20-HETE对心肌缺血再灌注损伤及细胞凋亡的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20-羟二十烷四烯酸(20-hydroxyeicosatetraenoic acid,20-HETE)是由细胞色素P-450(CYP450)ω-羟化酶催化花生四烯酸生成的产物。研究认为,20-HETE可通过激活L-型钙通道并抑制钙依赖钾通道从而增强血管平滑肌的收缩,有效地调节肾、脑等小动脉血管的紧张度,被认为具有很强的收缩血管作用。20-HETE在血管平滑肌方面的研究已经得到广泛开展,但对心脏的作用及机制的研究少有报道。
     本文从如下几个方面探究了20-HETE对心脏功能的影响以及机制:
     第一部分20-HETE对大鼠心肌细胞L-型钙通道作用机制研究
     有研究表明,心肌缺血再灌注中20-HETE含量增加,抑制其生成可减少心肌损伤,但分子细胞机制尚不清楚。该部分研究的目的是在细胞水平揭示20-HETE对心肌的作用机制。
     首先,应用膜片钳技术研究了20-HETE对大鼠心肌细胞L-型钙通道的作用,发现20-HETE浓度依赖式的增强L-型钙电流,这种作用可被NADPH氧化酶特异性抑制剂gp91ds-tat或超氧化物歧化酶所抑制,提示NADPH氧化酶诱导生成的超氧化物参与了20-HETE激活L-型钙通道的作用中;另外,使用20-HETE孵育心肌细胞增强了NADPH氧化酶的活性并且使活性氧簇(ROS)的生成增加接近2倍;为了探究20-HETE诱导的NADPH氧化酶活性增加的分子机制,我们检测了心肌细胞的蛋白激酶C(PKC)活性,结果发现使用20-HETE孵育细胞显著增加了PKC的活性,而使用PKC的抑制剂GF109203处理后,减弱了20-HETE诱导的增强L-型钙电流效应,同时也减弱了NADPH氧化酶的活性。
     通过该部分的研究,我们首次在细胞水平发现,20-HETE可以刺激NADPH氧化酶诱导的ROS增多,并通过该途径以PKC依赖的形式最终激活L-型钙通道。如上发现为揭示20-HETE加重心肌缺血再灌注损伤的机制提供了研究线索。
     (该部分研究成果2010年9月发表于Am J Physiol Heart Circ Physiol, IF=3.71,第二作者)。
     第二部分20-HETE在心肌缺血再灌注损伤中的作用及机制研究
     在第一部分的研究中,我们发现了在心肌细胞中,20-HETE可通过PKC依赖机制激活NADHP氧化酶从而导致其诱导ROS生成增多的分子、细胞机制,这可能是20-HETE加重心肌缺血再灌注损伤的重要原因。本部分的研究目的是在大鼠离体心肌缺血再灌注模型中,器官水平上探究并验证如上在细胞水平发现的机制。
     应用Langendorff装置建立大鼠离体心脏缺血再灌注模型,缺血35分钟再灌注40分钟后,检测心肌力学、生化指标以及ROS生成、NADPH氧化酶活性、表达。首先发现,20-HETE可引起再灌注后心肌细胞凋亡显著增加、心肌功能明显下降、心梗面积加大;而灌流液中加入HET0016抑制内源性20-HETE生成后,显著改善了心肌功能,有效抑制细胞凋亡;此外,HET0016明显减少再灌注后ROS的生成,而外源20-HETE则显著增加了ROS生成水平,并且加重了蛋白质过氧化损伤。如上研究结果表明,20-HETE有明显的加重心肌缺血再灌注损伤的作用。然而,当在灌流液中加入NADPH氧化酶抑制剂加拿大麻素(apocynin),阻断了该效应,表明在该进程中NADPH氧化酶与20-HETE的作用发挥密切相关。为了探究其中的机制,通过检测NADPH氧化酶的表达及活性改变发现,20-HETE显著增加了NADPH氧化酶gp91phox和p22phox亚基表达,并提高了其活性;另外,应用PKC抑制剂GF-109203显著降低了20-HETE诱导的NADPH氧化酶激活效应;最后,灌流液中加入ROS清除剂tempol或apocynin均有效阻断了外源20-HETE所导致的心肌功能下降。
     如上结果提示20-HETE通过PKC依赖机制激活NADPH氧化酶导致其诱导的ROS生成增多,最终加重了心肌缺血再灌注损伤。
     (该部分研究成果2013年3月发表于Circulation Journal, IF=3.77,第一作者)
     第三部分20-HETE介导血管紧张素II诱导的心肌细胞凋亡研究
     通过如上两部分的研究,我们初步探究了20-HETE对心肌缺血再灌注损伤的作用及机制问题。在该进程中,另一个发挥了重要作用的因素是细胞凋亡。而我们实验室先前的研究中发现,20-HETE可通过线粒体依赖途径诱导心肌细胞凋亡,另外更为重要的是在本文第二部分的研究中,发现在心肌缺血再灌注进程中,20-HETE也具有显著的诱导细胞凋亡的效应。有研究表明血管紧张素II(AngII)在心肌细胞凋亡进程中发挥重要作用,但是其与20-HETE之间的交互作用尚不清楚。
     本研究在培养的乳鼠心肌细胞中,分别使用Ang II,Ang II加HET0016,HET0016或者20-HETE处理细胞后,使用流式细胞仪检测了细胞凋亡。结果显示,使用AngII或者20-HETE处理导致了显著的凋亡,而AngII诱导的凋亡被HET0016所阻断;另外,AngII诱导的caspas3活性增强作用也被HET0016所抑制。实验结果还显示,HET0016可显著削弱AngII诱导的ROS的生成以及心肌线粒体膜电位的下降;再有,Ang II所诱导的细胞核质皱缩作用、染色质浓缩作用以及片段化作用均被HET0016所阻断。最后使用Western blot、Real time RT-PCR和高效液相色谱等方法,发现Ang II孵育心肌细胞后显著增加了CYP4A1的表达和20-HETE的生成。
     综上结果表明,20-HETE在Ang II所诱导的心肌细胞凋亡进程中发挥了非常重要的作用。20-HETE以及20-HETE合成酶可能作为治疗Ang II介导的心肌病新靶点。
     (该部分研究成果2013年2月投稿PLOS ONE, IF=4.01,第一作者)
     第四部分20-HETE通过δPKC对大鼠心肌细胞L-型钙通道和全细胞钾通道电流及心肌力学的作用研究
     通过第一部分的研究发现20-HETE可通蛋白激酶C(PKC)依赖机制激活NADPH氧化酶活性诱导过量活性氧簇(ROS)生成,从而诱发心肌细胞L-型钙通道电流增强,导致细胞发生钙超载。PKC家族包括12种亚型,其中δPKC在诱导心肌细胞凋亡、加重心肌缺血再灌注损伤等方面发挥重要作用,但何种因子激活δPKC,尚不清楚。那么20-HETE是否通过δPKC介导而对心肌细胞离子通道造成影响的,尚无研究。因此本部分研究主要通过膜片钳研究手段,探究δPKC在20-HETE对心肌细胞L-型钙通道和全细胞钾通道的作用。结果表明,20-HETE具有显著的激活心肌细胞L-型钙通道电流的作用,同时可明显抑制全细胞钾通道电流,这些作用被加入δPKC抑制剂卡马拉素所阻断,表明δPKC参与并介导了20-HETE对这些离子通道电流的影响。另外,采用Langendorrf离体心肌灌流的方法,检测了20-HETE是否通过δPKC对心脏收缩/舒张功能造成影响,结果表明δPKC抑制剂卡马拉素阻断了20-HETE所导致的心肌力学指标下降作用(LVDP,±dp/dtmax and LVEDP)。如上结果表明,20-HETE通过δPKC介导产生激活L-型钙通道电流以及抑制全细胞钾电流的作用,从而导致心肌细胞去极化,加重细胞钙超载,最终导致心肌力学指标下降。
     总之,通过本文如上四部分研究首次阐明了20-HETE对心肌缺血再灌注损伤以及诱导心肌细胞凋亡的作用机制,全面深入揭示了20-HETE造成心肌损伤的生理、病理学机制,为探寻有效的预处理药物作用靶点来减少由于20-HETE造成的心肌损伤,应用临床治疗缺血性心肌病提供可行的理论依据。
20-hydroxyeicosatetraenoic acid (20-HETE) is a metabolite of arachidonic acidcatalyzed by the ω-hydroxylase enzymes of the cytochrome P-450(CYP).20-HETE plays animportant role in the regulation of vascular tone in the brain, kidney, heart and splanchnicbeds by activation of L-type Ca~(2+)channels and inhibition of Ca~(2+)sensitive K+channels invascular smooth muscle cells.20-HETE is a strong vascular constrictor in these vascular beds;thus, plays an important role in not only the physiological regulation of blood supply to thoseorgans but also in the development of ischemic diseases.
