黄土高原刺槐人工林生长特征及其天然化程度评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被是保持水土最积极有效的措施,将人工生态植被的营造与天然植被保护有机结合,促进人工植被向地带性天然植被发展,有效发挥植被的生态服务功能,是黄土高原水土流失区生态恢复的重要途径。本研究以黄土高原大面积栽植的刺槐人工林生态系统为研究对象,系统分析了不同区域刺槐的生长发育特征、刺槐林地的土壤水分养分变化规律、刺槐林下植被的演替及其与环境的关系,探讨了评价植被天然化程度的方法,在此基础上提出了促进人工植被天然化发育的关键技术措施。主要研究结果如下:
     1.黄土高原显域生境内刺槐的生长和分布主要受降水的影响。低土壤水分条件是刺槐在黄土高原分布和生长的主要限制因素,但不是阻碍黄土高原地带性植被恢复的主要限制因子。刺槐对土壤水分的利用能力很强,其对干旱的适应方式是降低生长速率和高度,严重干旱时,甚至牺牲部分构件(枯梢)。刺槐的生命周期随水分条件的改善而延长。
     2.刺槐林地土壤肥力恢复速度比撂荒地自然演替快。森林草原区安塞退耕地营造刺槐林后,土壤养分全面恢复,土壤有机质、全氮、碱解氮、全磷、速效磷、速效钾总体上均呈现增长态势。50a与5a刺槐林相比,上述六个指标分别增长了218%、206%、434%、22%、85%和52%;PH值则随刺槐生长年限的增加有逐渐降低的趋势。黄土高原从北至南,土壤有机质、全氮含量呈上升趋势,各地刺槐林均有随林龄增长土壤全氮和有机质逐渐升高的趋势。而土壤pH值的变化规律与前二者相反。
     3.黄土高原刺槐疏林林下植被不同发育阶段的物种组成与撂荒地植被演替不同阶段基本相似。在森林草原区(安塞)尽管刺槐生长消耗了大量水分,造成深厚的土壤水分低湿层,且很难恢复,但当地地带性植被物种仍能在林下正常生长、演替,能获得与撂荒地相近的生物量。在黄土高塬沟壑区(淳化)刺槐林多为高密度经营,林下植被的发育并未表现出地带性特征,其物种组成和群落结构比较简单。
     4.对黄土高原刺槐功能性状的测定结果及相关分析表明,不同地域的刺槐在功能性状上并没有明显差异,没有形成适应不同地区气候条件的生态类型,而只是通过调节自身的生长速度,甚至牺牲部分构件来适应环境的变化,尤其是水分条件的变化。铁杆蒿是黄土高原地带性植被的组成成分,其叶性状及其它被测性状之间具有良好的相关性,与大多数环境因子间也建立了密切的相关关系,它通过改变自身的叶面积、比叶面积、叶干物质含量、叶氮磷钾含量、嫩枝干物质含量、茎比密度及植株高度等功能性状来适应不同的气候条件。二者对比,刺槐具有明显的外来物种特征,对黄土高原环境的适应程度比铁杆蒿差。
     5.利用植被盖度、群落层片结构、物种组成、群落地上部生物量等因子构建了植被天然化发育程度指数的评价方程,即植被天然化程度指数(VNI值),可以定量研究植被天然化程度利用VNI对黄土高原森林草原区南部安塞县不同林龄的刺槐林下植被和不同撂荒年限的退耕地植被进行了天然化程度评价,结果表明,2种类型植被的天然化程度随时间变化的趋势大体一致,但由于刺槐强烈遮荫抑制林下植被生长,刺槐林下植被在幼林期至中龄林阶段的天然化程度有明显的倒退现象。一旦林冠疏开,林下植被迅速发育,其VNI值迅速提高。相关分析结果表明,刺槐林下植被的VNI值与多个环境因子有显著的相关关系。土壤养分条件改善促进植被的天然化。土壤水分条件与VNI值呈负相关,说明刺槐林下植被在严酷的水份条件下仍能维持植被的正向演替,由此推断,在小尺度范围的植被演替可能由当地的气候条件控制,土壤水分的作用不是十分重要。
Vegetation restoration is most effective approach on soil and water conservation To combine the benefits of artificial vegetation and natural vegetation and promote the succession process for artificial vegetation naturalization, is an important strategy ecosystem restoration. This paper, aimed at artificial Robinia Pseudoacacia forests, studied on growth characteristics, changes of soil moisture and nutrition succession process of undergrowth, relationship between undergrowth and environmental factors. discussed the methods evaluating vegetation naturalization degree, and a technology to promote the process of vegetation naturalization is also presented. The main results are as follows:
     1. The distribution and growth of Robinia Pseudoacacia in zonal environment was mainly influenced by precipitation on Loess Plateau. Low soil water content was a main limit factor to the distribution and growth of Robinia Pseudoacacia, but not to the restoration of zonal vegetation. The Robinia Pseudoacacia has very strong ability of water-utilization. Its adaptation strategy for water deficit seems to decrease its growth speed and height. Where it is seriously dry condition, the plant may sacrifice some components (withered tip).
