生物分子的结构及其相互作用的计算化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文运用一系列的理论化学方法研究了一些生物小分子(尼古丁、可卡因、神经递质等)和生物大分子(磷酸二酯酶)的结构及其相互作用。全文由三章构成:第一章简单介绍了溶液中从头算理论的最新进展以及磷酸二酯酶体系活性中心的结构;第二章采用几种溶剂化模型计算了一些生物小分子在溶液中的离解常数,通过溶液中频率的计算分析了组胺在溶液中的主要构象;第三章运用量子力学/分子力学和分子动力学模拟方法研究磷酸二酯酶-5(PDE5)活性中心的结构,利用分子对接和3D-QSAR方法研究了环鸟嘌呤衍生物同磷酸二酯酶-5(PDE5)之间的相互作用。
     第二章的第一部分运用第一原理电子结构方法对24种胺类化合物,包括可卡因、尼古丁、10种神经递质和12种苯胺分子进行pK_a值的计算,采用了四种不同的自洽反应场溶剂化模型:表面极化和体极化作用(SVPE)的方法、极化连续介质模型(PCM)、积分连续介质模型(IEFPCM)、极化导体模型(COSMO,亦称为CPCM)。由SVPE方法计算的绝对pK_a值同实验值最接近,计算值和实验值之间的均方根差(RMSD)只有1.18,而用PCM、IEFPCM和COSMO方法计算的pK_a值和实验值之间的RMSD分别为3.21、2.72和3.08。当所有溶剂化模型所计算的pK_a值同实验值进行一元线性拟合后,RMSD都变小了,在0.51~0.83之间。最小RMSD的值(0.51)也是对应着表面极化和体极化作用(SVPE)的方法。所有的计算结果都表明运用SVPE模型的第一原理电子结构计算是预测胺类化合物比较合理的方法。第二部分利用第一原理电子结构方法计算了一价和二价组胺阳离子在气相和溶液中各种可能的构象,并且用IEFPCM模型对组胺一价阳离子进行了频率计算,根据校正的计算频率以及同位素的移动同实验的红外和拉曼光谱进行比较。最后的结果表明,g_3H构象在溶液中的自由能最低,溶液中约占57%的比率;根据计算频率和实验光谱的比较,g_3H构象的计算频率和实验光谱吻合的较好,平均偏差约为10cm~(-1)。所有结果都表明:在溶液中侧链质子化的一价组胺阳离子在溶液中主要是g_3H构象,而不是t_3H构象。这里所得到的溶液中侧链质子化的一价组胺离子详细的结构信息对将来研究组胺分子同各种生物大分子体系的相互作用具有重要的指导意义。
     第三章的第一部分通过量子力学/分子力学(QM/MM)和分子动力学模拟计算得到了两种PDE5酶活性位点的结构。为了验证PDE5活性中心第二个桥配体(BL2)的性质:到底是氢氧根HO~-还是H_2O水分子?分别从X-射线的晶体结构和分子动力学模拟平衡后结构出发进行QM/MM优化计算。计算结果清楚的表明只有当BL2是氢氧根离子时,它才能真正的充当桥配体连接两个带正电的金属离子Zn~(2+)和Mg~(2+);当BL2是水分子的时候,它只能同Mg~(2+)离子配位而离开Zn~(2+)离子。而且计算结果表明QM/MM优化的几何构型受到溶剂水分子、蛋白质的动力学环境以及embed MM部分电荷的影响,而且这几个因素是相互依赖的。当完全忽略或完全考虑这三种因素的QM/MM计算结果是一致的,表明这三种因素对几何构型优化的影响可以相互抵消。然而,如果仅仅考虑其中的几个,就会得到完全不同的结果。因此要么全部考虑,要么全部忽略。第二部分根据得到的PDE5活性中心的结构,运用分子对接和3D-QSAR分析来研究PDE5和PDE6酶同一系列环鸟嘌呤衍生物的相互作用。通过分子对接得到化合物的初始构象,运用CoMFA和CoMSIA分析得到定量构效关系式和定量结构选择性关系式模型(具有比较高的交叉验证系数q~2和传统的相关系数r~2的值),这些关系式能够预测PDE5抑制剂的活性和PDE5同PDE6之间选择性的抑制剂。这些比较高的验证系数q~2和r~2的值以及后面所做的进一步的测试都表明所得的3D-QSAR和3D-QSSR模型是合理的,这些关系式在提高环鸟嘌呤衍生物对靶标蛋白质的抑制性和选择性方面具有很高的应用价值。
In this work, a series of theoretical methods were employed to study the structures andinteractions of some small biomolecules (including cocaine, nicotine and neurotransmitters ctc) andbiomacromolecules (PDE5). The thesis consists of three chapters: The first charpter is a briefintroduction of some recent progress of the development of ab initio electronic structure theory formolecules in solution and a summary of the active site structure of phosphodiesterase-5 and itsproblems to be solved. The second charpter is the computational determinations of the absolute pK_avalues of some amine compounds through first-principles electronic structure calculations usingfour different solvation models, along with an analysis of the most stable conformation of protonatedhistamine in solution based on the calculated Gibbs free energies and vibrational frequencies. Thethird charpter is computational studies of the dynamic structures of phosphodiesterase-5 (PDE5)active site by combined molecular dynamics simulations and hybrid quantum mechanical/molecularmechanical calculations and the structure-activity and structure-selectivity correlation of cyclicguanine derivatives as PDE5 inhibitors by molecular docking, CoMFA and CoMSIA analyses.
     In the first part of the second chapter, the absolute pK_a valucs of 24 representative aminecompounds in aqueous solution, including cocaine, nicotine, 10 neurotransmitters, and 12 anilines,were calculated by performing first-principles electronic structure calculations. Four differentsolvation models, i.e., the surface and volume polarization for electrostatic interaction (SVPE) model,the standard polarizable continuum model (PCM), the integral equation formalism for the polarizablecontinuum model (IEFPCM), and the conductorlike screening solvation model (COSMO) wereemployed to account for the solvent effect. Within the examined computational methods, thecalculations using the SVPE model lead to the absolute pK_a values with the smallestroot-mean-square-deviation (rmsd) value (1.18). When the SVPE model was replaced by the PCM,IEFPCM, and COSMO, the rmsd value of the calculated absolute pK_a values became 3.21, 2.72, and3.08, respectively. With the empirical corrections using the linear correlation relationships, thetheoretical pK_a values are much closer to the corresponding experimental data and the rmsd valuesbecome 0.51-0.83. The smallest rmsd value (0.51) is also associated with the SVPE model. All of theresults suggest that the first-principles electronic structure calculations using the SVPE model are areliable approach to the pK_a prediction for the amine compounds. In the second part of the secondchapter, first-principles electronic structure calculations were performed on a variety of possible molecular structures of side-chain protonated histamine and different conformers of thefully-protonated state (dication). The calculated results demonstrate that the solvent effectssignificantly affect the relative Gibbs free energies of different molecular structures and, therefore,change their relative concentrations. We also calculated the vibrational frequencies of monocationhistamine in aqueous solution. The calculated scaled theoretical wavenumbers are in good agreementwith the corresponding experimental values for both the natural and the N-deuterated g3I-I conformer.The average deviation was only 10 cm~(-1). All the calculated results indecate that the most stableconformation is the g3H conformer rather that the t_3H conformer. The detailed structural informationobtained from the present work might be a valuable reference for future computational studies ofhistamine binding with various biomacromolecular systems.