     The researches on20-HETE’s effects on vascular smooth muscle have widely beenconducted. However, so far, very few research reports have been made on the role andmechanisms of20-HETE on hearts. This paper studies the effects of20-HETE on cardiacfunction and mechanism from the following perspectives:
     Part I:20-HETE increases NADPH oxidase-derived ROS production andstimulates the L-type Ca~(2+)channel via a PKC-dependent mechanism in cardiomyocytes
     The production of20-hydroxyeicosatetraenoic acid (20-HETE) is increased duringischemia-reperfusion, and inhibition of20-HETE production has been shown to reduce infarctsize caused by ischemia. This study was aimed to discover the molecular mechanismunderlying the action of20-HETE in cardiac myocytes. The effect of20-HETE on L-typeCa~(2+)currents (ICa,L) was examined in rat isolated cardiomyocytes by patch-clamp recordingin the whole cell mode. Superfusion of cardiomyocytes with20-HETE (10–100nM) resultedin a concentration-dependent increase in ICa,L, and this action of20-HETE was attenuated bya specific NADPH oxidase inhibitor, gp91ds-tat (5M), or a superoxide scavenger,polyethylene glycol-superoxide dismutase (25U/ml), suggesting thatNADPH-oxidase-derived superoxide is involved in the stimulatory action of20-HETE onICa,L. Treatment of cardiomyocytes with20-HETE (100nM) increased both NADPH oxidaseactivity and superoxide production by approximately twofold. To study the molecularmechanism mediating the20-HETE-induced increase in NADPH oxidase activity, PKCactivity was measured in cardiomyocytes. Incubation of the cells with20-HETE (100nM)significantly increased PKC activity, and pretreatment of cardiomyocytes with a selectivePKC inhibitor, GF-109203(1M), attenuated the20-HETE-induced increases in ICa,L and inNADPH oxidase activity. In summary,20-HETE stimulates NADPH oxidase-derivedsuperoxide production, which activates L-type-Ca~(2+)channels via a PKC-dependentmechanism in cardiomyocytes.20-HETE and20-HETE-producing enzymes could be noveltargets for the treatment of cardiac ischemic diseases.
     Part II:20-hydroxyeicosatetraenoic acid mediates the isolated heartischemia-reperfusion injury via increasing NADPH oxidase-derived ROS production
     In the studies of part1, we find that20-HETE increases NADPH oxidase-derived ROSproduction and stimulates the L-type Ca~(2+)channel via a PKC-dependent mechanism incardiomyocytes, which can be the important reason for20HETE to aggravate the myocardialischemia reperfusion injury. In this part, we discuss and testify the the aforementioned celllevel discovering mechanisms in isolated rat heart.
     Experiments were performed in isolated rat heart subjected to35min of ischemiafollowed by40min of reperfusion on Langendorff preparations. Perfusion with HET0016, aninhibitor of20-HETE production, significantly improved I/R-induced reduction in cardiaccontractility, myocardial infarction, and myocardial apoptosis. In contrast, administration of20-HETE aggravated I/R-induced myocardial injury and enhanced apoptosis. I/R significantlyincreased reactive oxygen species (ROS) production and oxidative stresses, which weresignificantly inhibited by HET0016and enhanced by20-HETE administration. Apocynin, aninhibitor of NADPH oxidase, blocked20-HETE-induced ROS production in the I/R hearts.20-HETE increased the expression of gp91phoxand p22phoxthe subunits of NADPH oxidase;and stimulated NADPH oxidase activity. In addition, GF-109203significantly attenuated the20-HETE-induced increases in the NADPH oxidase expression and activity. Finally, in theLangendorff I/R preparation, both apocynin and tempol, a ROS scavenger, significantlyblocked20-HETE-induced myocardial dysfunction.
     All of the results demonstrate that20-HETE stimulates NADPH oxidase-derivedsuperoxide production, which aggravates I/R-induced myocardial injury via a PKC-dependentmechanism in isolated rat hearts.