     2. The rate of soil fertility restoration on Robinia Pseudoacacia woodland was faster than that on abandoned land. After plantation, soil organic matter, total nitrogen, available nitrogen, total phosphorus, available phosphorus and available potassium, were increasing with the growth process . On the contrary, the pH value tended to decrease. Compared with the soil of 5a Robinia Pseudoacacia woodland, six indexes were used to described above of 50a has increased by 218%, 206%, 434%, 22%, 85% and 52% respectively. From southern to northern part on the Loess Plateau, soil organic matter and total N content of tree sites tend to increase with growth age, however, the soil pH tend to decreased.
     3. Species composition and biomass of Robinia Pseudoacacia woodland undergrowth in different succession stage was similar to that of vegetation in abandoned land. From the results in forestry-grassland region of Ansai site that soil moisture did not hinder the growth and succession of undergrowth, although trees consumed much water in soil, and make soil moisture dryer and dryer.
     4. 9 kinds of functional traits of Robinia Pseudoacacia and Artemisia gmelinii. were measured, The results showed that almost all functional traits of Robinia Pseudoacacia in different region had not significant difference at same growth stage, which means that Robinia Pseudoacacia did not form new ecotype to adapting the different environment condition, especially to water resources change, and its adaptive strategy to environmental change was to adjust its growth speed, even to lose some of its components. However the Artemisia gmelinii was different from Robinia Pseudoacacia. which had fine correlation with environment factors. It means that the adaptability to environment in the Loess Plateau of Artemisia gmelinii was much better than that of Robinia Pseudoacacia.
     5 The evaluation model of vegetative naturalization index (VNI) was presented with variables including vegetation coverage, community synusium structure, species composition and aboveground biomass. The result found that VNI may describe the situation of vegetation naturalization in the research. By using of VNI, the vegetation naturalness index of Robinia Pseudoacacia forests undergrowth and vegetation on abandoned land in forest-steppe zone on Loess Plateau. The result showed that the VNI of two types of vegetation tendency of was basically coincident with succession stage. But VNI of undergrowth at later young forest stage and early middle age stage tend to decrease for the density canopy, and VNI of latter basically tended to increase in whole succession process. Once the canopy opened, and the undergrowth could get full sunlight, the succession speed of undergrowth was accelerated, and VNI value was enhanced rapidly. Correlation analysis indicated that VNI value of undergrowth had fine correlation with environmental factors. Favorate soil fertility could improve the process of vegetation naturalization. Soil water content was negatively correlated with VNI, which means that low soil water content did not effect the positive succession of undergrowth.
引文
1.解焱.恢复中国的天然植被[M].北京:中国林业出版社, 2002.
    2.王忠林,薛智德.黄土高原刺槐林生长适宜生态区划[J].水土保持研究, 1994. 1(3): 43-47.
    3. Zobel, K., M. Zobel, et al. Change in Pattern Diversity during Secondary Succession in Estonian Forests[J]. Journal of Vegetation Science, 1993. 4(4): 489-498.
    4.王世绩,张敦伦.刺槐[M].北京:中国科学技术出版社, 1993.
    5.吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社, 1998.
    6.左大康.现代地理学词典[M].北京:商务印书馆, 1990.
    7.程积民,万惠娥,等.黄土丘陵区植被恢复重建模式与演替过程研究[J].草地学报, 2005. 13(4): 324-327,333.
    8.李裕元,邵明安.黄土高原子午岭森林群落演替与结构特征演化[J].西北植物学报, 2003. 23(5): 693-699.
    9.李裕元,邵明安,等.黄土高原北部紫花苜蓿草地退化过程与植被演替研究[J].草业学报, 2006. 15(2): 85-92.
    10.张远东.川西亚高山人工云杉林和自然恢复演替系列的林地水文效应[J].自然资源学报, 2004. 19(6): 761-768.
    11. Jalas, J. Hemerokorit ja hemerobit[J]. Luonnon Tutkija, 1953. 57: 12-16.
    12. Jalas, J. Hemerobie und hemerochore Pflanzenarten - ein term ino logischer Reformversuch[J]. Acta Soc. Fauna Flora Fenn, 1955. 72(11): 1-15.
    13. Sukopp, H. Der Einfluss des Menschen auf die Vegetation[J]. Vegetatio, 1969. 17: 360-371.
    14. Sukopp, H. Wandel von Flora und Vegetation in Mitteleuropa unter dem Einfluss des Menschen[J]. Berichte ueber Landw irtschaf t, 1972. 50: 112-139.
    15. Sukopp, H. Dynam ik und Konstanz in der Flora der Bundesrepublik Deutsch land[J]. Sch rif treihe f . Vegetationskunde, 1976. 10: 9-26.
