原子与富勒烯笼的相互作用的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用基于第一性原理的密度泛函理论,系统研究了以C_(60)为代表的富勒烯衍生物的几何构型及电荷性质。通过计算富勒烯内包化合物的势能面,研究了内包H、Li、Na、K、Be、Mg、Ca、N、P和As原子与碳笼的相互作用及内包原子在富勒烯笼里的运动情况;通过计算原子穿越碳笼的势能曲线,探讨了内包化合物M@C_(60)(M=H,H_2,Li,Be,N)不同的形成机理,以及原子在笼内外之间运动的穿越机理或渗透机理;同时得到在N@C_(60)中,氮原子和富勒烯笼的相互作用为范德瓦尔类型,氮原子稳定地存在于碳笼中心。从能量角度看,N原于是沿着弯曲的能量隧道逃逸富勒烯碳笼的,N原子穿越富勒烯笼的机理是插入机理;P原子与C_(60)的相互作用,类似于N原子与C_(60)的作用机理。
     计算表明,M@C_(60)(M=Li,Na,K,Be,Mg,Ca,N,P,As)的势能面,总体上呈现10个相对小的波谷和10个波峰,这是由富勒烯笼的几何结构所决定的。势能面上最高点位于碳原子上,较高点位于C-C键中心,波谷分别属于六元环和五元环中心。从能量的观点看,受原子半径大小的影响,Li,Na在富勒烯笼中可以在较小范围游荡,而K,Be,Mg,Ca则相对稳定在富勒烯笼中心附近。Li@C_(60)和Be@C_(60)中,原子在碳笼内和碳笼外都形成Li-C和Be-C键。发现氢分子穿越富勒烯C_(60),C_(59)和C_(58),氮和氢原子穿越C_(60)和C_(58)及Li原子穿越C_(58)_4-4-8(5)环中心的过程为插入机理;N、Be、H原子穿越C_(59)为混合机理,而Li和Be原子穿越C_(60)和C_(58)环中心为渗透机理。
     通过对硼氮富勒烯内包第一周期到第四周期原子的结合能的研究,发现O和F可以和(BN)_n(n=12,16,20,24,28)形成稳定的内包化合物。对于较小的硼氮笼,如B_(12)N_(12)和B_(16)N_(16),第一、二和三周期元素形成M@B_(12)N_(12)和M@B_(16)N_(16)包合物的结合能由小到大依次增加。第四周期元素则先由K降低到Ni,然后升高到Kr:从主族和惰性元素看,则是按周期递增的。总的来讲,M@B_(12)N_(12)结合能较M@B_(16)N_(16)是增加的。所有这些规律,大致是同原子半径的变化相一致(O,F除外)。这是由于B_(12)N_(12)和B_(16)N_(16)富勒烯笼的半径较小,分别是4.081A和5.156A,形成包合物时内包原子与外笼间的距离过小,相互排斥作用和内包原子的半径关系密切所致;同时B_(16)N_(16)笼半径较B_(12)N_(12)笼的半径已有明显增大,所以整体上结合能变小,相对热力学上较有利。M@B_(20)N_(20)对于第一周期元素形成M@B_(20)N_(20)包合物的结合能由H的-1.8030 eV降低到He的-1.2933eV:从主族和惰性元素看,则是按周期递增的;M@B_(20)N_(20)包合物的规律不明显,可能是由于B_(20)N_(20)富勒烯笼的半径为6.271A,在形成包合物时,内包原子与笼间的距离大致在键长范围,影响结合能的各个因素如电荷间相互作用、范德瓦尔相互作用及成键因素等共同作用的结果。B_(24)N_(24)不同异构体的富勒烯在形成包合物时,稳定性顺序发生变化,稳定性最差O对称性的B_(24)N_(24)的包合物稳定性增加,S_8对称性的B_(24)N_(24)形成的多数元素包合物稳定性的次之,原先的最优构型S_4对称性的B_(24)N_(24)包合物稳定性变差。这和O对称性的B_(24)N_(24)球形构型笼内空间较大有关。对于M@B_(28)N_(28):大体上,包合物的稳定性按周期降低,在各周期,对于主族按序数增加,到惰性元素降低。副族元素的Mn、Fe、Co和Cu较其它元素的包合物稳定性明显增加。O、F和Fe由于电负性较大,在BnNn(n=12,16,20,24,28)中都能形成稳定的包合物。B和N的硼氮富勒烯内包物,硼氮富勒烯笼带正电荷,内包原子带负电荷。如果内包原子带负电荷,硼氮富勒烯笼带正电荷的包合物相对稳定;相反,内包原子带正电荷,硼氮富勒烯笼带负电荷的包合物相对不稳定。
First-principles density functional theory calculations were performed to investigate thegeometry structures and electronic properties of the classical and nonclassical fullerenes C_x(x=58, 59, 60, 62) with seven-, eight-, and nine-membered rings. Representative patch methodwas employed to generate the potential energy surface (PES). At the same time, theinteraction and the motion of an endohedral atom (such as H, Li, Na, K, Be, Mg, Ca,N, P and As) with