     In the first part of the third chapter, various quantum mechanical/molecular mechanical(QM/MM) geometry optimizations starting from an x-ray crystal structure and from the snapshotstructures of constrained molecular dynamics (MD) simulations have been performed to characterizetwo dynamically stable active site structures of phosphodiesterase-5 (PDE5) in solution. The onlydifference between the two PDE5 structures exists in the catalytic, second bridging ligand (BL2)which is HO~- or H_2O. It has been shown that, whereas BL2 (i.e. HO~-) in the PDE5(BL2=HO~-)structure can really bridge the two positively charged metal ions (Zn~(2+) and Mg~(2+)), BL2 (/.e. 1-120) inthe PDE5(BL2=H_2O) structure can only coordinate Mg~(2+). It has been demonstrated that the results ofthe QM/MM geometry optimizations are remarkably affected by the solvent water molecules, thedynamics of the protein environment, and the embedded charges of the MM region in the QM part ofthe QMM/MM calculation. The PDE5(BL2=H_2O) geometries optimized by using the QM/MMmethod in different ways show strong couplings between these important factors. ThePDE5(BL2=H_2O) geometries determined by the QM/MM calculations neglecting these three factorsare all consistent with the corresponding geometries determined by the QM/MM calculations thataccount for all of these three factors. These results suggest the overall effects of these three importantfactors on the optimized geometries can be roughly canceled out. However, the QM/MM calculationsthat only account for some of these factors could lead to considerably different geometries. Theseresults might be useful also in guiding future QM/MM geometry optimizations on other enzymes. Inthe second part of the third chapter, molecular docking and 3D-QSAR analyses were performed tounderstand how PDE5 and PDE6 interact with a series of cyclic guanine derivatives. Using theconformations of the compounds revealed by molecular docking, CoMFA and CoMSIA analysesresulted in the first quantitative structure-activity relationship (QSAR) and first quantitativestructure-selectivity relationship (QSSR) models (with high cross-validated correlation coefficient q~2 and conventional correlation coefficient r~2 values) for predicting the inhibitory activity against PDE5and the selectivity against PDE6. The high q~2 and r~2 values, along with further testing, indicate thatthe obtained 3D-QSAR and 3D-QSSR models will be valuable in predicting both the inhibitoryactivity and selectivity of cyclic guanine derivatives for these protein targets.
引文
1. Bandyopadhyay, P.; Gordon, M. S. A combined discrete/continuum solvation model: Application to glycine. J. Chem. Phys. 2000,113, 1104-1109.
    2. Born, M. A Perspective on "Volume and heat of hydration of ions" Z. Phys. 1920, 1, 45-48.
    3. Onsager, L. Electric moments of molecules in liquids. J. Am. Chem. Soc. 1936, 58, 1486-1493.
    4. Miertus, S.; Scrocco, E., Tomasi, J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of Ab Initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55, 117-129.
    5. Tomasi, J.; Persico, M. Molecular interactions in solution: an overview of methods based on continous distributions of the solvent. Chem. Rev. 1994, 94, 2027-2094.
    6. Crarner, C. J., Truhlar, D. G. in Solvent Effects and Chemical Reactivity, Tapia, O.; Bertran, J. (ed.) Kluwer, Dordrecht, 1996, pp. 1-80.
    7. Zhan, C.-G.; Bentley, J.; Chipman, D. M. Volume polarization in reaction field theory. J. Chem. Phys. 1998,108, 177-192.
    8. Zhan, C.-G.; Chipman, D. M. Cavity size in reaction field theory. J. Chem. Phys. 1998, 109, 10543-10558.
    9. Zhan, C.-G.; Chipman, D. M. Reaction field effects on nitrogen shielding. J. Chem. Phys. 1999, 110, 1611-1622.
    10. Zhan, C.-G.; Landry, D. W.; Ornstein, R. L. Energy barriers for alkaline hydrolysis of carboxylic acid esters in aqueous solution by reaction field calculations. J. Phys. Chem. A 2000, 104, 7672-7678.
    11. Zhan, C.-G.; Landry, D. W.; Ornstein, R. L. Reaction pathways and energy barriers for alkaline hydrolysis of carboxylic acid esters in water studied by a hybrid supermolecule-polarizable continuum approach. J. Am. Chem. Soc. 2000, 122, 2621-2627.
    12. Zhan, C. G.; Landry, D. W.; Ornstein, R. L. Theoretical studies of fundamental pathways fo ralkaline hydrolysis of carboxylic acid esters in gas phase. J. Am. Chem. Soc. 2000, 122, 1522-1530.
    13. Zhan, C.-G.; Niu, S.; Ornstein, R. L. Theoretical studies of nonenzymatic reaction pathways for the three reaction stages of the carboxylation of ribulose-1,5-bisphosphate. J. Chem. Soc., Perkin Trans. 2 2001, 1, 23-29.
    14. Zhan, C.-G.; Dixon, D. A. Absolute Hydration Free Energy of the Proton from First-Principles Electronic Structure Calculations. J. Phys. Chem. A. 2001, 105, 11534-11540.
    15. Zhan, C.-G.; Dixon, D. A. hydration of the fluoride anion: structures and absolute hydration free energy from first-principles electronic structure calculations. J. Phys. Chem. A. 2004, 108, 2020-2029.
    16. Zhan, C.-G.; Landry, D. W. Theoretical Studies of Competing Reaction Pathways and Energy Barriers for Alkaline Ester Hydrolysis of Cocaine. J. Phys. Chem. A 2001, 105, 1296-1301.
    17. Dixon, D. A.; Feller, D.; Zhan, C.-G. et al. Decomposition pathways of peroxynitrous acid: Gas phase and solution energetics. J. Phys. Chem. A, 2002, 106, 3191-3196.
    18. Zhan C G, Dixon, D. A. First principles determination of the absolute hydration free energy of the hydroxide ion. J. Phys. Chem. A 2002, 106, 9737-9744.
    19. Zhan, C. G.; Dixon, D. A.; SabriM, I. et al. Theoretical determination of chromophores in the chromogenic effects of aromatic neurotoxicants. J. Am. Chem. Soc, 2002, 124, 2744-2752.
    20. Zhan, C. G.; Dixon, D. A. The nature and absolute hydration free energy of the solvated electron in water. J Phys Chem B 2003, 107, 4403-4417.
    21. Zhan C. G.; Dixon, D. A.;, Spencer, P. S. Computational insights into the chemical structures and mechanisms of the chromogenic and neurotoxic effects of aromatic2diketones. J. Phys. Chem. B 2003, 107, 2853-2861.
    22. Mennucci, B.; Tomasi, J. Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries. J. Chem. Phys. 1997, 106, 5151-5158.
    23. Chipman, D. M. Charge penetration in dielectric models of solvation. J. Chem. Phys. 1997, 106, 10194-10206.
    24. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347-1363.
    25. Clementi, E. Computational aspects of large chemical systems. Springer: Berlin, 1980. Vol 19, pp. 1-184.
    26. Vreven, T.; Morokuma, K. The ONIOM (our own N-layered integrated molecular orbital+molecularmechanies) method for the first singlet excited (S_1) state photo isomerization path of a retinal protonated Schiff base. J. Chem. Phys. 2000, 113, 2969-2975.
    27. Cui, Q.; Karplus, M. Molecular properties from combined QM/MM methods. I. Analytical second derivative and vibrational calculations. J. Chem. Phys. 2000, 112, 1133-1149.