    16.马玉玺,杨文治.陕北黄土丘陵沟壑区刺槐林水分生态条件及生产力研究[J].水土保持通报, 1990. 10(6): 71-77.
    17.王国宏.黄土高原自然植被演替过程中的植物特征与土壤元素动态[J]. Acta Botanica
    36. Converse, T.E.,D.R. Betters. Biomass yield equations for short rotation black locust plantation in the Central Plains [J]. Biomass and Bioenergy, 1995 8 (4 ): 251-254.
    37.李凯荣,王佑民.黄土塬区刺槐林地水分条件与生产力研究[J].水土保持通报, 1990. 10(6): 58-65.
    38.陈一鹗,刘康.长武塬区立地特征及其对刺槐林生长影响的研究[J].水土保持通报, 1993. 13(5): 28-33.
    39.李洪建,王孟本,等.刺槐林水分生态研究[J].植物生态学报, 1996. 20(2): 151-158.
    40.马延庆,刘忠义,等.黄土高原地区刺槐生长主要生态因子的灰色优势分析[J].水土保持通报, 1996. 16(2): 50-54.
    41.袁瀛,惠养瑜.黄土丘陵区刺槐生产的影响因子研究[J].水土保持研究, 1996. 3(3): 146-154.
    42.王志强,刘宝元.黄土高原半干旱区土壤干层水分恢复研究[J].生态学报, 2003. 23(9): 1944-1950.
    43.王力,邵明安,等.延安试区人工刺槐林地的土壤干层分析[J].西北植物学报, 2001. 21(1): 101-106.
    44.黄明斌,杨新民,等.黄土高原生物利用型土壤干层的水文生态效应研究[J].中国生态农业学报, 2003. 11(3): 113-116.
    45.杜峰,程积民,等.乔灌草植被条件下土壤水分动态特征[J].水土保持学报, 2002. 16(1): 91-94.
    46.侯庆春,韩蕊莲,等.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持, 1999(5).
    47.胡良军,邵明安.黄土高原植被恢复的水分生态环境研究[J].应用生态学报, 2002. 13(8): 1045-1048.
    48.程积民,万惠娥,等.半干旱区柠条生长与土壤水分消耗过程研究[J].林业科学, 2005. 41(2): 37-41.
    49.杨文治,田均良.黄土高原土壤干燥化问题探源[J].土壤学报, 2004. 41(1): 1-6.
    50.卞义宁.陇东黄土高原沟壑区刺槐水保林合理密度初探[J].中国水土保持, 1994(9): 32-35.51.张建军,贺维,等.黄土区刺槐和油松水土保持林合理密度的研究[J].中国水土保持科学, 2007. 5(2): 55-59.
    52.李鹏,李占斌,等.渭北黄土高原不同立地上刺槐根系分布特征研究[J].水土保持通报, 2002. 22(5): 15-19.
    53.王迪海,赵忠,等.水分生态环境对刺槐细根垂直分布的影响[J].水土保持研究, 2005. 12(5): 200-202.
    54.单长卷,梁宗锁.黄土高原刺槐人工林根系分布与土壤水分的关系[J].中南林学院学报, 2006. 26(1): 19-40.
    55.刘增文,李雅素.黄土残塬沟壑区刺槐人工林生态系统的养分循环通量与平衡分析[J].生态学报, 1999. 19(5).
    56.张鼎华,翟明普,等.刺槐油松混交林土壤肥力变化的研究[J].科技简报, 2001: 28-30.
    57.刘世海,薛智德,等.密云水库北京集水区刺槐水源保护林主要养分元素的生物循环[J].水土保持学报, 2002. 16(3): 12-27.
    58.许明祥,刘国彬.黄土丘陵区刺槐人工林土壤养分特征及演变[J].植物营养与肥料学报, 2004. 10(1): 40-46.
    59.郝文芳,单长卷,等.陕北黄土丘陵沟壑区人工刺槐林土壤养分背景和生产力关系研究[J].中国农学通报2005. 21(9): 129-135.
    60.马玉玺,杨文治,等.黄土高原刺槐生长动态研究[J].水土保持学报, 1990. 4(2): 26-32.
    61.王进鑫,余清珠,等.人工刺槐改造更新林地土壤理化性质的变化及肥力评价[J].西北林学院学报, 1995. 10(增): 47-52.
    62.李瑞雪,薛泉宏,等.黄土高原沙棘、刺槐人工林对土壤的培肥效应及其模型[J].土壤侵蚀与水土保持学报, 1998. 4(1): 14-21.
    63.薛萐,刘国彬,等.侵蚀环境生态恢复过程中人工刺槐林(Robinia pseudoacacia)土壤微生物量演变特征[J].生态学报, 2007. 27(3): 909-917.