the fullerene cage were discussed,. Different mechanisms of atomendohedral fullerenes complex M@C_(60) (M=H, H_2, Li, Be, N) are summarized, includingpenetration mechanisms and ring direct insertion mechanisms. In fullerene complex N@C_(60),the nitrogen-fullerene interaction belongs to the van der Waals type and nitrogen atom staysin the center of fullerene cage. Nitrogen atom escapes from the cage along a curving energytunnel. The mechanism of inserting a nitrogen atom inside fullerene cage to form anendohedral fullerene complex is ring penetration. The interaction mechanisms between aphosphorus atom and a fullerene cage resemble the case of nitrogen atom.
     PES of M@C_(60)(M=Li, Na, K, Be, Mg, Ca, N, P, As) is characterized by a relatively flatcentral basin near the center of cage, as well as ten energy curves and ten energy peaks nearthe shell of fullerene cage. The PES is decided by the geometry structure of fullerene cage.The highest points of potential energy locate on the carbon atom of cage, the higher points onthe center of C-C bonds, the lower points in the center of six-ring or five-ring. According toenergy, Li, Na, C atoms can move around the center of fullerene cage, while K, Be, Mg atomsstay in the center of fullerene cage. In the endeohedral fullerene complex of Li@C_(60) andBe@C_(60), the Li-C or Be-C bond can be formed in a cage and out of a cage. The mechanismfor inserting a Li or Be atom into a fullerene cage to form endohedral fullerene is ringpenetration. According to the potential energy curves of H_2, H_2@C_(59), H_2@C_(58) and, N@C_(60),N@C_(58), H@C_(60), H@C_(58), the mechanism of inserting a H_2 or N or H into the fullerene cageto form an endohedral fullerene complex is direct insertion. Because of one peak and a curveout of cage in the potential energy curves for the penetration of nitrogen atom into fullereneC_(59), the mechanism for inserting N atom into fullerene cage C_(59) to form endohedral fullerenecomplex is ring penetration. Because of one peak and a curve out of cage, a curve in cage inthe potential energy curves of Li into fullerene C_(60), C_(59) and C_(58), Be into fullerene C_(60) and C_(58), the mechanism for inserting Li and Be atoms into those fullerene cages to form endohedralfullerene complexes is ring penetration.