    28. Florian, J.; Warshel, A. Langevin dipoles model for ab initio calculations of chemical processes in solution: Parametrization and application to hydration free energies of neutral and ionic solutes and conformational analysis in aqueous solution. J. Phys. Chem. B 1997, 101. 5583-5595.
    29. Broo, A.; Pearl, G; Zemer, M. C. Development of a hybrid quantum chemical and molecular mechanics method with application to solvent effects on the electronic spectra of uracil and uracil derivatives. J. Phys. Chem. A 1997,101, 2478-2488.
    30. Jung, Y.; Ho Choi, C. H.; Gordon, M. S. Adsorption of water on the Si(100) surface: An Ab Initio and QM/MM cluster study. J. Phys. Chem. B 2001,105, 4039-4044.
    31. Tomasi, J.; Persico, M. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem. Rev. 1994, 94, 2027-2094.
    32. Cramer, C. J.; Truhlar, D. G. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem. Rev. 1999, 99, 2161-2200.
    33. Kinoshita, M,; Hirata, F. Application of the reference interaction site model theory to analysis on surface-induced structure of water. J. Chem. Phys. 1996, 104, 8807-8815.
    34. Kerdeharoen, T.; Morokuma, K. Combined quantum mechanics and molecularmechanics simulation of Ca~(2+)/ammonia solution based on the ONIOM-XS method: Oetahedral coordination and implication to biology. J. Chem. Phys. 2003, 118, 8856-8862.
    35. Heard, G. L.; Yates, B. F. Hybrid supermolecule-polarizable continuum approach to solvation: Application to the mechanism of the Stevens rearrangement. J. Comput. Chem. 1996, 17, 1444-1452.
    36. Dixon, D. A.; Feller, D.; Zhan, C.-G; Francisco, S. F. The gas and solution phase acidities of HNO, HOONO, HONO, and HONO_2. Int. J. Mass Spectrom. 2003, 227, 421-438.
    37. Lu, H.; Chen, X.; Zhan, C.-G. First-Principles calculation of pK_a for cocaine, nicotine, neurotransmitters, and anilines in aqueous solution. J. Phys. Chem. B 2007, 111, 10599-10605.
    38. Zhan, C.-G.; Dixon, D. A.; Spencer, P. S. Chromogenie and neurotoxic effects of an aliphatic-diketone: computational insights into the molecular structures and mechanism. J. Phys. Chem. B 2004, 108, 6098-6104.
    39. Chen, X.; Zhan, C.-G. Theoretical determination of activation free energies for alkaline hydrolysis of cyclic and acyclic phosphodiesters in aqueous solution. J. Phys. Chem. A 2004, 108, 6407-6413.
    40. Xiong, Y.; Zhan, C. G Reaction pathways and free energy barriers for alkaline hydrolysis of insecticide 2-trimethylammonioethyl methylphosphonofluoridate and related organophosphorus compounds: electrostatic and steric effects. J. Org. Chem. 2004, 69, 8451-8458.
    41. Zhan, C. G; Deng, S. X.; Skiba, J. G; Hayes, B. A.; Tschampel, S. M.; Shields, G C.; Landry, D. W. First-principle studies of intermolecular and intramolecular catalysis of protonated cocaine. J. Comput. Chem. 2005, 26, 980-986.
    42. Xiong, Y.; Zhan, C.-G. Theoretical studies of the transition-state structures and free energy barriers for base-catalyzed hydrolysis of amides. J. Phys. Chem. A 2006,110, 12644-12652.
    43. Beavo, J. A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol. Rev. 1995, 75, 725-748.
    44. Soderling, S. H.; Beavo, J. A. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr. Opin. Cell Biol. 2000,12,174-179.
    45. Corbin, J. D.; Francis, S. H. Cyclic GMP phosphodiesterase-5: target of sildenafil. J. Biol. Chem. 1999,274,13729-13732.
    46. Beavo J. A., M. Conti and R. J. Heaslip. Multiple cyclic nucleotide phosphodiesterases. Mol. Pharmacol. 1994,46,399-405.
    47. Bolger, G B. Molecular biology of the cyclic AMP-specific cyclic nucleotide phosphodiesterases: a diverse family of regulatory enzymes. Cell. Signal. 1994,6, 851-859.
    48. Houslay M. D.; Milligan, G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem. Sci. 1997,22, 217-224.
    49. Beavo, J. A.; Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol. Rev. 1995, 75, 725-748.
    50. Weishaar, R. E.; Cain, M. H.; Bristol, J. A. A new generation of phosphodiesterase inhibitors: multiple molecular forms of phosphodiesterase and the potential for drug selectivity. J. Med. Chem. 1985,28, 537-545.
    51. Mehats, C; Andersen, C. B.; Filopanti, M.; Jin, S. L.; Conti, M. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocr. Met. 2002 , 13, 29-35.
    52. Perry, M. J.; Higgs G A. Chemotherapeutic potential of phosphodiesterase inhibitors. Curr. Opin, in Chem. Biol. 1998,2, 472-481.
    53. Torphy, T. J.; Page, C. Phosphodiesterases: the journey towards, therapeutics. Trends Pharmacol. Sci. 2000,27,157-159.
    54. Reffelmann, T.; Kloner, R. A. Therapeutic potential of phosphodiesterase 5 inhibition for cardiovascular disease. Circulation 2003,108, 239-244.
    55. Teixeira, M. M.; Gristwood, R. W.; Cooper, N.; Hellewell, P. G Phosphodiesterase (PDE)4 inhibitors: anti- inflammatory drugs of the future? Trends Pharmacol. Sci. 1997,18,164-170.
    56. Houslay, M. D.; Sullivan, M.; Bolger, G B. The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. Adv. Pharmacol. 1998, 44, 225-342.
    57. Aoki, M.; Kobayashi, M.; Ishikawa, J.; Saita, Y.; Terai, Y.; Takayama, K.; Miyata, K.; Yamada, T. Novel Phosphodiesterase Type 4 Inhibitor, YM976 (4-(3-Chlorophenyl)-1,7-diethylpyrido[2,3-d] pyrimidin-2(1H)-one), with Little Emetogenic Activity. J. Pharmacol. Exp. Ther. 2000, 295, 255-260.
    58. Billah, M. M. et al. Pharmacology of N-(3,5-dichloro-1-oxido-4-pyridinyl)-8-methoxy-2-(trifluoromethyl)-5-quinoline carboxamide (SCH 351591),a novel,orally active phosphodiesterase 4 inhibitor. J. Pharmacol. Exp. Ther. 2002, 302, 127-137.
    59. Rotella, D. P. Phosphodiestease 5 inhibitors: current status and potential applications. Nat. Rev. Drug Discov. 2002, 1,674-682.
    60. Conti, M., Nemoz, G.; Sette, C.; Vicini, E. Recent progress in understanding the hormonal regulation of phosphodiesterases. Endocr. Rev. 1995, 16, 370-389.
    61. Torphy, T. J. Phosphodiesterase isozymes. Am. J. Respir. Crit. Care Med. 1998, 157, 351-370.
    62. Levin, R. M.; Weiss, B. Mechanism by which psychotropic drugs inhibit adenosine cyclic 39, 59-monophosphate phosphodiesterase of brain. Mol. Pharmacol. 1976, 12, 581-589.
    63. Hidaka, H.; T. Tanaka; Itoh, H. Selective inhibitors of three forms of cyclic nucleotide phosphodiesterases. Trends Pharmacol. Sci. 1984, 5, 237-239.
