002,26(2):199-213.
    23. Martinez J, Patkaniowska A, Urlaub H, Lührmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi.Cell. 2002 ;110(5):563-574.
    24. Khvorova A,Reynolds A,Jayasena SD.Functional siRNAs and miRNAs exhibit strand bias[J].Cell.2003 ,115(2):209-216.
    25. Ui-Tei K,Naito Y,Takahashi F,et al.Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference[J].Nucleic AcidsRes,2004 ,32(3):936-948.
    26. Silva JM,Sachidanandam R,Hannon GJ.Free energy lights the path toward more effective RNAi[J].Nat Gene,.2003,35(4):303-305.
    27. Khvorova A,Reynolds A,Jayasena SD.Functional siRNAs and miRNAs exhibit strand bias [J] .Cell,2003,115(2):209-216.
    28. Elbashir SM,Harborth J,Lendeckel W,et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J].Nature,2001,411(6836): 494-498.
    29. Reynolds A,Leake D,Boese Q,et al.Rational siRNA design for RNA interference[J].Nat Biotechnol,2004,22(3):326-330.
    30. Kawasaki H, Taira K. Short hairpin type of dsRNAs that are controlled by tRNA(Val)promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res, 2003, 15,31(2):700-707.
    31. Yu JY, DeRuiter SL,Turner DL.RNA interference by expression of Short- interfering RNAs and hair Pin RNAs in mafnmalian cell[J]s.Proe Natl Acad SeiUSA,2002,99(9):6047-6052.
    32. Fire A.Integrative transformation of Caenorhabditis elegans [J].EMBO,1986 (5):2673 -2680.
    33. Mello C C.Efficient gene transfer in C.elegans:extrachromosomal maintenance and integration of transformationing sequence[J].EMSO,1991(10):3959-3990.
    34. Bettencourt R.Hemolin gene silencing by dsRNA injected into Cecropia pupae is to next generation embryos[J].Insect Molecular Biology,2002,11(3):267-271.
    35. Andrew G.Functional genomic analysis of C.elegans chromosome I by systematio RNA interference[J].Nature,2000,408:325-330.
    36. Paddison PJ,Silva JM,Conklin DS,et al.A resource for large-scale RNA-interference- based screens in mammals [J].Nature.2004,428 (6981):427-431.
    37. Berns K,Hijmans EM,Mullenders J,et al.A large-scale RNAi screen in human cells identifies new components of the p53 pathway[J].Nature,2004,428(6981):431-437.
    38. Simmer F,Moorman C,van der Linden AM,et al.Genome-wide RNAi of C.elegans
    using the hypersensitive rrf-3 strain reveals novel gene functions[J].Plos Biol. 2003 ,1 (1): 12.
    39. Nollen EA,Garcia SM,van Haaften G,et al.Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation[J].Proc Natl Acad Sci,.2004,101(17):6403-6408.
    40. Schnorrer F, Sch?nbauer C, Langer CC。Systematic genetic analysis of muscle morphogenesis and function in Drosophila[J]. Nature, 2010,464(7286):287-291.
    41. Kidder BL, Palmer S. Examination of transcriptional networks reveals an important role for TCFAP2C, SMARCA4, and EOMES in trophoblast stem cell maintenance[J]. Genome Res. 2010 ,20(4):458-472
    42. Zhang EE, Liu AC, Hirota T,et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells [J].Cel l, 2009,139(1):199-210.
    43. Sharma S, Rao A. RNAi screening: tips and techniques [J]. Nat Immunol, 2009, 10(8):799-804.
    44. Elo LL, J?rvenp?? H, Tuomela S, et al.wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming[J]. Immunity. 2010 , 32(6):852-862.
    45. Ryu SH, Kim KH, Kim HB, et al.Oncogenic Ras-mediated downregulation of Clast1/LR8 is involved in Ras-mediated neoplastic transformation and tumorigenesis in NIH3T3 cells[J]. Cancer Sci, 2010, 16(9):206-213.
    46. Vidic S, Markelc B, Sersa G, et al.MicroRNAs targeting mutant K-ras by electrotransfer inhibit human colorectal adenocarcinoma cell growth in vitro and in vivo[J]. Cancer Gene Ther, 2010,17(6):409-419.
    47. Nagy P, Arndt-Jovin DJ, Jovin TM. Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells[J]. Exp Cell Res, 2003,285(1):39-49.
    48 .Koldehoff M, Elmaagacli AH. Therapeutic targeting of gene expression by siRNAs directed against BCR-ABL transcripts in a patient with imatinib-resistant chronic myeloid leukemi a [J]. Methods Mol Biol, 2009,487:451-466.
    49. Baker BE, Kestler DP, Ichiki AT. Effects of siRNAs in combination with Gleevec on K-562 cell proliferation and Bcr-Abl expression[J]. J Biomed Sci, 2006,,13 (4):499-507.