     Density functional theory calculations were also performed to investigate the bindingenergy of all elements from the first period to the fourth period doping into the boron-nitrogenfullerene cages forming ecndohedral fullerene complexes. The O and F can form stabilizationendohedral fullerene complexes with (BN)n (n=12, 16, 20, 24, 28). The binding energy of allelements from the first period to the third period formed endohedral fullerene complexes with(BN)_(16) increases. The binding energy of all elements of the fourth period formed endohedralfullerene complexes with (BN)_(20) reduces from K to Ni, and increases from Ni to Kr. Thebinding energy of some elements of the main group increases along the period and thebinding energy of M@B_(12)N_(12) is higher than that of M@B_(16)N_(16). These rules are accordantwith the bulk of atoms except O and F. The diameter of B_(12)N_(12) fullerene cage is 4.081(?)smaller than 5.156(?) of B_(16)N_(16). The distance of endohedral atom to shell of cage is small. Theinteraction between endohedral atom and fullerene cage is in close correlation with the radiusof atom. According to the radius of B_(16)N_(16) is bigger than of (BN)_(12), the binding energy ofM@(BN)n (n=12, 16) become smaller, and those is favorable on thermodynamics. Thebinding energy of the first period elements going into the B_(20)N_(20) fullerene cages formingM@B_(20)N_(20) reduces from -1.8030 eV of H to -1.2933eV of He. The binding energy of someelements of the main group formed M@B_(20)N_(20) increases along the period. Those rules areaffected by the radius of B_(20)N_(20) fullerene cage, interaction of electric charge and van derWaals type, forming bond factor. The stabilization of different isomers of B_(24)N_(24), such as O,S_4 and S_8, can change while an atom was put into the BN-fullerenes and endohedralcomplexes were made. M@B_(28)N_(28) has samiler rules with (BN)n (n=12, 16, 20). O, F and Fecan form stabilization endohedral fullerene complexes with (BN)n (n=12, 16, 20, 24, 28)correlating with activation of them. For endohedral B and N atoms of BN-fullerenes, there aresome positive charges on BN-fullerene cages and some negative electric charge B or N atom.
引文
[1] Kroto H.K, Heath J.R., Brien S.C. et al., C_(60): Buckminsterfullerene, Nature, 1985, 318: 162-163.
    [2] Kratschmer W., Lamb L. D., Fostiropolos K. et al., How we came to produce C_(60)-fullerite, Nature, 1990, 347:345-350.
    [3] 张立德,牟季美.纳米材料和纳米结构.北京,科学出版社,2001.
    [4] 顾宁,付德刚,张海黔.纳米技术与应用,北京,人民邮电出版社,2002.
    [5] Chopra N.G., Layken R.J., Cherrey K. et al., Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling, Science, 1995, 269: 996-967.
    [6] Golberg D., Bando Y., Stephan O. et al., Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett., 1998, 73: 2441-2443.
    [7] Oku T., Hirano T., Kuno M. et al., Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials, Materials Science and Engineering B,2000,74:206-217.
    [8] Haufler R.E., Chai Y., Chibante L.P., et al. Cluster-Assembled Materials ed Averback RS, Bernhoe J, and. Nelson DL (Materials Research Society: Pittsburgh).1991,206,627-637.
    [9] Shinohara H., Takata M., Sakata M. et al., Metallofullerenes-Their formation and characterization Materi., Sci. Forum. 1996, 232:207-232.
    [10] Christian J.F., Wan Z., Anderson S.L., Collision of Li~+ and Na~+ with C_(60):Insertion, fragmentation, and thermionic emission, Phys. Rev. Lett., 1992, 69:1352-1355.
    [11] Fuchs D., Rietschel H., Michel R.H. et al., Extraction and Chromatographic Elution Behavior of Endohedral Metallofullerenes: Inferences Regarding Effective Dipole Moments, J. Phys. Chem., 1996, 100(2):725-729.
    [12] Iijima S., Cchihashi T., Single-shell carbon nanotubes of 1-nm diameters. Nature, 1993, 363: 603-605.
    [13] Zhou Z., Zhao J.J., Chen Z.F. et al., Comparative Study of Hydrogen Adsorption on Carbon and BN Nanotubes, J. Phys. Chem. B, 2006,110:13363-13369.
    [14] Li W.Z., Xie S.S., Qisn L.X. et al., Large-Scale Synthesis of Aligned Carbon Nanotubes. Science, 1996, 274:1701-1703
    [15] Pan Z.W., Xie S.S., Chang B.H. et al., Electron Affinities of Aln Clusters and Multiple-Fold Aromaticity of the Square Al_4, Structure. Nature, 1998, 394: 631-632.
    [16] Han W.Q., Fan S.S., Li Q.Q. et al., Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction. Science, 1997, 277:1287-1289.
    [17] Blase X., Rubio A., Lowie S.G. et al., Atomic structure and electronic state of boron nitride fullerenes and nanotubes, Europhys. Lett., 1994, 28: 335-341.
    [18] Z. Yoshida, E. Osawa. Aromaticity Kagakudojin, Kroto, 1971.