    64.张社奇,王国栋,等.黄土高原刺槐林地土壤微生物的分布特征[J].水土保持学报, 2004. 18(6): 128-131.
    65.程积民,万惠娥.中国黄土高原植被建设与水土保持[M].北京:中国林业出版社, 2002.
    66.余新晓,张建军,等.晋西黄土区刺槐人工林水土保持作用分级标准[J].北京林业大
    51.张建军,贺维,等.黄土区刺槐和油松水土保持林合理密度的研究[J].中国水土保持科学, 2007. 5(2): 55-59.
    52.李鹏,李占斌,等.渭北黄土高原不同立地上刺槐根系分布特征研究[J].水土保持通报, 2002. 22(5): 15-19.
    53.王迪海,赵忠,等.水分生态环境对刺槐细根垂直分布的影响[J].水土保持研究, 2005. 12(5): 200-202.
    54.单长卷,梁宗锁.黄土高原刺槐人工林根系分布与土壤水分的关系[J].中南林学院学报, 2006. 26(1): 19-40.
    55.刘增文,李雅素.黄土残塬沟壑区刺槐人工林生态系统的养分循环通量与平衡分析[J].生态学报, 1999. 19(5).
    56.张鼎华,翟明普,等.刺槐油松混交林土壤肥力变化的研究[J].科技简报, 2001: 28-30.
    57.刘世海,薛智德,等.密云水库北京集水区刺槐水源保护林主要养分元素的生物循环[J].水土保持学报, 2002. 16(3): 12-27.
    58.许明祥,刘国彬.黄土丘陵区刺槐人工林土壤养分特征及演变[J].植物营养与肥料学报, 2004. 10(1): 40-46.
    59.郝文芳,单长卷,等.陕北黄土丘陵沟壑区人工刺槐林土壤养分背景和生产力关系研究[J].中国农学通报2005. 21(9): 129-135.
    60.马玉玺,杨文治,等.黄土高原刺槐生长动态研究[J].水土保持学报, 1990. 4(2): 26-32.
    61.王进鑫,余清珠,等.人工刺槐改造更新林地土壤理化性质的变化及肥力评价[J].西北林学院学报, 1995. 10(增): 47-52.
    62.李瑞雪,薛泉宏,等.黄土高原沙棘、刺槐人工林对土壤的培肥效应及其模型[J].土壤侵蚀与水土保持学报, 1998. 4(1): 14-21.
    63.薛萐,刘国彬,等.侵蚀环境生态恢复过程中人工刺槐林(Robinia pseudoacacia)土壤微生物量演变特征[J].生态学报, 2007. 27(3): 909-917.
    64.张社奇,王国栋,等.黄土高原刺槐林地土壤微生物的分布特征[J].水土保持学报, 2004. 18(6): 128-131.
    65.程积民,万惠娥.中国黄土高原植被建设与水土保持[M].北京:中国林业出版社, 2002.
    66.余新晓,张建军,等.晋西黄土区刺槐人工林水土保持作用分级标准[J].北京林业大学学报, 1994. 16(2): 43-50.
    67.马忠秋,张万军,等.太行山低山区刺槐人工林水土保持效应研究[J].水土保持学报, 2001. 15(4): 133-135.
    68.刘东生,安芷生,等.中国黄土的地质环境[J].科学通报, 1978. 23(1): 1~9.
    69.李裕元,邵明安.黄土高原气候变迁、植被演替与土壤干层的形成[J].干旱区资源与环境, 2001. 15(1): 72-77.
    70.王力,邵明安.黄土高原退耕还林条件下的土壤干化问题[J].世界林业研究, 2004. 17(4): 57-60.
    71.韩仕峰,黄旭.黄土高原的土壤水分利用与生态环境的关系[J].生态学杂志, 1993. 12(1): 25-28.
    72.杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社, 2000.
    73.张社奇,王国栋,等.黄土高原刺槐林地土壤水分物理性质研究[J].西北林学院学报, 2004. 19(3): 11-14.
    74.袁建平,雷廷武,等.黄土丘陵区小流域土壤入渗速率空间变异性[J].水利学报, 2001(10): 88-92.
    75.吴照柏,杨新民.黄土丘陵区刺槐生长及林地土壤水分动态规律研究[J].水土保持研究, 2004. 11(4): 117-120.
    76.田晶会,王百田.黄土半干旱区刺槐林水分与生长关系研究[J].水土保持学报, 2002. 16(5): 61-121.
    77.贾海坤,刘莹慧,等.黄甫川流域柠条林地水分动态模拟---坡度、坡向、植被密度与土壤水分的关系[J].植物生态学报, 2005. 29(6): 910-917.
    78.王力,邵明安,等.陕北黄土高原人工刺槐林生长与土壤干化的关系研究[J].林业科学, 2004. 40(1): 84-91.
    79.刘晨峰,尹婧,等.林下植物群落对半干旱区不同密度刺槐林地土壤水分环境的指示作用[J].中国水土保持科学, 2004. 2(2): 62-67,79.