     Part III:20-Hydroxyeicosatetraenoic Acid is involved in Angiotensin II-mediatedapoptosis in rat cardiac myocytes
     Through the studies of the previous two parts we have preliminarily discussed the roleand mechanisms of20-HETE on IR. During that process, another important factor isapoptosis. According to our previous studies,20-HETE is able to induces apoptosis throughmitochondrial-dependent pathways. More importantly, this study, in its second part,discovers that during the course of IR,20-HETE obviously induces apoptosis. Some studiesshow that AngII plays an important role in inducing apoptosis. However, the crosstalkbetween20-HETE and Ang II in cardiomyocyte apoptosis process is unclear.
     In the current study, we examined apoptosis using flow cytometry in primary culturedneonatal rat ventricular myocytes treated with control, Ang II (100nM), Ang II plus HET0016(a20-HETE formation inhibitor,10μM), HET0016, or20-HETE (10nM) alone. The resultsdemonstrated that treatment with Ang II or20-HETE significantly increased apoptosis andthat Ang II-induced apoptosis were markedly attenuated by HET0016. In addition, Ang II-induced increases of caspase-3activity were significantly attenuated by20.9±3.4%afterco-treatment with HET0016. Our results also demonstrated that HET0016significantlysuppressed Ang II-induced increases in superoxide production by27.5±2.3%and AngII-induced decreases in mitochondrial membrane potential by64.5±6.3%. Ang II-inducednuclei crenation, chromatin condensation and fractionation were attenuated by73.6±8.5%with HET0016treatment. Finally, treatment cardiomyocytes with Ang II significantlyincreased CYP4A1expression and20-HETE production, measured by Western blot, real-timeRT-PCR, and mass spectrometric analysis.
     All results suggest that20-HETE may play a key role in Ang II-induce apoptosis incardiomyocytes.20-HETE and20-HETE-producing enzymes could be novel targets for thetreatment of Ang II related cardiac diseases.
     Part IV: δPKC mediates20-HETE-induced enhancement of ICa,Landdescreasement of IK
     From the results of part1, we demonstrate that20-HETE can stimulate NADPHoxidase-derived superoxide production, which activate L-type Ca~(2+)channels via aPKC-dependent mechanism in cardiomyocytes. PKC family includes12subtypes, amongwhich δPKC plays an important role in inducing the cell apoptosis and aggravating themyocardial ischemia reperfusion injuries, however, the specific factors that activate δPKCstill remain unknown. Therefore, the research of this part majorly, through applying theresearch methods of patch clamp techniques, discusses the effects of δPKC in the role of20-HETE on the L-type calcium channels and whole-cell potassium channels.
     The results show that δPKC inhibitor Rottlerin inhibited the role of20-HETE onenhancement of ICa,Lwhile descreasement of IK. It proves that δPKC mediates andparticipates in the role of20-HETE on the electric currents inside those ion channels. All sucheffects of20-HETE may result in increased calcium influx, lead to intracellular calciumoverload. Moreover,20-HETE led to the decline in cardiac mechanical index bydetermination of myocardial function in vitro, and administration of δPKC inhibitor Rottlerin,attenuated the myocardial dysfunction induced by20-HETE.
     In summary, it is the first time to elaborate the roles and mechanisms of20-HETE onmyocardial ischemia reperfusion injuries and the induced cell apoptosis, making in-depthanalysis of the physiological and pathological mechanisms of the myocardial cell injuriescaused by20-HETE, providing applicable theoretic foundations for searching the effectivepretreatment medicines as the target spots to reduce the myocardial cell injuries caused by20-HETE, which can be applied to the clinical treatments of ischemic cardiomyopathy.
引文
[1] Capdevila J, Chacos N, Werringloer J, et al. Liver microsomal cytochrome P-450and the oxidativemetabolism of arachidonic acid [J]. Proc Natl Acad Sci U S A,1981,78(9):5362-5366.
    [2] Morrison A R, Pascoe N. Metabolism of arachidonate through NADPH-dependent oxygenase of renalcortex [J]. Proc Natl Acad Sci U S A,1981,78(12):7375-7378.
    [3] Oliw E H, Lawson J A, Brash A R, et al. Arachidonic acid metabolism in rabbit renal cortex.Formation of two novel dihydroxyeicosatrienoic acids [J]. J Biol Chem,1981,256(19):9924-9931.
    [4] Roman R J. P-450metabolites of arachidonic acid in the control of cardiovascular function [J].Physiol Rev,2002,82(1):131-185.
    [5] Miyata N, Roman R J. Role of20-hydroxyeicosatetraenoic acid (20-HETE) in vascular system [J]. JSmooth Muscle Res,2005,41(4):175-193.
    [6] Makita K, Falck J R, Capdevila J H. Cytochrome P450, the arachidonic acid cascade, andhypertension: new vistas for an old enzyme system [J]. FASEB J,1996,10(13):1456-1463.
    [7] Roman R J, Alonso-Galicia M. P-450Eicosanoids: A Novel Signaling Pathway Regulating RenalFunction [J]. News Physiol Sci,1999,14(238-242.
    [8] Nelson D R, Koymans L, Kamataki T, et al. P450superfamily: update on new sequences, genemapping, accession numbers and nomenclature [J]. Pharmacogenetics,1996,6(1):1-42.
    [9] Imig J D. Epoxygenase metabolites. Epithelial and vascular actions [J]. Mol Biotechnol,2000,16(3):233-251.
    [10] Zeldin D C. Epoxygenase pathways of arachidonic acid metabolism [J]. J Biol Chem,2001,276(39):36059-36062.
    [11] Elbekai R H, El-Kadi A O. Cytochrome P450enzymes: central players in cardiovascular health anddisease [J]. Pharmacol Ther,2006,112(2):564-587.
    [12] Jenkins C M, Cedars A, Gross R W. Eicosanoid signalling pathways in the heart [J]. Cardiovasc Res,2009,82(2):240-249.
    [13] Pomposiello S I, Carroll M A, Falck J R, et al. Epoxyeicosatrienoic acid-mediated renal vasodilationto arachidonic acid is enhanced in SHR [J]. Hypertension,2001,37(3):887-893.
    [14] Pratt P F, Li P, Hillard C J, et al. Endothelium-independent, ouabain-sensitive relaxation of bovinecoronary arteries by EETs [J]. Am J Physiol Heart Circ Physiol,2001,280(3): H1113-1121.
    [15] Zhang Y, Oltman C L, Lu T, et al. EET homologs potently dilate coronary microvessels and activateBK(Ca) channels [J]. Am J Physiol Heart Circ Physiol,2001,280(6): H2430-2440.