    [19] Bochvar D.A., Galppern E. G., Nauk D. A., Proc. Acad. Sci. USSR 1973, 209: 610-612.
    [20] Krastschmer W., Lamb L.D., Fortiropoulos K. et al, Solid C60: A new form of carbon. Nature 1990, 347: 354-357.
    [21] Wood J. M., Kahr B., Hoke Ⅱ S.H. et al., Oxygen and Methylene Adducts of C_(60) and C_(70), J. Am. Chem. Soc, 1991,113:5907-5908.
    [22] Malhotra R., Kumar S., Satyam S., Ozonolysis of [60] Fullerene. J. Chem. Soc, Chem. Commun 1994:1339-1340.
    [23] Creegan K.M., Robbins J. L., Robbins W.K. et al., Synthesis and characterization of C_(60)O: the first Fullerene Epoxide., J. Am. Chem. Soc. 1992,114:1103-1105.
    [24] Kalsbeck W.A., Thorp H.H., Electro- chemical Reduction of Fullerenes in the presence of O_2 and H_2O: Polyxygen adducts and fragmentation of the C_(60) Framework, J. Elec. Chem. 1991,314: 363-370.
    [25] Balch A.L., Costa DA., Lee J.W. et al.,Directing Effects in a Fulerene Epoxide Addition, Formation and Structural characterization, Inorg. Chem., 1994,33: 2071-2072.
    [26] Iijima S., Helical microrubules of graphitic carbon. Nature, 1991,354:56-58.
    [27] Bethune D.S., Kiang C.H., Vries M.S. et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 1993,363: 605-607.
    [28] Ebbesen T.W., Ajayan P.M., Large-scale synthesis of carbon nanotubes. Nature, 1992, 358: 220-222.
    [29] Yacaman MJ., Yoshida M.M., Rendon L., Catalytic growth of carbon microtubes with fullerenes structure, Appl. Phys. Lett., 1993,62: 657-659.
    [30] Thess A., Lee R., Nikolaev P. et al., Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273: 483-487.
    [31] Ren Z.F., Huang Z.P., Xu J.W. et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 1998, 282:1105-1107.
    [32] Cho W.S., Hamada E., Kondo Y. et al., Synthesis of carbon nanotubes from bulk polymer. Appl. Phys. Lett. 1996, 69: 278-279.
    [33] Richter H., Hernadi K., Caudano R. et al., Formation of nanotubes in low-pressure hydrocarbon flames, Carbon, 1996,34: 427-428.
    [34] Yamamoto K., Koga Y., Fujiwara S.et al., A new method of carbon nanotubes growth by ion-beam irradiation, Appl. Phys. Lett., 1996, 69:4174-4175.
    [35] Chernozatonskii L.A., Val'chuk K.P., Kiselev N.A. et al., Synthesis and structure investigation of alloys with fullerene and nanotubes inclusions, Carbon, 1997,35: 749-753.
    [36] Ci L., Wei B., Liang J., et al. Preparation of carbon nanotubules by the floating catalyst method. J. Mater. Sci. Lett. 1999,18: 797-799.
    [37] Hsu W.K., Terrones M., Hare J.P., et al. Electrolytic formation of carbon nanostructures. Chem. Phys. Lett. 1996, 262:161-166.
    
    [38] Meier A., Kirillov V.A., Kuvshinov G.G. et al., Solar thermal decomposition of hydrocarbons and carbon monoxide for the production of catalytic dilamentous carbon, Chem. Engi. Sci. 1998, 54:3341-3348.
    [39] Brien S.C.O., Heath J.R., Curl R.F. et al., Photophysics of buckminsterfullerene and other carbon cluster ions J. Chem. Phys., 1988, 88:220-230.
    [40] Murry R.L., Strout D.L., Odom G.K. et al., Role of sp3 carbon and 7-membered rings in fullerene annealing and fragmentation, Nature (London) 1993,366: 665-667.
    [41] Deng J.P., Ju D.D., Her G.R. et al., Odd-numbered Fullerene Fragment Ions from C_(60) Oxides, J. Phys. Chem. 1993,97:11575-11577.