    80.李世荣,张卫强,等.黄土半干旱区不同密度刺槐林地的土壤水分动态[J].中国水土保持科学, 2003. 1(2): 28-32.
    81.孙鹏森,马李一.油松、刺槐林潜在耗水量的预测及其与造林密度的关系[J].北京林业大学学报, 2001. 23(2): 1-6.
    82.王振亮,毕君.太行山刺槐水土保持林的适宜密度研究[J].林业科技开发, 1997(3): 33-34.
    83.安芷生, S.波特,等.中国中东部全新世气候适宜期与东亚夏季风变迁[J].科学通报, 1993. 38: 1302-1305.
    84.刘东生,郭正堂,等.史前黄土高原的自然植被景观--森林还是草原[J].地球学报, 1994(3): 226-234.
    85.张希彪,上官周平.黄土丘陵区主要林分生物量及营养元素生物循环特征[J].生态学报, 2005. 25(3): 527-537.
    86.李凯荣,赵晓光.刺槐人工林地土壤水分下渗研究[J].西北林学院学报, 1998. 13(2): 26-29.
    87.韩恩贤,罗伟祥,等.黄土高原不同立地条件类型刺槐生长与水热状况相关研究[J].陕西林业科技, 1989(1): 9-13.
    88.刘康,陈一鹗.渭北黄土高原区刺槐人工林群落生物生产力的研究[J].西北植物学报, 1989. 9(3): 197-201.
    89.陈一鹗,刘康.长武塬区立地及其对刺槐林生产影响的研究[J].水土保持通报, 1993. 13(5): 28-33.
    90.李增禄,张楷.刺槐短轮伐期人工林生物生产力与产品效益研究[J].中南林业调查规划, 1994(3): 26-30.
    91.李洪建,王孟本,等.刺槐林地土壤水分的周年变化特征[J].土壤侵蚀与水土保持学报, 1999. 5(6): 6-45.
    92.张华,王百田,等.黄土半干旱区不同土壤水分条件下刺槐蒸腾速率的研究[J].水土保持学报, 2006. 20(2): 122-125.
    93.张鼎华,翟明普,等.杨树刺槐混交林下沙质土壤腐殖物质特性[J].林业科学, 2001. 37(3): 58-63.
    94.朱显谟.黄土高原土壤与农业[M].北京:农业出版社, 1989.
    95.余存祖主编.黄土高原中低产地土壤养分状况与培肥技术体系[M].黄土高原区域治理与评价.北京:科学出版社, 1992.
    96.程积民.黄土高原植被建设与水土保持[M]:中国林业出版社, 2002 1-2.
    97.张俊华,常庆瑞,等.不同林龄人工林对退化生态系统土壤肥力质量的影响[J].土壤通报, 2006. 37(3): 429-433.
    98.薛萐.黄土丘陵区生态恢复过程中土壤生物特性演变[D].陕西杨凌:中国科学院水利部水土保持与生态环境研究中心, 2007
    99.马祥华,焦菊英,等.黄土丘陵沟壑区退耕地植被恢复中土壤物理特性变化研究[J].水土保持研究, 2005. 12(1): 17-21.
    100.吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报, 1999. 36(2): 162~167
    101.朱祖祥主编.土壤学[M].北京:农业出版社, 1982.
    102.张兴昌.不同植被对土壤侵蚀和氮素流失的影响[J].生态学报, 2000. 20(6): 1038-1044.
    103.朱鹤健,何宜庚.土壤地理学[M].北京:高等教育出版社, 1992.
    104.王娓,郭继勋.东北松嫩平原羊草群落的土壤呼吸与枯枝落叶分解释放C02贡献[J].生态学报, 2002. 22(5): 655~660.
    105.张凤荣等.土壤发生与分类学[M].北京:北京大学出版, 1992.
    106.张恩香,蒋忠诚,等.广西弄拉岩溶植被不同演替阶段的主要土壤因子及溶蚀率对比研究[[J].生态学报, 2004. 24(6): 1131~1139.
    107.温仲明,焦峰,等.黄土高原森林草原区退耕地植被自然恢复与土壤养分变化[J].应用生态学报, 2005. 16(11): 2025-2029.
    108.马祥华,焦菊英.黄土丘陵沟壑区退耕地自然恢复植被特征及其与土壤环境的关系[J].中国水土保持科学, 2005. 3(2): 15-22.
    109.余作岳,彭少麟主编.热带亚热带退化生态系统植被恢复生态学研究[M].广州:广东科技出版社, 1997.
    110. Handel, S.N., G.R.Robinson, et al. Biodiversity resources for restoration ecology[J]. Restoration ecology, 1994. 2(4): 230—241.
    111.郑淑霞,上官周平.黄土高原油松和刺槐叶片光合生理适应性比较[J].应用生态学报, 2007. 18(1): 16-22.