    64. Wells, J. N.; Garst, J. E.; Kramer, G. L. Inhibition of separated forms of cyclic nucleotide phosphodiesterase from pig coronary arteries by 1,3-disubstituted and 1,3,8-trisubstituted xanthines. J. Med. Chem. 1981, 24, 954-958.
    65. Wood, M. A.; Hess, M. L. Review: long-term oral therapy of congestive heart failure with phosphodiesterase inhibitors. Am. J. Med. Sci. 1989, 297, 105-113.
    66. Xu, R. X.; Hassell, A. M.; Vanderwall, D., Lambert, M. H.; Holmes, W. D.; Luther, M. A. et al. Atomic structure of PDE 4: insights into phosphodiesterase mechanism and specificity. Science 2000, 288, 1822-1825.
    67. Xu, R. X.; Rocque, W. J.; Lambert, M. H.; Vanderwall, D. E.; Luther, M. A.; Nolte, R. T. Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP and rolipram. J. Mol. Biol. 2004, 337, 355-365.
    68. Lee, M. E., Markowitz, J.; Lee, J. O.; Lee, H. Crystal structure of phosphodiesterase 4D and inhibitor complex. FEBS Lett. 2002, 530, 53-58.
    69. Huai, Q.; Wang, H.; Sun, Y.; Kim, H. Y.; Liu, Y.; Ke, H. Three-dimensional structures of PDE4D in complex with roliprams and implication on inhibitor selectivity. Structure 2003, 11, 865-873.
    70. Huai, Q.; Colicelli, J; Ke, H. The crystal structure of AMP-bound PDE4 suggests a mechanism for phosphodiesterase catalysis. Biochemistry 2003,42,13220-13226.
    71. Huai, Q.; Liu, Y.; Francis, S. H.; Corbin, J. D.; Ke, H. Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity. J. Biol. Chem. 2004,279,13095-13101.
    72. Sung, B. J.; Hwang, K. Y; Jeon, Y H.; Lee, J. I.; Heo, Y S.; Kim, J. H. et al. Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Nature 2003, 425, 98-102.
    73. Scapin, G; Patel, S. B.; Chung, C; Varnerin, J. P.; Edmondson, S. D.; Mastracchio, A. et al. Crystal structure of human phosphodiesterase 3B: atomic basis for substrate and inhibitor specificity. Biochemistry 2004,43, 6091-6100.
    74. Zhang, K. Y; Card, G L.; Suzuki, Y; Artis, D. R.; Fong, D.; Gillette, S. et al. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol. Cell. 2004,15, 279-286.
    75. Huai, Q.; Wang, H.; Zhang, W.; Colman, R. W.; Robinson, H.; Ke, H. Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-l-methylxanthine binding. Proc. Natl. Acad. Sci. 2004,101, 9624-9629.
    76. Wang, H.; Liu, Y; Chen, Y; Robinson, H.; Ke, H. Multiple Elements Jointly Determine Inhibitor Selectivity of Cyclic Nucleotide Phosphodiesterases 4 and 7. J. Biol. Chem. 2005, 280, 30949-30955.
    77. Iffland, A; Kohls, D.; Low, S.; Luan, J.; Zhang, Y; Kothe, M.; Cao, Q.; Kamath, A. V; Ding, Y. H.; Ellenberger, T. Structural determinants for inhibitor specificity and selectivity in PDE2A using the wheat germ in vitro translation system. Biochemistry 2005,44,8312-8325.
    78. Beavo, J. A.; Brunton, L. L. Cyclic nucleotide research-still expanding after half a century. Nat. Rev. Mol. Cell Biol. 2002,3, 710-716.
    79. Conti, M. Phosphodiesterases and cyclic nucleotide signaling in endocrine cells. Mol. Endocrinol. 2000,14,1317-1327.
    80. Mehats, C; Andersen, C. B.; Filopanti, M.; Jin, S. L.; Conti, M. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol. Metab. 2002, 13, 29-35.
    81. Thompson, W. J. Cyclic nucleotide phosphodiesterases: pharmacology, biochemistry and function. Pharmacol. Ther. 1991,51,13-33.
    82. Bolger, G B. Molecular biology of the cyclic AMPspecific cyclic nucleotide phosphodiesterases: a diverse family of regulatory enzymes. Cell. Signal. 1994,6,851-859.
    83. Houslay, M. D.; Adams, D. R. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem. J. 2003, 370, 1-18.
    84. Sonnenburg, W. K.; Seger, D., Kwak, K. S.; Huang, J.; Charbonneau, H.; Beavo, J. A. Identification of inhibitory and calmodulin-binding domains of the PDE1A1 and PDE1A2 calmodulin-stimulated cyclic nucleotide phosphodiesterases. J. Biol. Chem. 1995, 270, 30989-31000.
    85. Percival, M. D.; Yeh, B.; Falgueyret, J. P. Zinc dependent activation of cAMP-specific phosphodiesterase (PDE4A). Biochem. Biophys. Res. Commun. 1997, 241,175-180.
    86. Laliberte, F.; Han, Y., Govindarajan, A.; Giroux, A.; Liu, S.; Bobechko B. et al. Conformational difference between PDE4 apoenzyme and holoenzyme. Biochemistry 2000, 39, 6449-6458.
    87. Kovala, T.; Sanwal, B. D., Ball, E. H. Recombinant expression of a type Ⅳ, cAMP-specific phosphodiesterase: characterization and structure-function studies of deletion mutants. Biochemistry 1997, 36, 2968-2976.
    88. Francis, S. H.; Colbran, J. L.; McAllister-Lucas, L. M.; Corbin, J. D. Zinc interactions and conserved motifs of the cGMP-binding cGMP-specific phosphodiesterase suggest that it is a zinc hydrolase. J. Biol. Chem. 1994, 269, 22477-22480.
    89. Zhan, C.-G.; Zheng, F. First computational evidence for a critical bridging hydroxide ion in phosphodiesterase active site. J. Am. Chem. Soc. 2001, 123, 2835-2838.
    90. Chen, X.; Zhan, C.-G. Fundamental reaction pathways and free energy barriers for ester hydrolysis of intracellular second messenger 3(?),5(?)-cyclic nucleotide. J. Phys. Chem. A 2004, 108, 3789-3797.
    91. Zhan, C.-G.; Norberto de Souza, O.; Rittenhouse, R., Ornstein, R. L. Determination of two structural forms of catalytic bridging ligand in zinc-phosphotriesterase by molecular dynamics simulation and quantum chemical calculation. J. Am. Chem. Soc. 1999, 121, 7279-7282.
    92. Koca, J.; Zhan, C.-G.; Rittenhouse, R.; Ornstein, R. L. Mobility of the active site bound paraoxon and satin in zinc-phosphotriesterase by molecular dynamics simulation and quantum chemical calculation. J. Am. Chem. Soc. 2001, 123, 817-826.
    93. Zheng, F.; Zhan, C.-G.; Ornstein, R. L. Theoretical studies of reaction pathways and energy barriers for base-catalyzed hydrolysis of phosphotriesterase substrates paraoxon and related toxic nerve agents. J. Chem. Soc. Perkin Trans. 2 2001, 2355-2363.
    94. Zheng, F.; Zhan, C.-G.; Ornstein, R. L. Theoretical determination of two structural forms of the active site in cadmium-substituted phosphotriesterase. J. Phys. Chem. B 2002, 106, 717-722.
    95. Koca, J.; Zhan, C.-G.; Rittenhouse, R. C.; Ornstein, R. L. Coordination number of zinc ions in phosphotriesterase active site by molecular dynamics and quantum mechanics. J. Comput. Chem. 2003,24, 368-378.