    [42] Turker L., Mo J., A Theoretical Study on Certain C_(58) Species, Struct. (THEOCHEM), 2001, 571: 99-102.
    [43] Hang Y., Hu E., Ruckenstein, Quantum Chemical Density-Functional Theory Calculations of the Structures of Defect C_(60) with Four Vacancies, J. Chem. Phys. 2003, 119:10073-10080.
    [44] Lee S.U., Han Y.K., Structure and Stability of the Defect Fullerene Clusters of C_(60): C_(59), C_(58), and C_(57), J. Chem. Phys. 2003,121:3941-3942.
    [45] Murata Y., Murata M., Komatsu K., Synthesis, Structure and Properties of Novel Open-Cage Fullerenes Having Heteroatom(s) on the Rim of the Orifice, Chem. Eur. J., 2003, 9:1600-1605.
    
    [46] Murata M.., Murata Y., Komatsu K., Synthesis and Properties of Endohedral C_(60) Encapsulating Molecular Hydrogen, J. Am. Chem. Soc., 2006,128:8024-8033.
    [47] Murata Y., Murata M., Komatsu K., 100% Encapsulation of a Hydrogen Atom into an Open-Cage Fullerene Derivative and Gas-Phase Generation of H_2@C_(60), J. Am. Chem. Soc. 2003,125: 7152-7153. Komatsu, K., Murata, M., Murata, Y.: Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis, Sci, 2005, 307:238-240.
    [48] Carravetta M., Murata Y., Murata M. et al., Solid-State NMR Spectroscopy of Molecular Hydrogen Trapped Inside an Open-Cage Fullerene, J. Am. Chem. Soc.,2004, 126: 4092- 4093.
    [49] Iwamatsu S.I., Murata S., Andoh, Y. et al., Open-Cage Fullerene Derivatives Suitable for the Encapsulation of a Hydrogen Molecule, J. Org. Chem., 2005, 70:4820-4825.
    [50] Chuang S.C., Clemente F.R., Khan S.I. et al., Approaches to Open Fullerenes: A 1,2, 3,4,5, 6-Hexaadduct of Qo, Org. Lett., 2006, 8:4525-4528.
    [51] Komatsu K., Murata M., Murata Y., Encapsulation of Molecular Hydrogen in Fullerene C_(60) by Organic Synthesis, Science, 2005, 307:238-240.
    [52] Komatsu K., Murata Y., A New Route to an Endohedral Fullerene by Way of s-Framework Transformations, Chem. Lett., 2005,34:886-890.
    [53] Funasaka H., Sugiyama K., Yamamoto K. et al., Magnetic Properties of Rare-Earth Metallo- fullerenes, J. Phys. Chem. 1995,99:1826-1830.
    [54] Heath JR, O'Brien SC, Zhang Q, et al. Lanthanum complexes of spheroidal carbon shells,! Am. Chem. Soc, 1985; 107(25):7779-7780.
    [55] Xu Z., Nakane T., Shinohara H., Production and isolation of Ca@C_(82) (I-IV) and Ca@C_(84) (I, II) metallofullerenes, J. Am. Chem. Soc. 1996,118(45):11309-11310.
    [56] John T., Dennis S., Shinohara H., Production and isolation of endohedral strontium- and barium-based mono-metallofullerenes: Sr/Ba@C_(82) and Sr/Ba@C_(84), Chem. Phys. Lett., 1997,278:107-110.
    [57] Weaver J. H., Chai Y., Krollm G. et al., XPS probes of carbon-caged metals, Chem. Phys. Lett., 1992,190: 460-464.
    [58] YannoniC.S.,Hoinkis M. ,deVries M.S. et al., Scandium Clusters in Fullerene Cages, Science, 1992,256:191-194.
    [59] Suzuki T., Kikuchi K., Oguri F. et al, Electrochemical Properties of Fullerenolanthanides, Tetrahedron, 1996,52:4973-4982.
    [60] Kuran P., Kurause M., A. Bartle et al. Preparation, isolation and characterisation of Eu@C_(74): the first isolated europium endohedral fullerene, Chem. Phys. Lett., 1998,292:580-586.