    [16] Campbell W B. New role for epoxyeicosatrienoic acids as anti-inflammatory mediators [J]. TrendsPharmacol Sci,2000,21(4):125-127.
    [17] Chen J K, Capdevila J, Harris R C. Cytochrome p450epoxygenase metabolism of arachidonic acidinhibits apoptosis [J]. Mol Cell Biol,2001,21(18):6322-6331.
    [18] Levick S P, Loch D C, Taylor S M, et al. Arachidonic acid metabolism as a potential mediator ofcardiac fibrosis associated with inflammation [J]. J Immunol,2007,178(2):641-646.
    [19] Powell P K, Wolf I, Jin R, et al. Metabolism of arachidonic acid to20-hydroxy-5,8,11,14-eicosatetraenoic acid by P450enzymes in human liver: involvement of CYP4F2and CYP4A11[J]. JPharmacol Exp Ther,1998,285(3):1327-1336.
    [20] Simpson A E. The cytochrome P4504(CYP4) family [J]. Gen Pharmacol,1997,28(3):351-359.
    [21] Gibson G G. Comparative aspects of the mammalian cytochrome P450IV gene family [J].Xenobiotica,1989,19(10):1123-1148.
    [22] Helvig C, Dishman E, Capdevila J H. Molecular, enzymatic, and regulatory characterization of ratkidney cytochromes P4504A2and4A3[J]. Biochemistry,1998,37(36):12546-12558.
    [23] Sundseth S S, Waxman D J. Sex-dependent expression and clofibrate inducibility of cytochrome P4504A fatty acid omega-hydroxylases. Male specificity of liver and kidney CYP4A2mRNA and tissue-specificregulation by growth hormone and testosterone [J]. J Biol Chem,1992,267(6):3915-3921.
    [24] Hochhaus A, Reiter A, Saussele S, et al. Molecular heterogeneity in complete cytogenetic respondersafter interferon-alpha therapy for chronic myelogenous leukemia: low levels of minimal residual diseaseare associated with continuing remission. German CML Study Group and the UK MRC CML Study Group[J]. Blood,2000,95(1):62-66.
    [25] Nguyen X, Wang M H, Reddy K M, et al. Kinetic profile of the rat CYP4A isoforms: arachidonic acidmetabolism and isoform-specific inhibitors [J]. Am J Physiol,1999,276(6Pt2): R1691-1700.
    [26] Kikuta Y, Kusunose E, Kondo T, et al. Cloning and expression of a novel form of leukotriene B4omega-hydroxylase from human liver [J]. FEBS Lett,1994,348(1):70-74.
    [27] Lasker J M, Chen W B, Wolf I, et al. Formation of20-hydroxyeicosatetraenoic acid, a vasoactive andnatriuretic eicosanoid, in human kidney. Role of Cyp4F2and Cyp4A11[J]. J Biol Chem,2000,275(6):4118-4126.
    [28] Alonso-Galicia M, Falck J R, Reddy K M, et al.20-HETE agonists and antagonists in the renalcirculation [J]. Am J Physiol,1999,277(5Pt2): F790-796.
    [29] Sun C W, Falck J R, Harder D R, et al. Role of tyrosine kinase and PKC in the vasoconstrictorresponse to20-HETE in renal arterioles [J]. Hypertension,1999,33(1Pt2):414-418.
    [30] Gebremedhin D, Lange A R, Lowry T F, et al. Production of20-HETE and its role in autoregulation ofcerebral blood flow [J]. Circ Res,2000,87(1):60-65.
    [31] Wang M H, Zhang F, Marji J, et al. CYP4A1antisense oligonucleotide reduces mesenteric vascularreactivity and blood pressure in SHR [J]. Am J Physiol Regul Integr Comp Physiol,2001,280(1):R255-261.
    [32]Harder D R, Narayanan J, Birks E K, et al. Identification of a putative microvascular oxygen sensor [J].Circ Res,1996,79(1):54-61.
    [33] Kunert M P, Roman R J, Falck J R, et al. Differential effect of cytochrome P-450omega-hydroxylaseinhibition on O2-induced constriction of arterioles in SHR with early and established hypertension [J].Microcirculation,2001,8(6):435-443.
    [34] Imig J D, Zou A P, Stec D E, et al. Formation and actions of20-hydroxyeicosatetraenoic acid in ratrenal arterioles [J]. Am J Physiol,1996,270(1Pt2): R217-227.
    [35] Harder D R, Gebremedhin D, Narayanan J, et al. Formation and action of a P-4504A metabolite ofarachidonic acid in cat cerebral microvessels [J]. Am J Physiol,1994,266(5Pt2): H2098-2107.
    [36] Ma Y H, Gebremedhin D, Schwartzman M L, et al.20-Hydroxyeicosatetraenoic acid is an endogenousvasoconstrictor of canine renal arcuate arteries [J]. Circ Res,1993,72(1):126-136.
    [37] Zou A P, Fleming J T, Falck J R, et al.20-HETE is an endogenous inhibitor of the large-conductanceCa(2+)-activated K+channel in renal arterioles [J]. Am J Physiol,1996,270(1Pt2): R228-237.
    [38] Gebremedhin D, Lange A R, Narayanan J, et al. Cat cerebral arterial smooth muscle cells expresscytochrome P4504A2enzyme and produce the vasoconstrictor20-HETE which enhances L-type Ca2+current [J]. J Physiol,1998,507(Pt3)(771-781.
    [39] Lange A, Gebremedhin D, Narayanan J, et al.20-Hydroxyeicosatetraenoic acid-inducedvasoconstriction and inhibition of potassium current in cerebral vascular smooth muscle is dependent onactivation of protein kinase C [J]. J Biol Chem,1997,272(43):27345-27352.
    [40] Persson P B. Renal blood flow autoregulation in blood pressure control [J]. Curr Opin NephrolHypertens,2002,11(1):67-72.
    [41] Imig J D, Falck J R, Inscho E W. Contribution of cytochrome P450epoxygenase and hydroxylasepathways to afferent arteriolar autoregulatory responsiveness [J]. Br J Pharmacol,1999,127(6):1399-1405.
    [42] Imig J D, Zou A P, Ortiz de Montellano P R, et al. Cytochrome P-450inhibitors alter afferent arteriolarresponses to elevations in pressure [J]. Am J Physiol,1994,266(5Pt2): H1879-1885.