    96. Zhan, C.-G; Zheng, E; Landry, D. W. Fundamental reaction mechanism for cocaine metabolism in human butyrylcholinesterase. J. Am. Chem. Soc. 2003,125, 2462-2474.
    97. Richter, W. 3 ',5 '-cyclic nucleotide phosphodiesterases class HI: Members, structure, and catalytic mechanism. Proteins 2002,46,278-286.
    98. Zhang, W.; Ke, H.; Colman, R. W. Identification of interaction sites of cyclic nucleotide phosphodiesterase type 3A with milrinone and cilostazol using molecular modeling and site-directed mutagenesis. Mol. Pharmacol. 2002,62,514-520.
    99. Sopory, S.; Balaji, S.; Srinivasan, N. et al. Modeling and mutational analysis of the GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase, PDE5, FEBS Lett. 2003,539, 161-166.
    100. Salter, E. A.; Wierzbicki, A.; Sperl, G et al. Homology models of the catalytic sites of phosphodiesterase 5A and 10A and molecular docking of selective apoptotic antineoplastic drugs (SAANDs), Int. J. Quantum Chem. 2004,96,402-410.
    101. Liu, S., F. Laliberte, B. Bobechko, A. Bartlett, P. Lario, E. Gorseth, J. Van Hamme, M. J. Gresser, and Z. Huang. Dissecting the cofactor-dependent and independent bindings of PDE4 inhibitors. Biochemistry 2001,40,10179-10186.
    102. Wang, P., P. Wu, J. G Myers, A. Stamford, R. W. Egan, and M. M. Billah. Characterization of human, dog and rabbit corpus cavernosum type 5 phosphodiesterases. Life Sci. 2001, 68, 1977-1987.
    103. Xiong, Y.; Lu. H.; Yang, G Zhan, C.-G Characterization of a Catalytic Ligand Bridging Metal Ions in Phosphodiesterases 4 and 5 by molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations. Biophys. J. 2006, 91,1858-1867.
    1. Mendelson, J. H.; Mello, N. K. Drug therapy: Management of cocaine abuse and dependence. New Engl. J. Med. 1996, 334, 965-972.
    2. Singh, S. Chemistry, design, and structure-activity relationship of cocaine antagonists. Chem. Rev. 2000,100, 925-1024.
    3. Paula, S., Tabet, M. R.; Farr, C. D.; Norman, A. B.; Ball, W. J., Jr. Three-dimensional quantitative structure-activity relationship modeling of cocaine binding by a novel human monoclonal antibody. J. Med. Chem. 2004, 47, 133-142.
    4. Sparenborg, S.; Vocci, F.; Zukin, S. Peripheral cocaine-blocking agents: new medications for cocaine dependence: An introduction to immunological and enzymatic approaches to treating cocaine dependence reported by Fox, Gorelick and Cohen in the immediately succeeding articles. Drug Alcohol Depend. 1997, 48, 149-151.
    5. Gorelick, D. A. Enhancing cocaine metabolism with butyrylcholinesterase as a treatment strategy. Drug Alcohol Depend. 1997, 48, 159-165.
    6. Quikk, M. Smoking, nicotine and Parkinson's disease. Trends Neurosci. 2004, 27, 561-568.
    7. Hogg, R. C.; Bertrand, D. Enhanced: What genes tell us about nicotine addiction. Science 2004, 306, 983-985.
    8. Green, J. P. Histamine. Handb. Neurochem. 1970, 4, 221-250.
    9. Rite, O. B. Comparative physiology of histamine. Physiol. Rev. 1972, 52, 778-819.
    10. Nguyen, T.; Shapiro, D. A.; George, S. R.; Setola, V.; Lee, D. K.; Cheng, R., Rauser, L. Lee, S. P. Discovery of a novel member of the histamine receptor family. Mol. Pharmacol. 2001, 59, 427-433.
    11. Keisuke, T.; Bacon, K. B.; Gantner, F. Critical role of L-selectin and histamine H4 receptor in zymosan-induced neutrophil recruitment from the bone marrow: comparison with carrageenan. J. Pharmacol. Exp. Ther. 2004, 310, 272-280.
    12. Huang, X.; Zheng, F.; Crooks, P. A.; Dwoskin, L. P.; Zhan, C.-G. Modeling multiple species of nicotine and deschloroepibatidine interacting with 42 nicotinic acetylcholine receptor: from microscopic binding to phenomenological binding affinity. J. Am. Chem. Soc. 2005, 127, 14401-14414.
    13. Huang, X.; Zheng, F.; Chen, X.; Crooks, P. A.; Dwoskin, L. P.; Zhan, C.-G Modeling subtype-selective agonists binding with 42 and 7 nicotinic acetylcholine receptors: effects of local binding and long-range electrostatic interactions. J. Med. Chem. 2006, 49. 7661-7674.
    14. Guilman, A. G., Rall, T. W., Nies, A. S., Taylor, P. (8th ed.) The Pharmacological Basis of Therapeutics, Pergamon Press: New York, 1990. pp. 1311-1331.
    15. da Silva, C. O.; da Silva, E. C.; Nascimento, M. A. C. Ab Initio calculations of absolute pK_a values in aqueous solution I. carboxylic acids. J. Phys. Chem. A 1999, 103, 11194-11199.
    16. Cookson, R. F. Determination of acidity constants. Chem. Rev. 1974, 74, 5-28.
    17. Sehiiiirmann, G. Modelling pK_a of carboxylic acids and phenols. Quant. Struct.-Act. Relat. 1996, 15, 121-132.
    18. Cramer, C. J., Truhlar, D. G. An SCF solvation model for the hydrophobic effect and absolute free energies of aqueous solvation including specific water interactions. Science 1992, 256, 213-217.
    19. Lim, C.; Bashford, D.; Karplus, M. Absolute pK_a calculations with continuum dielectric methods. J. Phys. Chem. 1991, 95, 5610-5620.
    20. Andzelm, J.; Kolmel, C.; Klamt, A. Incorporation of solvation effects into density functional calculations of molecular energies and geometries. J. Chem. Phys. 1995, 103, 9312-9320.
    21. Richardson, W. H.; Peng, C.; Bashford, D.; Noodleman, L.; Case, D. A. Incorporating solvation effects into density functional theory: calculation of absolute acidities. Int. J. Quantum Chem. 1997, 61, 207-217.
    22. Li, G. S.; Ruiz-Lopes, M. F.; Maigret, B. Ab Initio study of 4(5)-methylimidazole in aqueous solution. J. Phys. Chem. A 1997, 101, 7885-7892.
    23. Schtuurmann, G.; Cossi, M.; Barone, V.; Tomasi, J. Prediction of the pK_a of carboxylic acids using the ab initio continuum-solvation model PCM-UAHF. J. Phys. Chem. A 1998, 102, 6706-6712.
    24. Motta Netto, J. D.; Nascimento, M. A. C. A comparative study of the gas-phase acidities of aliphatic alcohols and carboxylic acids from generalized valence bond and generalized multistructural calculations. J. Phys. Chem. 1996, 100, 15105-15110.
    25. Siggel, M. R. F.; Thomas, D. T.; Saethre, L. J. Ab initio calculation of broensted acidities. J. Am. Chem. Soc. 1988, 110, 91-96.
    26. Gao, J., Garner, D. S.; Jorgensen, W. L. Ab initio study of structures and binding energies for anion-water complexes. J. Am. Chem. Soc. 1986, 108, 4784-4790.