    [61] Ding J., Yang S.H., Isolation and Characterization of Pr@C_(82) and Pr_2@C_(80) J. Am. Chem. Soc, J. Am. Chem. Soc, 118(45):11254-11257.
    [62] Pichler M., Golden S., Knupfer M.et al., Monometallofullerene Tm@C_(82): Proof of an Encapsulated Divalent Tm Ion by High-Energy Spectroscopy, Phys. Rev. Lett. 1997, 79: 3026-3029.
    [63] M. Saunders, H. A. Jimenez-Vazquez, R. J. Cross, et al. Probing the interior of fullerenes by ~3He NMR spectroscopy of endohedral ~3He@C_(60) and ~3He@C_(70), Nature, 1994,367:256-257.
    [64] Saunders M., Jimenez-Vazquez H. A., Cross R. J. et al., Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure, J. Am. Chem. Soc, 1994, 116(5): 2193 -2194.
    [65] Wang Z., Christian J.F., Basir Y. et al., Collision of alkali ions with C_(60)/C_(70) Insertion, thermionic emission, and fragmentation, J. Chem. Phys.,1993,99:5858.
    [66] Tellgmann R., Krawez N., Lin S.H., et al., Endohedral fullerene production, Nature,1996, 382:407-408.
    [67] Murphy T.A., Pawlik T., Weidinger A. et al., Observation of Atomlike Nitrogen in Nitrogen-Implanted Solid C_(60), Phys, Rev. Let t., 1996,77:1075-1083.
    [68] Knapp C, Weiden N., Kass H. et al., Electron paramagnetic resonance study of atomic phosphorus encapsulated in [60]fullerene, Mol. Phys. 1998, 95: 999-1004.
    [69] Alvarez M.M., Gillan E.G., Holczer K. et al., Lanthanum carbide (La_2C_(80)): a soluble dimetallofullerene, J. Phys. Chem. 1991, 95:10561-10563.
    [70] Shinohara H., Yamaguchi H., Hayashi N. et al., solation and spectroscopic properties of scandium fullerenes (Sc_2@C_(74), Sc_2@C_(82), and Sc_2@C_(84)), J. Phys. Chem., 1993, 97: 4259- 4261.
    [71] Hinohara H. S, Sato H., Ohkohchi M. et al. Encapsulation of a scandium trimer in C_(82), Nature, 1992,357:52-54.
    [72] Tsutomu O., Kazuyoshi M., Kaoru O. et al., Insertion of Xe and Kr Atoms into C_(60) and C_(70) Fullerenes and the Formation of Dimers, Phys. Rev. let. 1998, 81: 967-970.
    [73] Gong JL, Zhang JG, Lin SH, Nuclear Instruments & Methods, Phys. Research Section B. 1998,135: 66-68.
    [74] Sakurai T., Wang X.D., Hashizume T., Scanning tunneling microscopy studies of fullerenes, Materials Science Forum 1996, 232:119-154.
    [75] Wang X., Xu Q., Hashizume T. et al., Adsorption of C_(60) and C_(84) on the Si(100)2×1 surface studied by using the scanning tunneling microscope, Phys. Rev. B. 1993, 48:154923-154930.
    [76] Shinohara H, Hayashi N, Sato H, et al. Direct STM imaging of spherical endohedral discandium fullerenes (Sc_2@C_(84)), J. Phys. Chem. 1993, 97: 13438-13440.
    [77] Takata M., Umeda B., Nishibori E. et al., Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C_(82), Nature 1995, 377:46-49.
    [78] Takata M., Nishibori E., Umeda B. et al., Structure of Endohedral Dimetallofullerene Sc2@C_(84), Phys. Rev. Lett., 1997, 78: 330-333.
    [79] Yamamoto E., Tansho M., Tomiyama T. et al., ~(13)C-NMR Study on the Structure of Isolated Sc_2@C_(84) Metallofullerene, J. Am. Chem. Soc. 1996, 118:2293-2294.
    [80] Dennis T., Shinohara H., Production, isolation, and characterization of group-2 metalcontaining endohedral metallofullerenes: Special issue endohedral fullerenes, Appl. Phys. A., 1998, 66:243-247.