    112.张社奇,刘云鹏,等.黄土高原刺槐人工林地土壤颗粒分形特征研究[J].安全与环境学报, 2006. 6(1): 96-99.
    113.刘增文,李玉山.黄土残塬沟壑区刺槐人工林生态系统的养分循环与动态模拟[J].西北林学院学报, 1998. 13(2): 34-40.
    114.刘增文,余清珠,等.黄土高原残垣沟壑区坡地刺槐不同皆伐更新幼林地[J].生态学报, 1997. 17(3): 235-238.
    115.张金屯.数量生态学[M].北京:科学出版社, 2004.
    116.吴东丽,上官铁梁,等.滹沱河流域湿地植被优势种群生态位研究[J].应用与环境生物学报, 2006. 12(6): 772-776.
    117.黄英姿.生态位理论研究中的数学方法[J].应用生态学报, 1994. 5(3): 331-337.
    118.王仁忠.放牧影响下羊草草地主要植物种群生态位宽度与生态位重叠的研究[J].植物生态学报, 1997. 21(4): 304-311.
    119. Craft, C., S. Broome, et al. Fifteen Years of Vegetation and Soil Development after Brackish-Water Marsh Creation[J]. Restor Ecology, 2002. 10(2): 248-258.
    120.朱志诚,岳明.秦岭及其以北黄土区草地群落地带性特征[J].中国草地, 2001. 23(3): 58-63.
    121.朱志诚.秦岭及其以北黄土区植被地带性特征[J].地理科学, 1991. 11(2): 157-164.
    122.陈云明,梁一民,等.黄土高原林草植被建设的地带性特征[J].植物生态学报, 2002. 26(3): 339-345.
    123. Hutchinson, G.E. Concluding remarks[J]. Gold Spring Harbour Symp Quant Biol, 1957. 22: 415-427.
    124. MAY, R.M., Patterns of species abundance and biodiversity, in Ecology and Evolution of Communities, M.L. Coddy and J.M. Diamond, Editors. 1975, Harvard University press: Cambridge. p. 81-120.
    125.韩梅,杨利民,等.羊草群落植物生活型功能群多样性变化与环境因子关系的研究[J].吉林农业大学学报, 2005. 27(1): 59-63,67.
    126.朱志诚,黄可.陕北黄土高原森林草原地带植被恢复演替初步研究[J].山西大学学报:自然科学版, 1993. 16(1): 94-100.
    127. Sarmiento, L., L.D. Llamb, et al. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes[J]. Plant Ecology, 2003. 166(1): 145-156.
    128.刘守江,苏智先,等.陆地植物群落生活型研究进展[J].四川师范学院学报, 2003. 24(2): 155-159.
    129.李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源, 1980(1): 101 - 104.
    130. Wilson, J.A.,K.W. Lowe. Planning for the restoration of native biodiversity within the Goulburn Broken Catchment, Victoria, using spatial modelling[J]. Ecol Manage Restor, 2003. 4(3): 212-219.
    131. Moszynska, B. Succession stages of vegetation and litter, energy processes as pattern of biodiversity[J]. Ekologia-Bratislava, 2001. 20: 208-216.
    148. Marlgalef, R. Information theory in ecology[J]. Gen. syn., 1957. 3: 37-71.
    149. Margalef, R. Succession in marine populations[J]. Advancing Frontiers Plant Sci., 1963a. 2: 137—188.
    150. Odum, E.P. The strategy of ecosystem developmemt[J]. Sience, 1969. 164: 262-270.
    151. AIlan, N.A.,F.G. Glenn. Diversity relations of upland forests in the Western great lakes area[J]. Amer. nat., 1972,. 105(946): 499-528.
    152.中国环境与发展国际合作委员会生物多样性工作组.利用天然植被改善中国退化环境[M].北京:中国林业出版社, 2001.
    153. Zhang, J.T.,E.R.B. Oxley. A comparison of three methods of multivariate analysis 0f upland grasslands in North Wales[J]. Journal of Vegetation Science, 1994 5 71~76.
    154.张金屯.植被与环境关系的分析Ⅱ:Cca和dcca限定排序[J].山西大学学报:自然科学版, 1992. 15(3): 292-298.
    155.邱扬,张金屯. DCCA排序轴分类及其在关帝山八水沟植物群落生态梯度分析中的应用[J].生态学报, 2000. 20(2): 199-206.
    156.朱源,邱扬,等.河北坝上草原东沟植物群落生态梯度的数量分析[J].应用生态学报, 2004. 15(5): 799-802.
    157.张先平,王孟本,等.庞泉沟国家自然保护区森林群落的数量分类和排序[J].生态学报, 2006. 26 (3): 754~761.
    158.王晓春,蔡体久,等.鸡西煤矿矸石山植被自然恢复规律及其环境解释[J].生态学报, 2007. 23(9): 3744~3751.