    27. Nagy, P. I., Alagona, G.; Ghio, C.; Takacs-Novak, K. Theoretical conformational analysis for neurotransmitters in the gas phase and in aqueous solution, norepinephrine. J. Am. Chem. Soc. 2003, 125, 2770-2785.
    28. Dickinson, J. A., Hockridge, M. R.; Kroemer, R. T.; Robertson, E. G.; Simons, J. P.; McCombie, J.; Walker, M. Conformational choice, hydrogen bonding, and rotation of the S_1←S_0 electronic transition moment in 2-phenylethyl alcohol, 2-phenylethylamine, and their water clusters. J. Am. Chem. Soc. 1998, 120, 2622-2632.
    29. Lee, C.; Yang, W., Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789.
    30. Becke, A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.
    31. Stephens, P. J., Devlin, F. J.; Chabalowski, C. F., Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623-11627.
    32. Head-Gordon, M., Pople, J. A.; Frisch, M. J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503-506.
    33. Frisch, M. J.; Head-Gordon, M.; Pople, J. A. A direct MP2 gradient method. Chem. Phys. Lett. 1990, 166, 275-280.
    34. Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett. 1990, 166, 281-289.
    35. Head-Gordon, M.; Head-Gordon, T. Analytic MP2 frequencies without fifth order storage: theory and application to bifurcated hydrogen bonds in the water hexamer. Chem. Phys. Lett. 1994, 220, 122-128.
    36. Saebo, S.; Almlof, J. Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem. Phys. Lett. 1989, 154, 83-89.
    37. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E..; Robb, M. A., Cheeseman, J. R.; Zakrzewski, V. G, Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C., Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C., Adamo, C., Clifford, S., Ochterski, J.; Petersson, G A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Maliek, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A., Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L., Fox, D. J.; Keith, T.; Al-Laham, M. A., Peng, C. Y., Nanayakkara, A.; Gonzalez, C., Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W., Wong, M. W.; Andres, J. L.; Gonzalez, A. C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburgh, PA, 2003.
    38. Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum—A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117-129.
    39. Miertus, S.; Tomasi, J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 1982, 65, 239-252.
    40. Cossi, M.; Barone, V.; Cammi, R.; Tomasi, Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. J. Chem. Phys. Lett. 1996, 255, 327-335.
    41. Cances, M. T.; Mennucci, B.; Tomasi, J. A new integral equation, formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032-3041.
    42. Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the Polarizable Continuum Model: Theoretical background and applications to isotropic and anisotropic dielectrics. Chem. Phys. Lett. 1998, 286, 253-260.
    43. Mennucci, B.; Cammi, R.; Tomasi, J. Excited states and solvatochromic shifts within a nonequilibrium solvation approach: a new formulation of the Integral Equation Formalism (IEF) method, at the SCF, CI and MCSCF level. J. Chem.Phys. 1998, 109, 2798-2807.
    44. Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995-2001.
    45. Mejias, J. A.; Lago, S. Calculation of the absolute hydration enthalpy and free energy of H~+ and OH~-. J. Chem. Phys. 2000, 113, 7306-7316.
    46. Nagy, P. I.; Takacs-Novak, K. Tautomeric and conformational equilibria of biologically important (hydroxyphenyl)alkylamines in the gas phase and in aqueous solution. Phys. Chem. Chem. Phys. 2004, 6, 2838-2848.
    47. Li, P.; Zhao, K.; Deng, S.; Landry, D. W. Nonenzymatic hydrolysis of cocaine via intramolecular acid catalysis. Helv. Chim. Acta 1999, 82, 85-89.
    48. Gorrod, J. W., Jacob, P., Ⅲ, Eds. Analytic Determination of Nicotine and Related Compounds and Their Metabolites; Elsevier: New York, 1999.
    49. Ren, H.; Lang, H., Eds. Handbook of Analytical Chemistry, 2nd Edition; Chemical Industry Press: Beijing, 1997.
    50. Ham, N. S.; Casy, A. F.; Ison, K. R. Solution conformations of histamine and some related derivatives. J. Med. Chem. 1973, 16, 470-475.
    51. Ganellin, C. R.; Pepper, E. S.; Port, G. N. J.; Richards, W. G. Conformation of histamine derivatives. 1. Application of molecular orbital calculations and nuclear magnetic resonance spectroscopy. J. Med. Chem. 1973, 16, 610-616.
    52. Bonnet, J. J.; Ibers, J. A. Structure of histamine. J. Am. Chem. Soc. 1973, 95, 4829-4833.
    53. Byrn, S. R.; Graber, C. W.; Midland, S. L. Comparison of the solid and solution conformations of methapyriline, tripelennamine, diphenhydramine, histamine, and choline. The infrared-x-ray method for determination of solution conformations. J. Org. Chem. 1976, 41, 2283-2288.
    54. Prout, K.; Critchley, S. R.; Ganellin, C. R. 2-(4-Imidazolyl)ethylammonium bromide (histamine monohydrobromide) Acta Crystallogr., Sect. B 1974, 30, 2884-2886.
    55. Roberts, J. D.; Yu, C.; Flanagan, C.; Birdseye, T. Anitrogen-15 nuclear magnetic resonance study of the acid-base and tautomeric equilibriums of 4-substituted imidazoles and its relevance to the catalytic mechanism of .alpha.-lytie protease. J. Am. Chem. Soc. 1982,104, 3945-3949.
    56. Paiva, T. B.; Tominaga, M.; Paiva, A. C. M. Ionization of histamine, N-acetylhistamine, and their iodinated derivatives. J. Med. Chem. 1970,13, 689-692.
    57. Ramirez, F. J.; Tufi6n, I.; Collado, J. A.; Silla, E. Structural and vibrational study of the tautomerism of histamine free-base in solution. J. Am. Chem. Soc. 2003, 125, 2328-2340.
    58. Collado, J. A., Tunon, I.; Silla, E.; Ramfrez, F. J. Vibrational dynamics of histamine monocation in solution: an experimental (FT-IR, FT-Raman) and theoretical (SCRF-DFT) study. J. Phys. Chem. A 2000, 104, 2120-2131.
    59. Collado, J. A.; Ramirez, F. J. Infrared and Raman spectra of histamine-Nh4 and histamine-Nd4 monohydroehlorides. J. Raman Spectrosc. 1999, 30, 391-397.
    60. Collado, J. A.; Ramirez, F. J. Vibrational spectra and assignments of histamine dication in the solid state and in solution. J. Raman Spectrosc. 2000, 31,925-931.
    61. Kraszni, M.; Kokosi, J.; Noszal, B. Concentration and basicity of histamine rotamers. J. Chem. Soc., Perkin Trans. 2, 2002, 5, 914-917.
    62. Farnell, L., Riehards, W. G; Canellin, C. R. Conformation of histamine derivatives. 5. Molecular orbital calculation of the H1-receptor essential conformation of histamine. J. Med. Chem. 1978, 18, 662-666.
    63. Luque, F. J.; Sanz, E; Illas, F.; Pouplana, R.; Smeyers, Y. G Relationships between the activity of some H2-receptor agonists of histamine and their ab initio molecular electrostatic potential (MEP) and electron density comparison coefficients. Eur. J. Med. Chem. 1988, 23, 7-10.
    64. Hernindez-Laguna, A.; Abboud, J. L. M.; Notario, R.; Homan, H.; Smeyers, Y.G. The intrinsic basieity of 4(5)-2'-aminoethylimidazole (histamine). J. Am. Chem. Soc. 1993,115, 1450-1454.