    [81] Kodama T., Ozawa N., Miyake Y. et al., Structural Study of Three Isomers of Tm@C_(82) by ~(13)C NMR Spectroscopy, J. Am. Chem. Soc. 2002, 124: 1452-1455.
    [82] Waiblinger M, Lips K, Harneit W. et al., Thermal stability of the endohedral fullerenes NaC_(60), NaC_(70), and PaC_(60), Phys. Rev. B, 2001, 64: 159901-159907.
    [83] Ohtsukil T., Masumotol K, Ohno K. et al., Insertion of Be Atoms in C_(60) Fullerene Cages: Be@C_(60), Phys. Rev. Lett., 1996, 77:3522-3524.
    [84] Lu J., Zhou Y., Zhang X. et al., Density functional theory studies of beryllium-doped endohedral fullerene Be@C_(60): on center displacement of beryllium inside the C_(60) cage, Chem. Phys. Let. 2002, 352: 8-11.
    [85] Frisch MJ. et al., GAUSSIAN 98, Revision A.9, Gaussian, Inc., Pittsburgh, PA, 1998.
    [86] Ewa B., Andrzej E., Density functional study of endohedral complexes M@C_(60) (M=Li, Na, K, Be, Mg, Ca, La, B, Al): Electronic properties, ionization potentials, and electron affinities, J. Chem. Phys., 1998,108:3498-3503,
    [87] Shigeta Y., H. Saito, Synthetic Metals, 2003:135-136, 765-766.
    [88] Lemi T., Mol J., Substitutional doping of B, AI and N in C_(60) structure, Struct. (THEOCHEM) 2002, 577:205-211.
    [89] Tomoya O., Kikuji H., Irst-Pdnciples Study of Electron-Conduction Properties of C_(60) Bridges, Phys. Rev. Lett. 2007, 98: 026804-6.
    [90] Buckingham A.D., Read J.P., Degeneracy loss contributions to the stabilisation of the eccentric position of lithium in Li@C_(60), Chem. Phys. Lett. 1996,253:414-417.
    [91] Aichinger M, Chin SA, Krotscheck E, et al. The geometric structure and optical response of gaseous endohedral magnesium-fullerenes, J. Modem Opticsoct-Nov, 2003, 50(15-17): 2691-2704.
    [92] Ostling D., Rosen A., Electronic structure and optical properties of bare and Li, Na, K and Ca coated C_(60) molecule, Chem. Phys. Lett., 1997, 281 (4-6): 352-359.
    [93] Suetsuna T., Dragoe N.,Harneit W. et al., Separation of N_2@C_(60) and N@C_(60), Chem. Eur. J., 2002, 8(22):5079-5083.
    [94] Pietzak B., Waiblinger M., Murphy M. A. et al. Buckminsterfullerene C_(60): a chemical Faraday cage for atomic nitrogen, Chem. Phys. Lett., 1997, 279:259-263.
    [95] Knapp C., Dinse KP., Pietzak B. et al., Fourier transform EPR study of N@C_(60) in solution Chem. Phys. Lett. 1997, 272: 433-437.
    [96] Pietzak B., Waiblinger M., Murphy M. A., Properties of endohedral N@C_(60), Carbon, 1998, 36:613-615.
    [97] Weidinger A., Waiblinger M., Pietzak B. et al., Tomic nitrogen in C_(60):N@C_(60), Appl. Phys. A, 1998, 66: 0947-8396.
    [98] Feynman P., Int R., Efficient Simulation of Quantum Adiabatic Evolution of Spin Networks, J. Theor. Phys., 1982,21:467-488.
    [99] Deutsch D, Quantum theory, Proc of Roy Soc London A, 1985,400:97-117.
    [100] Chuang I.L., Lieven M.K.V., Zhou X.L. et al., Experimental realization of a quantum algorithm, Nature, 1998,393:143-146.
    [101] Harneit W., Fullerene-based electron-spin quantum computer, Phys. Rev. A, 2002, 65: 032322-032325.
    [102] Michael, D., John: A. M.: Isolation and Properties of Small-Bandgap Fullerenes, Nature 393, (1998)668-671.