    [43] Franco M, Bell P D, Navar L G. Evaluation of prostaglandins as mediators of tubuloglomerularfeedback [J]. Am J Physiol,1988,254(5Pt2): F642-649.
    [44] Zou A P, Imig J D, Ortiz de Montellano P R, et al. Effect of P-450omega-hydroxylase metabolites ofarachidonic acid on tubuloglomerular feedback [J]. Am J Physiol,1994,266(6Pt2): F934-941.
    [45] Schwartzman M, Ferreri N R, Carroll M A, et al. Renal cytochrome P450-related arachidonatemetabolite inhibits (Na++K+)ATPase [J]. Nature,1985,314(6012):620-622.
    [46] Quigley R, Baum M, Reddy K M, et al. Effects of20-HETE and19(S)-HETE on rabbit proximalstraight tubule volume transport [J]. Am J Physiol Renal Physiol,2000,278(6): F949-953.
    [47] Escalante B, Erlij D, Falck J R, et al. Effect of cytochrome P450arachidonate metabolites on iontransport in rabbit kidney loop of Henle [J]. Science,1991,251(4995):799-802.
    [48] Wang W, Lu M. Effect of arachidonic acid on activity of the apical K+channel in the thick ascendinglimb of the rat kidney [J]. J Gen Physiol,1995,106(4):727-743.
    [49] Williams J M, Sarkis A, Lopez B, et al. Elevations in renal interstitial hydrostatic pressure and20-hydroxyeicosatetraenoic acid contribute to pressure natriuresis [J]. Hypertension,2007,49(3):687-694.
    [50] Li D, Belusa R, Nowicki S, et al. Arachidonic acid metabolic pathways regulating activity of renalNa(+)-K(+)-ATPase are age dependent [J]. Am J Physiol Renal Physiol,2000,278(5): F823-829.
    [51] Nowicki S, Chen S L, Aizman O, et al.20-Hydroxyeicosa-tetraenoic acid (20HETE) activates proteinkinase C. Role in regulation of rat renal Na+,K+-ATPase [J]. J Clin Invest,1997,99(6):1224-1230.
    [52] Good D W, George T, Wang D H. Angiotensin II inhibits HCO-3absorption via a cytochromeP-450-dependent pathway in MTAL [J]. Am J Physiol,1999,276(5Pt2): F726-736.
    [53] Muthalif M M, Karzoun N A, Gaber L, et al. Angiotensin II-induced hypertension: contribution of RasGTPase/Mitogen-activated protein kinase and cytochrome P450metabolites [J]. Hypertension,2000,36(4):604-609.
    [54] Muthalif M M, Uddin M R, Fatima S, et al. Small GTP binding protein Ras contributes tonorepinephrine-induced mitogenesis of vascular smooth muscle cells [J]. Prostaglandins Other LipidMediat,2001,65(1):33-43.
    [55] Parmentier J H, Muthalif M M, Saeed A E, et al. Phospholipase D activation by norepinephrine ismediated by12(s)-,15(s)-, and20-hydroxyeicosatetraenoic acids generated by stimulation of cytosolicphospholipase a2. tyrosine phosphorylation of phospholipase d2in response to norepinephrine [J]. J BiolChem,2001,276(19):15704-15711.
    [56] Uddin M R, Muthalif M M, Karzoun N A, et al. Cytochrome P-450metabolites mediatenorepinephrine-induced mitogenic signaling [J]. Hypertension,1998,31(1Pt2):242-247.
    [57] Chen P, Guo M, Wygle D, et al. Inhibitors of cytochrome P4504A suppress angiogenic responses [J].Am J Pathol,2005,166(2):615-624.
    [58] Imig J D, Pham B T, LeBlanc E A, et al. Cytochrome P450and cyclooxygenase metabolites contributeto the endothelin-1afferent arteriolar vasoconstrictor and calcium responses [J]. Hypertension,2000,35(1Pt2):307-312.
    [59] Oyekan A, Balazy M, McGiff J C. Renal oxygenases: differential contribution to vasoconstrictioninduced by ET-1and ANG II [J]. Am J Physiol,1997,273(1Pt2): R293-300.
    [60] Ribeiro C M, Dubay G R, Falck J R, et al. Parathyroid hormone inhibits Na(+)-K(+)-ATPase through acytochrome P-450pathway [J]. Am J Physiol,1994,266(3Pt2): F497-505.
    [61] Muthalif M M, Benter I F, Karzoun N, et al.20-Hydroxyeicosatetraenoic acid mediatescalcium/calmodulin-dependent protein kinase II-induced mitogen-activated protein kinase activation invascular smooth muscle cells [J]. Proc Natl Acad Sci U S A,1998,95(21):12701-12706.
    [62] Parmentier J H, Muthalif M M, Nishimoto A T, et al.20-Hydroxyeicosatetraenoic acid mediatesangiotensin ii-induced phospholipase d activation in vascular smooth muscle cells [J]. Hypertension,2001,37(2Part2):623-629.
    [63] Stec D E, Gannon K P, Beaird J S, et al.20-Hydroxyeicosatetraenoic acid (20-HETE) stimulatesmigration of vascular smooth muscle cells [J]. Cell Physiol Biochem,2007,19(1-4):121-128.
    [64] Chen Y, Medhora M, Falck J R, et al. Mechanisms of activation of eNOS by20-HETE and VEGF inbovine pulmonary artery endothelial cells [J]. Am J Physiol Lung Cell Mol Physiol,2006,291(3):L378-385.
    [65] Hausenloy D J, Yellon D M. Preconditioning and postconditioning: new strategies for cardioprotection[J]. Diabetes Obes Metab,2008,10(6):451-459.
    [66] Hausenloy D J, Yellon D M. Preconditioning and postconditioning: united at reperfusion [J].Pharmacol Ther,2007,116(2):173-191.
    [67] Cohen R A, Vanhoutte P M. Endothelium-dependent hyperpolarization. Beyond nitric oxide and cyclicGMP [J]. Circulation,1995,92(11):3337-3349.
    [68] Mombouli J V, Vanhoutte P M. Endothelium-derived hyperpolarizing factor(s): updating the unknown[J]. Trends Pharmacol Sci,1997,18(7):252-256.
    [69] Navar L G, Inscho E W, Majid S A, et al. Paracrine regulation of the renal microcirculation [J]. PhysiolRev,1996,76(2):425-536.