    65. Nagy, P. I.; Durant, G. J.; Hoss, W. P.; Smith, D. A. Theoretical analyses of the tautomerie and conformational equilibria of histamine and (.alpha.R,.beta.S)-.alpha.,.beta.-dimethylhistamine in the gas phase and aqueous solution. J. Am. Chem. Soc 1994, 116, 4898-4909.
    66. Worth, G. A. Riehards, W. G. Calculation of the tautomer ratio of histamine in aqueous solution using free energy perturbation methods: an in-depth study. J. Am. Chem. Soc. 1994,116, 239-250.
    67. Hernandez-Laguna, A.; Cruz-Rodriguez, Z.; Smeyers, Y. G; Arteca, G. A.; Abboud, J. L. M.; Tapia, O. Ab initio determination of the critical points of the potential energy surface of the N_(3)-H and N_(1.3)-H tautomers of histamine monocation. J. Mol. Struct. (Theochem) 1995, 335, 77-87.
    68. Karpinska, G.; Dobrowolski, J. C.; Mazurek, A. P. Tautomerism of histamine revisited. J. Mol. Struct. (Theochem) 1996, 369, 137-144.
    69. Kovalainen, J. T.; Christiaans, J. A. M.; Ropponen, R.; Poso, A.; Perakyla, M.; Vepsalainen, J.; Laatikainen, R.; Gynther, J. A proton relay process as the mechanism of activation of the histamine H3-receptor determined by 1H NMR and ab initio quantum mechanical calculations. J. Am. Chem. Soc. 2000, 122, 6989-6996.
    70. Raczynska, E. D.; Darowska, M.; Rudka, T.; Makowski, M. Tautomerism of neutral and monoprotonated histamine-a comparison of semi-empirical and ab initio quantum mechanical predictions for 'essential' and 'scorpio' conformations. J. Phys.Org. Chem. 2001, 14, 770-777.
    71. Darowska, M.; Raczynska, E. D. Viriations of Tautomeric preferences in histamine monocation-ab initio studies for "essential" and "Scorpio" conformations from the gas phase to aqueous solution. Polish J. Chem. 2002, 76, 1027-1035.
    72. Raczynska, E. D.; Darowska, M.; Cyranski, M. K.; Makowski, M.; Rudka, T.; Gal, J-E; Maria, P-C. Ab initio study of tautomerism and of basicity center preference in histamine, from gas phase to solution-comparison with experimental data (gas phase, solution, solid state). J. Phys. Org. Chem. 2003, 16, 783-796.
    73. Raczynska, E. D.; Rudka, T.; Darowska, M.; Gal, J-F.; Maria, P-C. Experimental (FT-ICR) and theoretical (DFT) estimation of the basic site preference for the bidentate molecule 2-(β-aminoethyl)-pyridine: similarity with histamine J. Phys. Org. Chem. 2005, 18, 856-863.
    74. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.
    75. Jorgensen, W. L.; Madura, J. D. Temperature and size dependence for monte carlo simulations of TIP4P water. Mol. Phys. 1985, 56, 1381-1392.
    76. Burke, K.; Perdew, J. P.; Wang, Y. Dobson, J. E; Vignale, G.; Das, M. P. (ed.) In Electronic Density Functional Theory: Recent Progress and New Directions. Plenum Press, New York, 1998. pp. 199-216.
    77. Perdew, J. P. in Electronic Structure of Solids '91, Ziesche, P.; Eschrig, H. (ed.) Akademie Vedag, Berlin, 1991, pp. 11-20.
    78. Wong, M. W. Vibrational frequency prediction using density functional theory. Chem. Phys. Lett. 1996, 256, 391-399.
    1. Warshel, A. Computer Modeling of Chemical Reactions in Enzymes. Wdey-Interscience, New York, 1991, pp. 313-365.
    2. Aqvist, J.; Warshel, A. Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chem. Rev. 1993, 93, 2523-2544.
    3. Aqvist, J.; Fothergill, M. Computer simulation of the triosephosphate isomerase catalyzed reaction. J. Biol. Chem. 1996, 271, 10010-10016.
    4. Fuxreiter, M; Warshel, A. Origin of the catalytic power of acetylcholinesterase: computer simulation studies. J. Am. Chem. Soc. 1998, 120, 183-194.
    5. Gao, J. Review in Computational Chemistry, Lipkowitz, K. B.; Boyd, D. B. (Ed.) Wdey and Sons, New York, 1995, Vol 7, pp. 119-185.
    6. Friesner, R. A.;Beach, M. D. Quantum mechanical calculations on biological systems. Curr. Opin. Struct. Biol.1998, 8, 257-262.
    7. Merz, K. M.; Stanton, R. V. Quantum mechanical/molecular mechanical (QM/MM) coupled potentials in Encyclopedia of Computational Chemistry, Wdey-Interscience, New York, 1998, Vol 4, pp. 2330-2343.
    8. Warshel, A.; Levitt, M. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 1976, 103, 227-249.
    9. Singh, U. C.; Kollman, P. A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH_3Cl+Cl~- exchange reaction and gas phase protonation of polyethers. J. Comput. Chem. 1986, 7, 718-730.
    10. Field, M. J.; Bash, P. A.; Karplns, M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem. 1990, 11,700-733.
    11. Gao, J.; Xia, X. A priori evaluation of aqueous polarization effects through monte carlo QM-MM simulations. Science 1992, 258, 631-635.
    12. Stanton, R. V.; Hartsough, D. S.; Merz, K. M. Calculation of solvation free energies using a density functional/molecular dynamics coupled potential. J. Phys. Chem. 1993, 97, 11868-11870.
    13. Thery, V.; Rinaldi, D.; Rivail, J. L. Quantum mechanical computations on very large molecular systems: The local self-consistent field method. J. Comput. Chem. 1994,15, 269-282.
    14. Maseras, F.; Morokuma, K. IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J. Comput. Chem. 1995,16,1170-1179.
    15. Eurenius, K. P.; Chatfield, D. C; Brooks, B. R.; Hodoscek, M. Enzyme mechanisms with hybrid quantum and molecular mechanical potentials. I. Theoretical considerations. Int. J.Quantum Chem. 1996, 60,1189-1200.
    16. Bakowies, D.;Thiel, W. Hybrid models for combined quantum mechanical and molecular mechanical approaches. J. Phys. Chem. 1996,100,10580-10594.
    17. Gao, J.; Amara, P.; Alhambra, C; Field, M. J. A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations. J. Phys. Chem. A 1998, 102, 4714-4721.
    18. Bash, P. A.; Field, M. J.; Dvenport, R. G; Petsko, G A.; Ringe, D.; Karplus, M. Computer simulation and analysis of the reaction pathway of triosephosphate isomerase. Biochemistry 1991, 30, 5826-5832.
    19. Liu, H.; Muller-Plathe, F.; and Gunsteren, W. F. A combined quantum/classical molecular dynamics study of the catalytic mechanism of HIV protease. J. Mol. Biol. 1996,261, 454-469.
    20. Cunningham, M. A.; Ho, L. L.; Nguyen, D. T.; Gillilan, R. E.; Bash, P. A. Simulation of the enzyme reaction mechanism of malate dehydrogenase. Biochemistry 1997,36, 4800-4816.
    21. Merz, K. M., Jr.; Banci, L. Binding of bicarbonate to human carbonic anhydrase II: A continuum of binding states. J. Am. Chem. Soc. 1997,119, 863-871.