    159. Cornelissen, J., S. Lavorel, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003. 51: 335-380.
    160. Reich, P.,M. Walters. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems[J]. Ecological Monographs, 1992. 62: 365-392.
    161. Wright, I.,M. Westoby. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species[J]. Functional Ecology, 2003. 17: 10-19.
    162. Wright, I., P. Groom, et al. Leaf traits relationships in Australian plant species[J]. Functional Plant Biology 2004b. 31: 551-558.
    163. Wright, I., M. Westoby, et al. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span[J]. Journal of Ecology,2002. 90: 534-543.
    164. Wright, J., P. Reich, et al. The worldwide leaf economics spectrum[J]. Nature, 2004a. 428: 821-827.
    165. Garnier, E., G. Laurent, et al. Consistency of species ranking based on functional leaf traits[J]. New Phytologist, 2001. 152: 69-83.
    166. Vendramini, F., S. Díaz, et al. Leaf traits as indicators of resource-use strategy on floras with succulent species[J]. New Phytologist, 2002. 154: 147-157.
    167. Roche, P., N. Díaz-Burlinson, et al. Congruency analysis of species ranking based on leaf traits: which traits are the more reliable?[J]. Plant Ecology, 2004. 174: 37-48.
    168. Dietz, H., T. Steinlein, et al. The role of growth form and correlated traits in competitive ranking of six perennial ruderal plant species grown in unbalanced mixtures[J]. Acta Oecologica, 1998. 19(1): 25-36.
    169. Wright, I., P. Reich,等. The worldwide leaf economics spectrum[J]. Nature, 2004a. 428: 821-827.
    170. Díaz, S., M. Cabido, et al. Plant functional traits and enviromental filters at a regional scale[J]. Journal of Vegetation Science, 1998. 9: 113-122.
    171. Roche, P., N. Díaz-Burlinson, et al. Congruency analysis of species ranking based on leaf traits: which traits are the more reliable?[J]. Plant Ecology 2004. 174 37-48.
    172.朱志诚,贾东林.陕北黄土高原铁杆蒿群落生物量初步研究[J].生态学报, 1993. 13(3): 243-251.
    173.朱志诚.黄土高原森林草原的基本特征[J].地理科学, 1994. 14(2): 152-156.
    174. Prior, L., D. Bowman, et al. Seasonal differences in leaf attributes in Australian tropical tree species: family and habitat comparisons[J]. Functional Ecology, 2004. 18,707-718.
    175. Condit, R., K. Watts, et al. Quantifying the deciduousness of tropical forest canopies under varying climates[J]. Journal of Vegetation Science, 2000. 11: 649-658.
    176. Fonseca, C., J. Overton, et al. Shifts in trait-combinations along rainfall and phosphorus gradients[J]. Journal of Ecology, 2000. 88: 964-977.
    177. Craine, J.,W. Lee. Covariation in leaf and root traits for native grasses along analtitudinal gradient in New Zealand[J]. Oecololgia, 2003. 134 471-478.
    178. Castro-Díez, P., P. Villar-Salvador, et al. Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain[J]. Trees, 1997.2002. 90: 534-543.
    164. Wright, J., P. Reich, et al. The worldwide leaf economics spectrum[J]. Nature, 2004a. 428: 821-827.
    165. Garnier, E., G. Laurent, et al. Consistency of species ranking based on functional leaf traits[J]. New Phytologist, 2001. 152: 69-83.
    166. Vendramini, F., S. Díaz, et al. Leaf traits as indicators of resource-use strategy on floras with succulent species[J]. New Phytologist, 2002. 154: 147-157.
    167. Roche, P., N. Díaz-Burlinson, et al. Congruency analysis of species ranking based on leaf traits: which traits are the more reliable?[J]. Plant Ecology, 2004. 174: 37-48.
    168. Dietz, H., T. Steinlein, et al. The role of growth form and correlated traits in competitive ranking of six perennial ruderal plant species grown in unbalanced mixtures[J]. Acta Oecologica, 1998. 19(1): 25-36.
    169. Wright, I., P. Reich,等. The worldwide leaf economics spectrum[J]. Nature, 2004a. 428: 821-827.
    170. Díaz, S., M. Cabido, et al. Plant functional traits and enviromental filters at a regional scale[J]. Journal of Vegetation Science, 1998. 9: 113-122.
    171. Roche, P., N. Díaz-Burlinson, et al. Congruency analysis of species ranking based on leaf traits: which traits are the more reliable?[J]. Plant Ecology 2004. 174 37-48.
    172.朱志诚,贾东林.陕北黄土高原铁杆蒿群落生物量初步研究[J].生态学报, 1993. 13(3): 243-251.
    173.朱志诚.黄土高原森林草原的基本特征[J].地理科学, 1994. 14(2): 152-156.