    [70] Bolotina V M, Najibi S, Palacino J J, et al. Nitric oxide directly activates calcium-dependentpotassium channels in vascular smooth muscle [J]. Nature,1994,368(6474):850-853.
    [71] Griscavage J M, Hobbs A J, Ignarro L J. Negative modulation of nitric oxide synthase by nitric oxideand nitroso compounds [J]. Adv Pharmacol,1995,34(215-234.
    [72] Hurshman A R, Marletta M A. Nitric oxide complexes of inducible nitric oxide synthase: spectralcharacterization and effect on catalytic activity [J]. Biochemistry,1995,34(16):5627-5634.
    [73] Khatsenko O. Interactions between nitric oxide and cytochrome P-450in the liver [J]. Biochemistry(Mosc),1998,63(7):833-839.
    [74] Takemura S, Minamiyama Y, Imaoka S, et al. Hepatic cytochrome P450is directly inactivated bynitric oxide, not by inflammatory cytokines, in the early phase of endotoxemia [J]. J Hepatol,1999,30(6):1035-1044.
    [75] Wink D A, Osawa Y, Darbyshire J F, et al. Inhibition of cytochromes P450by nitric oxide and a nitricoxide-releasing agent [J]. Arch Biochem Biophys,1993,300(1):115-123.
    [76] Sun C W, Falck J R, Okamoto H, et al. Role of cGMP versus20-HETE in the vasodilator response tonitric oxide in rat cerebral arteries [J]. Am J Physiol Heart Circ Physiol,2000,279(1): H339-350.
    [77] Sun C W, Alonso-Galicia M, Taheri M R, et al. Nitric oxide-20-hydroxyeicosatetraenoic acidinteraction in the regulation of K+channel activity and vascular tone in renal arterioles [J]. Circ Res,1998,83(11):1069-1079.
    [78] Roberts P J, Der C J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for thetreatment of cancer [J]. Oncogene,2007,26(22):3291-3310.
    [79] Granville D J, Tashakkor B, Takeuchi C, et al. Reduction of ischemia and reperfusion-inducedmyocardial damage by cytochrome P450inhibitors [J]. Proc Natl Acad Sci U S A,2004,101(5):1321-1326.
    [80] Gross E R, Nithipatikom K, Hsu A K, et al. Cytochrome P450omega-hydroxylase inhibition reducesinfarct size during reperfusion via the sarcolemmal KATP channel [J]. J Mol Cell Cardiol,2004,37(6):1245-1249.
    [81] Nithipatikom K, Gross E R, Endsley M P, et al. Inhibition of cytochrome P450omega-hydroxylase: anovel endogenous cardioprotective pathway [J]. Circ Res,2004,95(8): e65-71.
    [82] Nithipatikom K, Endsley M P, Moore J M, et al. Effects of selective inhibition of cytochrome P-450omega-hydroxylases and ischemic preconditioning in myocardial protection [J]. Am J Physiol Heart CircPhysiol,2006,290(2): H500-505.
    [83] Yousif M H, Benter I F, Roman R J. Cytochrome P450metabolites of arachidonic acid play a role inthe enhanced cardiac dysfunction in diabetic rats following ischaemic reperfusion injury [J]. AutonAutacoid Pharmacol,2009,29(1-2):33-41.
    [84] Ishihara Y, Sekine M, Nakazawa M, et al. Suppression of myocardial ischemia-reperfusion injury byinhibitors of cytochrome P450in rats [J]. Eur J Pharmacol,2009,611(1-3):64-71.
    [85]张迪,霍洪亮,张英妮等.20-羟二十烷四烯酸在机体生理及病理调节中的作用[J].生理科学进展,2007,38(2):5.
    [86] Bao Y, Wang X, Li W, et al.20-Hydroxyeicosatetraenoic acid induces apoptosis in neonatal ratcardiomyocytes through mitochondrial-dependent pathways [J]. J Cardiovasc Pharmacol,2011,57(3):294-301.
    [87] Murray C J, Lopez A D. Global mortality, disability, and the contribution of risk factors: GlobalBurden of Disease Study [J]. Lancet,1997,349(9063):1436-1442.
    [88] Cowie M R, Mosterd A, Wood D A, et al. The epidemiology of heart failure [J]. Eur Heart J,1997,18(2):208-225.
    [89] Keeley E C, Boura J A, Grines C L. Primary angioplasty versus intravenous thrombolytic therapy foracute myocardial infarction: a quantitative review of23randomised trials [J]. Lancet,2003,361(9351):13-20.
    [90] Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia: a delay of lethal cell injury inischemic myocardium [J]. Circulation,1986,74(5):1124-1136.
    [91] Hool L C, Di Maria C A, Viola H M, et al. Role of NAD(P)H oxidase in the regulation of cardiacL-type Ca2+channel function during acute hypoxia [J]. Cardiovasc Res,2005,67(4):624-635.
    [92] Nakamura K, Miura D, Kusano K F, et al.4-Hydroxy-2-nonenal induces calcium overload via thegeneration of reactive oxygen species in isolated rat cardiac myocytes [J]. J Card Fail,2009,15(8):709-716.
    [93] Zeng Q, Han Y, Bao Y, et al.20-HETE increases NADPH oxidase-derived ROS production andstimulates the L-type Ca2+channel via a PKC-dependent mechanism in cardiomyocytes [J]. Am J PhysiolHeart Circ Physiol,2010,299(4): H1109-1117.
    [94] Feuerstein G Z. Apoptosis--new opportunities for novel therapeutics for heart diseases [J]. CardiovascDrugs Ther,2001,15(6):547-551.
    [95] Kajstura J, Cigola E, Malhotra A, et al. Angiotensin II induces apoptosis of adult ventricular myocytesin vitro [J]. J Mol Cell Cardiol,1997,29(3):859-870.
    [96] Carroll M A, Balazy M, Huang D D, et al. Cytochrome P450-derived renal HETEs: storage andrelease [J]. Kidney Int,1997,51(6):1696-1702.
    [97] Alonso-Galicia M, Maier K G, Greene A S, et al. Role of20-hydroxyeicosatetraenoic acid in the renaland vasoconstrictor actions of angiotensin II [J]. Am J Physiol Regul Integr Comp Physiol,2002,283(1):R60-68.
    [98] Newton A C. Protein kinase C: structure, function, and regulation [J]. J Biol Chem,1995,270(48):28495-28498.
    [99] Kroetz D L, Zeldin D C. Cytochrome P450pathways of arachidonic acid metabolism [J]. Curr OpinLipidol,2002,13(3):273-283.