    22. Alhambra, C; Wu, L.; Zhang, Z.-Y.; Gao, J. Walden-inversion-enforced transition-state stabilization in a protein tyrosine Phosphatase. J. Am. Chem. Soc. 1998,120, 3858-3866.
    23. Antonczak, S.; Monard, G; Ruiz-Lopez, M. F.; Rivail, J.-L. Modeling of peptide hydrolysis by thermolysin. A semiempirical and QM/MM study. J. Am.Chem. Soc. 1998,120, 8825-8833.
    24. Alhambra, C; Gao, J.; Corchado, J. C; Villa, J.; Truhlar, D. G Quantum mechanical dynamical effects in an enzyme-catalyzed proton transfer reaction. J. Am. Chem. Soc. 1999, 121, 2253-2258.
    25. Alder, B.J.; Wainwright, T. E. Phase transition for a hard sphere system J. Chem. Phys. 1957,27, 1208-1209.
    26. Goodsell, D.S.; Olson, A. J. Automated docking of substrates to proteins by simulated annealing. Proteins: Str. Func. Genet. 1990,8,195-202.
    27. Morris, G M.; Goodsell, D. S.; Huey, R.; Olson, A. J. Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. J. Comput.-Aided Mol. Des. 1996,10, 293-304.
    28. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian generic algorithm and empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639-1662.
    29. Kubinyi, H. 3D-QSAR in drug Design: Theoretical Methods and Application. Kubinyi, H. (Ed.) ESCOM Science Publishers Science Publishers B.V., Leiden: ESCOM, 1993, Vol 1. pp. 386-405.
    30. Klebe, G., Abraham, U., Mietzner, T., Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem. 1994, 37, 4130-4146.
    31. Bohm, M.; Sturzebecher, J.; Klebe, G. Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J Med Chem. 1999, 42, 458-477.
    32. Hopfinger, A.J.; Wang, S.; Tokarski, J.S., et al. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism J. Am. Chem. Soc. 1997, 119, 10509-10524.
    33. Albuquerque, M.G.; Hopfinger, A.J.; Barreiro, E.J., et al. Four-dimensional quantitative structure-activity relationship analysis of a series of interphenylene 7-oxabicycloheptane oxazole thromboxane A2 receptor antagonists. J. Chem. Inf. Comput. Sci. 1998, 38, 925-938.
    34. Bursi, R.; Sawa, M.; Hiramatsu, Y.; Kondo, H. A three-dimensional quantitative structure-activity relationship study of heparin-Binding epidermal growth factor shedding inhibitors using comparative molecular field analysis. J. Med. Chem. 2002, 45, 781-788.
    35. Sun, W. S.; Park, Y. S.; Yoo, J.; Park, K.D.; Kim, S. H.; Kim, J. H.; Park, H. J. Rational design of an indolebutanoic acid derivative as a novel aldose reductase inhibitor based on docking and 3D QSAR studies of phenethylamine derivatives. J. Med. Chem. 2003, 46, 5619-5627.
    36. Kuo, C. L.; Assefa, H.; Kamath, S.; Brzozowski, Z.; Slawinski, J.; Saczewski, F.; Buolamwini, J. K.; Neamati, N. Application of CoMFA and CoMSIA 3D-QSAR and docking studies in optimization of mercaptobenzenesulfonamides as HIV-1 integrase inhibitors. J. Med. Chem. 2004, 47, 385-399.
    37. Ahn, H. S.; Bercovici, A.; Boykow, G.; Bronnenkant, A.; Chackalamannil, S.; et al. Potent tetracyclic guanine inhibitors of PDE1 and PDE5 cyclic guanosine monophosphate phosphodiesterases with oral antihypertensive activity. J. Med. Chem. 1997, 40, 2196-2210.
    38. Ho, G. D.; Silverman, L.; Bercovici, A.; Puchalski, C.; Tulshian, D.; Xia, Y.; Czarniecki, M.; Green, M.; Cleven, R.; Zhang, H.; Fawzi, A. Synthesis and evaluation of potent and selective c-GMP phosphodiestrase inhibitors. Bioorg. Med. Chem. Lett. 1999,9, 7-12.
    39. Pissarnitski, D. A.; Asberom, T.; Boyle, C. D.; Chackalamannil, S.; Chintala, M.; Clader, J. W.; Greenlee, W. J.; Hu, Y.; Kurowski, S.; Myers, J.; Palamanda, J.; Stamford, A. W.; Vemulapalli, S.; Wang, Y.; Wang, P.; Wu, P.; Xu, R. SAR development of polycyclic guanine derivatives targeted to the discovery of a selective PDE5 inhibitor for treatment of erectile dysfunction. Bioorg. Med. Chem. Lett. 2004,14,1291-1294.
    40. Berntein, F. C; Koetzle, T. F.; Williams, G J.; Meyer, E. E. Jr.; Brice, M. D.; Rodgers, J. R. et al. A computer-based archival file for macromolecular structures. J. Mol. Biol. 1977,112,535-542.
    41. Zhang, K. Y. J.; Card, G. L; Suzuki, Y.; Artis, D. R.;Fong, D.; Gillette, S.; Hsieh, D.; Neiman, J.; West, B. L.;Zhang, C; Milburn, M. V.; Kim, S. H.; Schlessinger, J.; Bollag, G. A glutamine switch mechanism for nucleotide selectivity by Phosphodiesterases. Mol. Cell 2004,15, 279-286.
    42. Case, D.A.; Pearlman, D.A.; Caldwell, J.W.; Cheatham III, T.E.; Wang, J.; Ross,W.S.; Simmerling, C.L.; Darden, T.A.; Merz, K.M.; Stanton, R.V.; Cheng, A.L.; Vincent, J. J.; Crowley, M.; Tsui, V.; Gohlke, H.; Radmer, R.J.; Duan, Y; Pitera, J.; Massova, I.; Seibel, GL.;Singh, U.C.; Weiner, P.K.; Kollman, P.A. AMBER 7, University of California, San Francisco, 2002.
    43. Hamza, A.; Cho, H.; Tai, H.-H.; Zhan, C.-G Molecular dynamics simulation of cocaine binding with human butyrylcholinesterase and its mutants. J. Phys. Chem. B 2005,109,4776-4782.
    44. Berendsen, H. C; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular-dynamics with coupling to an external bath. J. Comp. Phys. 1984,81, 3684-3690.
    45. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. C. Numerical-integration of cartesian equations of motion of a system with constraints-molecular-dynamics of n-alkanes. J. Comp. Phys. 1977, 23, 327-341.
    46. Darden, T.;York, D.; Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993,98,10089-10092.
    47. Dapprich, S.; Komaromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives J. Mol. Struct. (Theochem) 1999,461,1-21.
    48. Frisch, M.; Vreven, T.; Schlegel, H. B.; Morokuma, K. Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. J. Comput. Chem. 2003,24, 760-769.
    49. Stote, R. H.; Karplus, M. Zinc binding in proteins and solution: a simple but accurate nonbonded representation. Proteins 1995,23,12-31.
    50. SYBYL molecular modeling software, Version 7.0, Tripos Associated Ltd.: St. Louis, MO.
    51. Yang, G-E; Lu, H.; Xiong, Y.; Zhan, C. -G Understanding the structure-activity and structure-selectivity correlation of cyclic guanine derivatives as phosphodiesterase-5 inhibitors by molecular docking, CoMFA and CoMSIA analyses. Bioorg. Med. Chem., 2006, 14, 1462-1473.