    50. Lv W, Zhang C, Zhou DH, et al. RNAi-mediated gene silencing of vascular endothelial growth factor inhibits growth of colorectal cancer[J]. Cancer Biother Radiopharm, 2007,22(6):841-852.
    51. Kang C, Pu P, Jiang H. Silencing epidermal growth factor receptor by RNA interference in glioma[J]. Methods Mol Biol, 2009,542:335-349.
    52. Kaulfuss S, Burfeind P, Gaedcke J, et al. Dual silencing of insulin-like growth factor-I receptor and epidermal growth factor receptor in colorectal cancer cells is associated with decreased proliferation and enhanced apoptosis [J]. Mol Cancer Ther,2009 ,8 (4):821-833.
    53 .Zhang J, Huang S, Zhang H, et al. Targeted knockdown of Bcl2 in tumor cells using a synthetic TRAIL 3'-UTR microRNA[J]. Int J Cancer, 2010 ,126(9):2229-2239.
    54. Lim SF, Chuan KH, Liu S, et al. RNAi suppression of Bax and Bak enhances viability in fed-batch cultures of CHO cells. Nature, 2006 ,439(7079):1009-1013.
    55. Bj?rklund M, Taipale M, Varjosalo M, et al. Identification of pathways regulating cell size and cell-cycle progression by RNAi[J]. Metab Eng, 2006 ,8(6):509-522.
    56. Yu C, Zhang X, Sun G, et al.. RNA interference-mediated silencing of the polo -like kinase 1 gene enhances chemosensitivity to gemcitabine in pancreatic adenocarcinoma cells [J]. J Cell Mol Med, 2008 ,12(6A):2334-2349.
    57. Ma LL, Sun WJ, Wang Zh,et al. Effects of silencing of mutant p53 gene in human lung adenocarcinoma cell line Anip973[J]. J Exp Clin Cancer Res. 2006,25(4):585-592.
    58. Cuevas EP, Escribano O, Monserrat J, et al. RNAi-mediated silencing of insulin receptor substrate-4 enhances actinomycin D- and tumor necrosis factor-alpha-induced cell death in hepatocarcinoma cancer cell lines[J]. J Cell Biochem. 2009,108(6):1292-1301.
    59. Jiang HL, Xu CX, Kim YK, et al. The suppression of lung tumorigenesis by aerosol-delivered folate-chitosan-graft-polyethylenimine/Akt1 shRNA complexes through the Akt signaling pathway[J]. Biomaterials, 2009 ,30(29):5844-5852.
    60. Yamada S, Yanamoto S, Yoshida H, et al .RNAi-mediated down-regulation of alpha-actinin-4 decreases invasion potential in oral squamous cell carcinoma[J]. Int J Oral Maxillofac Surg. 2010 ,39(1):61-67.
    61. Anderson PH, Atkins GJ, Findlay DM, et al. RNAi-mediated silencing of CYP27B1 abolishes 1,25(OH)2D3 synthesis and reduces osteocalcin and CYP24 mRNA expression in human osteosarcoma (HOS) cells[J]. J Steroid Biochem Mol Biol, 2007 ,103(3-5):601-605.
    62. Addepalli MK, Ray KB, Kumar B, er al. RNAi-mediated knockdown of AURKB and EGFR shows enhanced therapeutic efficacy in prostate tumor regression[J]. Gene Ther, 2010 ,17(3):352-359.
    63. Zaree Mahmodabady A, Javadi HR, Kamali M, et al. Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia[J]. Iran Biomed J, 2010 ,14(1-2):1-8.
    64. Weger S, Vetter R, Poller W, et al. Inhibition of adenovirus infections by siRNA -mediated silencing of early and late adenoviral gene functions[J]. Antiviral Res, 2010 [Epub ahead of print] .
    65. Qin XF, Dong SA, Irvin SY, etal.Inhibiting HIV-1 infection in human (1):T cells by lentivira-mediated against CCRS[J].Proe Natl Acad, 2003,100(1):183-188.
    66. Schnettler E, de Vries W, Hemmes H, et al. The NS3 protein of rice hoja blanca virus complements the RNAi suppressor function of HIV-1 Ta t [J]. EMBO Rep,2009 ,10(3):258-263.
    67. DeVincenzo JP. RNA interference strategies as therapy for respiratory viral infections[J]. Pediatr Infect Dis J, 2008 ,27(10 Suppl):S118-22.
    68. Ni B, Shi X, Li Y, et al. Inhibition of replication and infection of severe acute respiratory syndrome-associated coronavirus with plasmid-mediated interference RNA[J]. Antivir Ther, 2005,10(4):527-533.
    69. Chang Z, Hu Z. RNAi therapeutics: can siRNAs conquer SARS? [J]. Gene Ther, 2006 ,13(11):871-872.
    70. Subramanya S, Armant M, Salkowitz JR,et al.Enhanced Induction of HIV-specific Cytotoxic T Lymphocytes by Dendritic Cell-targeted Delivery of SOCS-1 siRNA [J]. Mol Ther. 2010 Jul 20. [Epub ahead of print]
    71. Soejitno A, Wihandani DM, Kuswardhani T. The Therapeutic Potential of RNA Interference in Controlling HIV-1 Replication [J]. Acta Med Indones, 2009 , 41(4):215-221.