    [100] Maier K G, Roman R J. Cytochrome P450metabolites of arachidonic acid in the control of renalfunction [J]. Curr Opin Nephrol Hypertens,2001,10(1):81-87.
    [101] Medhora M, Chen Y, Gruenloh S, et al.20-HETE increases superoxide production and activatesNAPDH oxidase in pulmonary artery endothelial cells [J]. Am J Physiol Lung Cell Mol Physiol,2008,294(5): L902-911.
    [102] Akki A, Zhang M, Murdoch C, et al. NADPH oxidase signaling and cardiac myocyte function [J]. JMol Cell Cardiol,2009,47(1):15-22.
    [103] Bell R M, Cave A C, Johar S, et al. Pivotal role of NOX-2-containing NADPH oxidase in earlyischemic preconditioning [J]. FASEB J,2005,19(14):2037-2039.
    [104] Cloutier M, Campbell S, Basora N, et al.20-HETE inotropic effects involve the activation of anonselective cationic current in airway smooth muscle [J]. Am J Physiol Lung Cell Mol Physiol,2003,285(3): L560-568.
    [105] Hool L C. The L-type Ca(2+) channel as a potential mediator of pathology during alterations incellular redox state [J]. Heart Lung Circ,2009,18(1):3-10.
    [106] Nakayama H, Chen X, Baines C P, et al. Ca2+-and mitochondrial-dependent cardiomyocyte necrosisas a primary mediator of heart failure [J]. J Clin Invest,2007,117(9):2431-2444.
    [107] Berridge M J. Remodelling Ca2+signalling systems and cardiac hypertrophy [J]. Biochem Soc Trans,2006,34(Pt2):228-231.
    [108] Dhanasekaran A, Bodiga S, Gruenloh S, et al.20-HETE increases survival and decreases apoptosis inpulmonary arteries and pulmonary artery endothelial cells [J]. Am J Physiol Heart Circ Physiol,2009,296(3): H777-786.
    [109] Dunn K M, Renic M, Flasch A K, et al. Elevated production of20-HETE in the cerebral vasculaturecontributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats [J]. Am JPhysiol Heart Circ Physiol,2008,295(6): H2455-2465.
    [110] Bey E A, Xu B, Bhattacharjee A, et al. Protein kinase C delta is required for p47phoxphosphorylation and translocation in activated human monocytes [J]. J Immunol,2004,173(9):5730-5738.
    [111] Fontayne A, Dang P M, Gougerot-Pocidalo M A, et al. Phosphorylation of p47phox sites by PKCalpha, beta II, delta, and zeta: effect on binding to p22phox and on NADPH oxidase activation [J].Biochemistry,2002,41(24):7743-7750.
    [112] Sun C, Zubcevic J, Polson J W, et al. Shift to an involvement of phosphatidylinositol3-kinase inangiotensin II actions on nucleus tractus solitarii neurons of the spontaneously hypertensive rat [J]. CircRes,2009,105(12):1248-1255.
    [113] White C N, Figtree G A, Liu C C, et al. Angiotensin II inhibits the Na+-K+pump via PKC-dependentactivation of NADPH oxidase [J]. Am J Physiol Cell Physiol,2009,296(4): C693-700.
    [114] Kloner R A, Przyklenk K, Whittaker P. Deleterious effects of oxygen radicals in ischemia/reperfusion.Resolved and unresolved issues [J]. Circulation,1989,80(5):1115-1127.
    [115] Becker L B. New concepts in reactive oxygen species and cardiovascular reperfusion physiology [J].Cardiovasc Res,2004,61(3):461-470.
    [116] Sukmawan R, Yada T, Toyota E, et al. Edaravone preserves coronary microvascular endothelialfunction after ischemia/reperfusion on the beating canine heart in vivo [J]. J Pharmacol Sci,2007,104(4):341-348.
    [117] Tada H, Kutsumi Y, Misawa T, et al. Effects of pretreatment with2-O-octadecylascorbic acid, a novelfree radical scavenger, on reperfusion-induced arrhythmias in isolated perfused rat hearts [J]. J CardiovascPharmacol,1990,16(6):984-991.
    [118] Kato K, Terao S, Shimamoto N, et al. Studies on scavengers of active oxygen species.1. Synthesisand biological activity of2-O-alkylascorbic acids [J]. J Med Chem,1988,31(4):793-798.
    [119] Myers M L, Bolli R, Lekich R F, et al. Enhancement of recovery of myocardial function by oxygenfree-radical scavengers after reversible regional ischemia [J]. Circulation,1985,72(4):915-921.
    [120] Levraut J, Iwase H, Shao Z H, et al. Cell death during ischemia: relationship to mitochondrialdepolarization and ROS generation [J]. Am J Physiol Heart Circ Physiol,2003,284(2): H549-558.
    [121] Chen J X, Zeng H, Tuo Q H, et al. NADPH oxidase modulates myocardial Akt, ERK1/2activation,and angiogenesis after hypoxia-reoxygenation [J]. Am J Physiol Heart Circ Physiol,2007,292(4):H1664-1674.
    [122] Zhao X, Chen Y R, He G, et al. Endothelial nitric oxide synthase (NOS3) knockout decreases NOS2induction, limiting hyperoxygenation and conferring protection in the postischemic heart [J]. Am J PhysiolHeart Circ Physiol,2007,292(3): H1541-1550.
    [123] Murphy A M, Kogler H, Georgakopoulos D, et al. Transgenic mouse model of stunned myocardium[J]. Science,2000,287(5452):488-491.
    [124] Levine R L, Garland D, Oliver C N, et al. Determination of carbonyl content in oxidatively modifiedproteins [J]. Methods Enzymol,1990,186(464-478.
    [125] Qin F, Simeone M, Patel R. Inhibition of NADPH oxidase reduces myocardial oxidative stress andapoptosis and improves cardiac function in heart failure after myocardial infarction [J]. Free Radic BiolMed,2007,43(2):271-281.
    [126] Korngold E C, Jaffer F A, Weissleder R, et al. Noninvasive imaging of apoptosis in cardiovasculardisease [J]. Heart Fail Rev,2008,13(2):163-173.
    [127] Chevion M. A site-specific mechanism for free radical induced biological damage: the essential roleof redox-active transition metals [J]. Free Radic Biol Med,1988,5(1):27-37.
    [128] Di Meo S, Venditti P, De Leo T. Tissue protection against oxidative stress [J]. Experientia,1996,52(8):786-794.