    174. Prior, L., D. Bowman, et al. Seasonal differences in leaf attributes in Australian tropical tree species: family and habitat comparisons[J]. Functional Ecology, 2004. 18,707-718.
    175. Condit, R., K. Watts, et al. Quantifying the deciduousness of tropical forest canopies under varying climates[J]. Journal of Vegetation Science, 2000. 11: 649-658.
    176. Fonseca, C., J. Overton, et al. Shifts in trait-combinations along rainfall and phosphorus gradients[J]. Journal of Ecology, 2000. 88: 964-977.
    177. Craine, J.,W. Lee. Covariation in leaf and root traits for native grasses along analtitudinal gradient in New Zealand[J]. Oecololgia, 2003. 134 471-478.
    178. Castro-Díez, P., P. Villar-Salvador, et al. Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain[J]. Trees, 1997.11 127-134.
    179. Ackerly, D., C. Knight, et al. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses[J]. Oecologia, 2002. 130 449-457.
    180. Reich, P., C. Uhl, et al. Leaf demography and phenology in Amazonian rain forest: a census of 40000 leaves of 23 tree species[J]. Ecological Monographs, 2004. 74 3-23.
    181. Sack, L., P. Grubb, et al. The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in Southern Spain[J]. Plant Ecology, 2003. 168 139-163.
    182.李迈和, N. Kruchi,等.生态干扰度:一种评价植被天然性程度的方法[J].地理科学进展, 2002. 21(5): 450-456.
    183. de Gruchy, M.A., U. Matthes, et al. Natural Recover y and Restoration Potential of Severely Disturbed Talus Vegetation at Niagara Falls: Assessment Using a Reference System[J]. Restor Ecology, 2001. 9(3): 311-325.
    184. Blanc, L., G. Maury-Lechon, et al. Structure, floristic composition and natural regeneration in the forests of Cat Tien National Park, Vietnam: an analysis of the successional trends[J]. J Biogeography, 2000. 27(1): 141-157.
    185. Angermeier, P.L. The Natural Imperative for Biological Conservation[J]. Conservation Biology, 2000. 14(2): 373-381.
    186. Verhoeven, J.T.A. Ecosystem restoration for plant diversity conservation[J]. Ecological Engineering, 2001. 17(1): 1-2.
    187. Hobbs, R.J.,J.A. Harris. Restoration Ecology: Repairing the Earth's Ecosystems in the New Millennium[J]. Restor Ecology, 2001. 9(2): 239-246.
    188.卫三平,卫正新,等.晋西黄土丘陵沟壑区刺槐林适应性调查研究[J].山西水土保持科技, 2001(2): 36-39.
    189.王希才.刺槐林的天然更新[J].山西林业科技, 1995(1): 30-40.
    190.陈一鹗,刘康,等.皆伐萌蘖更新是改造刺槐林的有效途径[J].水土保持通报, 1995. 15(6): 64-68.
    191.王力,邵明安,等.黄土高原子午岭天然林与刺槐人工林地土壤干化状况对比[J].西北植物学报, 2005. 25(7): 1279-1286.
    192.王百田,王颖,等.黄土高原半干旱地区刺槐人工林密度与地上生物量效应[J].中国水土保持科学, 2005. 3(3): 35-39.
    193.单长卷,徐.黄土高原刺槐水分关系研究进展[J].安徽农业科学, 2006. 34(6): 1075-1076.
    194. Sukopp, H. Wandel von Flora und Vegetation in Mitteleuropa unter dem Einfluss des Menschen[J]. Berichteueber Landwirtschaft, 1972. 50: 112-139.
    195.朱志诚.陕北黄土高原植被基本特征及其对土壤性质的影响[J].植物生态学与地植物学学报, 1993. 17(3): 280-286.
    196.李斌,张金屯.黄土高原地区植被与气候的关系[J].生态学报, 2003. 23(1): 82-89.
    197.邹厚远,刘国彬.子午岭林区北部近50年植被的变化发展[J].西北植物学报, 2002. 22(1): 1-8.
    198.朱志诚.全新纪中期以来黄土高原中部生物多样性研究[J].地理科学, 1996. 16(4): 351-358.
    199.朱志诚.陕北黄土高原侧柏疏林草原的初步研究[J].武汉植物学研究, 1993. 11(1): 47-53.
    200.谢晋阳,陈灵芝.暖温带落叶阔叶林的物种多样性特征[J].生态学报, 1994. 14(4): 337-344.
    201. Curtis, J.T.,R.P. McIntosh. An upland forest continum in the prairie—forest border region of Wisconsin[J]. Eology, 1951. 32: 476—496.
    202. Brown, R.T.,J.T. Curtis. The upland conifer-hardwood forests of northern Wisconsin[J]. Ecology Monograph, 1952. 22: 217-234.
    203. Whittaker, R.H. A criticism of the plant association and climatic climax concepts[J]. Northwest Sci, 1951. 25 17-31.