    72. Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance [J] .Oligonucleotides, 2003,13(5):303-312.
    73. Anderson J, Banerjea A, Planelles V, et al. Potent suppression of HIV type 1 infection by a short hairpin anti-CXCR4 siRNA [J]. AIDS Res Hum Retroviruses, 2003 ,19(8):699-706.
    74. Teng X, Xu WZ, Hao ML, et al. Differential inhibition of lamivudine-resistant hepatitis B virus by allele-specific RNAi [J]. J Virol Methods, 2010 ,168(1-2):6-12.
    75. Chattopadhyay S, Ely A, Bloom K, et al. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles [J]. Biochem Biophys Res Commun, 2009 ,389(3):484-489.
    76. Carmona S, Jorgensen MR, Kolli S, et al. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles [J]. Mol Pharm, 2009 ,6(3):706-717.
    77. Starkey JL, Chiari EF, Isom HC. Hepatitis B virus (HBV)-specific short hairpin RNA is capable of reducing the formation of HBV covalently closed circular (CCC) DNAbut has no effect on established CCC DNA in vitro [J]. J Gen Virol,2009 ,90 (1):115-126.
    78. Pan Q, Henry SD, Metselaar HJ, et al. Combined antiviral activity of interferon-alpha and RNA interference directed against hepatitis C without affecting vector delivery and gene silencing [J]. J Mol Med, 2009 ,87(7):713-722.
    79. He QS, Tang H, Zhang J, et al. Comparisons of RNAi approaches for validation of human RNA helicase A as an essential factor in hepatitis C virus replication [J]. J Virol Methods, 2008 ,154(1-2):216-219.
    80. Kim SI, Shin D, Lee H, et al. Targeted delivery of siRNA against hepatitis C virus by apolipoprotein A-I-bound cationic liposomes J]. Hepatol, 2009 ,50(3):479-488. .
    81. Karlas A, Machuy N, Shin Y, et al.. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication[J]. Nature,2010 ,463(7282):818-22.
    82. de Vries W, Haasnoot J, Fouchier R, et al. Differential RNA silencing suppression activity of NS1 proteins from different influenza A virus strains [J]. J Gen Virol,2009,90(Pt 8):1916-1922.
    83. Sima N, Wang W, Kong D, et al.RNA interference against HPV16 E7 oncogene leads to viral E6 and E7 suppression in cervical cancer cells and apoptosis via upregulation of Rb and p53 [J]. Apoptosis. 2008 ,13(2):273-281.
    84. Yamato K, Yamada T, Kizaki M, at al.. New highly potent and specific E6 and E7 siRNAs for treatment of HPV16 positive cervical cancer [J]. Cancer Gene Ther,2008,15(3):140-153.
    85. Seyhan AA, Rya TE. RNAi Screening for the Discovery of Novel Modulators of Human Disease [J]. Curr Pharm Biotechnol. 2010 Apr 26. [Epub ahead of print]
    86. Sacca R, Engle SJ, Qin W, Stock JL, McNeish JD. Genetically engineered mouse models in drug discovery research [J]. Methods Mol Biol, 2010,602:37-54.
    87. Morris K, McAlpine S. RNAi and related technologies: applications in medicinal chemistry and drug discovery [J]. Curr Top Med Chem, 2009,9(12):1063-1064.
    88. Thaker NG, McDonald PR, Zhang F, et al.Designing, optimizing, and implementing high-throughput siRNA genomic screening with glioma cells for the discovery of survival genes and novel drug targets [J]. J Neurosci Methods, 2010 ,185(2):204-212.
    89. Quon K, Kassner PD. RNA interference screening for the discovery of oncology targets [J]. Expert Opin Ther Targets.,2009 ,13(9):1027-1035.
    90. Hamada A, Miyawaki K, Honda-sumi E, et al.Loss-of-function analyses of the fragile X-related and dopamine receptor genes by RNA interference in the cricket Gryllus bimaculatus [J]. Dev Dyn, 2009 ,238(8):2025-2033.
    91 Schwartz EI. Potential application of RNAi for understanding and therapy of neurodegenerative diseases [J]. Front Biosci, 2009 ,14:297-320.
    92. Dave RS,Pomeranta RJ.RNA interference:on the road to an alternate therapeuticstrategy [J].Rev Med Virol,2003,13(6):373-385.
    93. Wilson J A,Richardson CD.Induction of RNA interference using short interfering RNA expression vectors in cell culture and animal systems[J].Curr Opin Mol Ther, 2003,5(4):389-396.
    94. Jain KK.Commercial potential of RNAi[J].Mol Biosyst,2006,2(11):523-526
    95. Aagaard L,Rossi JJ.RNAi therapeutics:principles,prospects and challenges[J].Adv Drμg Deliv Rev,2007,59(2-3):75-86.