    [129] Bondy S C, Naderi S. Contribution of hepatic cytochrome P450systems to the generation of reactiveoxygen species [J]. Biochem Pharmacol,1994,48(1):155-159.
    [130] Raza H, Prabu S K, Robin M A, et al. Elevated mitochondrial cytochrome P4502E1and glutathioneS-transferase A4-4in streptozotocin-induced diabetic rats: tissue-specific variations and roles in oxidativestress [J]. Diabetes,2004,53(1):185-194.
    [131] Shahabi H N, Andersson D R, Nissbrandt H. Cytochrome P4502E1in the substantia nigra: relevancefor dopaminergic neurotransmission and free radical production [J]. Synapse,2008,62(5):379-388.
    [132] Miyata N, Taniguchi K, Seki T, et al. HET0016, a potent and selective inhibitor of20-HETEsynthesizing enzyme [J]. Br J Pharmacol,2001,133(3):325-329.
    [133] Powell S R, Gurzenda E M, Wahezi S E. Actin is oxidized during myocardial ischemia [J]. FreeRadic Biol Med,2001,30(10):1171-1176.
    [134] Werns S W, Shea M J, Driscoll E M, et al. The independent effects of oxygen radical scavengers oncanine infarct size. Reduction by superoxide dismutase but not catalase [J]. Circ Res,1985,56(6):895-898.
    [135] Nediani C, Borchi E, Giordano C, et al. NADPH oxidase-dependent redox signaling in human heartfailure: relationship between the left and right ventricle [J]. J Mol Cell Cardiol,2007,42(4):826-834.
    [136] Bedard K, Krause K H. The NOX family of ROS-generating NADPH oxidases: physiology andpathophysiology [J]. Physiol Rev,2007,87(1):245-313.
    [137] Cave A C, Brewer A C, Narayanapanicker A, et al. NADPH oxidases in cardiovascular health anddisease [J]. Antioxid Redox Signal,2006,8(5-6):691-728.
    [138] Lambeth J D. NOX enzymes and the biology of reactive oxygen [J]. Nat Rev Immunol,2004,4(3):181-189.
    [139] Matsuzawa A, Ichijo H. Stress-responsive protein kinases in redox-regulated apoptosis signaling [J].Antioxid Redox Signal,2005,7(3-4):472-481.
    [140] Leusen J H, Verhoeven A J, Roos D. Interactions between the components of the human NADPHoxidase: a review about the intrigues in the phox family [J]. Front Biosci,1996,1(d72-90.
    [141] Yu L, Zhen L, Dinauer M C. Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. Roleof heme incorporation and heterodimer formation in maturation and stability of gp91phox and p22phoxsubunits [J]. J Biol Chem,1997,272(43):27288-27294.
    [142] Fukui T, Yoshiyama M, Hanatani A, et al. Expression of p22-phox and gp91-phox, essentialcomponents of NADPH oxidase, increases after myocardial infarction [J]. Biochem Biophys Res Commun,2001,281(5):1200-1206.
    [143] Baines C P, Molkentin J D. STRESS signaling pathways that modulate cardiac myocyte apoptosis [J].J Mol Cell Cardiol,2005,38(1):47-62.
    [144] Condorelli G, Morisco C, Stassi G, et al. Increased cardiomyocyte apoptosis and changes inproapoptotic and antiapoptotic genes bax and bcl-2during left ventricular adaptations to chronic pressureoverload in the rat [J]. Circulation,1999,99(23):3071-3078.
    [145] Gonzalez A, Lopez B, Ravassa S, et al. Stimulation of cardiac apoptosis in essential hypertension:potential role of angiotensin II [J]. Hypertension,2002,39(1):75-80.
    [146] Zhang G X, Lu X M, Kimura S, et al. Role of mitochondria in angiotensin II-induced reactive oxygenspecies and mitogen-activated protein kinase activation [J]. Cardiovasc Res,2007,76(2):204-212.
    [147] Green D R, Reed J C. Mitochondria and apoptosis [J]. Science,1998,281(5381):1309-1312.
    [148] Desagher S, Martinou J C. Mitochondria as the central control point of apoptosis [J]. Trends Cell Biol,2000,10(9):369-377.
    [149] Ito O, Nakamura Y, Tan L, et al. Expression of cytochrome P-4504enzymes in the kidney and liver:regulation by PPAR and species-difference between rat and human [J]. Mol Cell Biochem,2006,284(1-2):141-148.
    [150] Lv X, Wan J, Yang J, et al. Cytochrome P450omega-hydroxylase inhibition reduces cardiomyocyteapoptosis via activation of ERK1/2signaling in rat myocardial ischemia-reperfusion [J]. Eur J Pharmacol,2008,596(1-3):118-126.
    [151] Zordoky B N, Aboutabl M E, El-Kadi A O. Modulation of cytochrome P450gene expression andarachidonic acid metabolism during isoproterenol-induced cardiac hypertrophy in rats [J]. Drug MetabDispos,2008,36(11):2277-2286.
    [152] Palomeque J, Delbridge L, Petroff M V. Angiotensin II: a regulator of cardiomyocyte function andsurvival [J]. Front Biosci,2009,14(5118-5133.
    [153] Ito O, Roman R J. Regulation of P-4504A activity in the glomerulus of the rat [J]. Am J Physiol,1999,276(6Pt2): R1749-1757.
    [154] Yaghini F A, Zhang C, Parmentier J H, et al. Contribution of arachidonic acid metabolites derived viacytochrome P4504A to angiotensin II-induced neointimal growth [J]. Hypertension,2005,45(6):1182-1187.
    [155] Minuz P, Jiang H, Fava C, et al. Altered release of cytochrome p450metabolites of arachidonic acidin renovascular disease [J]. Hypertension,2008,51(5):1379-1385.
    [156] Chen L, Hahn H, Wu G, et al. Opposing cardioprotective actions and parallel hypertrophic effects ofdelta PKC and epsilon PKC [J]. Proc Natl Acad Sci U S A,2001,98(20):11114-11119.
    [157] Inagaki K, Chen L, Ikeno F, et al. Inhibition of delta-protein kinase C protects against reperfusioninjury of the ischemic heart in vivo [J]. Circulation,2003,108(19):2304-2307.
    [158] Liu H, Zhang H Y, Zhu X, et al. Preconditioning blocks cardiocyte apoptosis: role of K(ATP)channels and PKC-epsilon [J]. Am J Physiol Heart Circ Physiol,2002,282(4): H1380-1386.