    [103] Boltalina O.V., Ioffe I.N., Sorokin I.D. et al., Electron Affinity of Some Endohedral Lanth- anide Fullerenes, J. Phys. Chem. A, 1997,101:9561-9563.
    [104] Waiblinger M., Lips K., Harneit W. et al., Thermal stability of the endohedral fullerenes N@C_(60), N@C_(70), and P@C_(60), Phys. Rev. B, 2001,63: 045421-5.
    [105] Suter D., Lim K., Scalable architecture for spin-based quantum computers with a single type of gate, Phys. Rev. A, 2002,65:052309-5.
    [106] Twamley J., Quantum-cellular-automata quantum computing with endohedral fullerenes, Phys. Rev. A, 2003,67: 052318-12.
    [107] John J.L., Morton A, Tyryshkin M. et al., High Fidelity Single Qubit Operations Using Pulsed Electron Paramagnetic Resonance, Phys. Rev. Lett. 2005,95:200501-4.
    [108] Heiney PA., Bukyballs: Icosahedral C_(60), Condens Matter News, 1992,1(4): 25-29.
    [109] 严济民, 科学通报, 1992,37(20):1859-1861.
    [110] Lu J., Zhang X., Zhao X., Electronic structures of endohedral N@C_(60), O@C_(60) and F@C_(60) Chem. Phys. Lett. 1999,312:85-90.
    
    [111] BelBruno J.J., Full Nanotubes & Carb, Nanostructures, 2002,10:23-30.
    [112] Mauser H., Hommes N., Clark T. et al., Stabilization of atomic nitrogen inside C_(60), Angew. Chem. Int. Ed. 1997, 36:2835-2838.
    [113] Sanville E., BelBruno J.J., Computational Studies of Possible Transition Structures in the Insertion and Windowing Mechanisms for the Formation of Endohedral Fullerenes, J. Phys. Chem. B, 2003,107:8884-8889.
    
    [114] Greer J., The atomic nature of endohedrally encapsulated nitrogen N@C_(60) studied by density functional and Hartree-Fock methods, Chem. Phys. Lett. 2000, 326:567-572.
    [115] Plakhutin B.N., Breslavskaya N.N., Gorelik E.V. et al., On the position of the nitrogen 2p energy level in endohedral N@C_(60)(I_h), J. Mol. Str. (THEOCHEM) 2005,727:149-155.
    
    [116] Ding. R.G., Lu G.Q., Yan, Z.F. et al., Recent Advances in the Preparation and Utilization of Carbon Nanotubes for Hydrogen Storage, J. Nanosci. Nanotech. 2003,1: 7-29.
    
    [117] Murata Y., Murata M., Komatsu K., Synthesis, Structure, and Properties of Novel Open- Cage Fullerenes Having Heteroatom(s) on the Rim of the Orifice, Chem. Eur. J.,2003, 9 :1600-1609.
    
    [118] Komatsu, K., Murata, M., Murata, Y.: Encapsulation of Molecular Hydrogen in Fullerene C_(60) by Organic Synthesis, Sci., 2005,307:238-240.
    
    [119] Slanina Z. K., Pulay P., Nagase S., H_2, Ne and N_2 Energies of Encapsulation into Evaluated with the MPWB1K Functional, J. Chem. Theory Computer, 2006, 2:782-785.
    [120] Shigetaa Y., Takatsukab K.: Dynamic Charge Dluctuation of Endohedral Fullerene with Coencapsulated Be Atom and H2, J. Chem. Phys. 2005, 123:131101-131104.
    [121] Qian W., Michael D., Bartherger S.J. et al., C_(62), a Non-Classical Fullerene Incorporating a Four-Membered Ring, J. Am. Chem. Soc. 2002,122: 8333-8334.
    [122] Deng, J.P., Ju D.D., Her G.R. et al., Odd-Numbered Fullerene Fragment Ions from Ca Oxides, J. Phys. Chem., 1993, 97:11575-11577.
    [123] Lemi T., Mol J., Substitutional doping of B, Al and N in C_(60) structure, Struct. (THEOCHEM) 2002, 577:205-211.
    [124] Y. Shigeta, H. Saito, Synthetic Metals, 2003:135-136, 765-766.
    [125] Oku T., Kuno M., Narita I., High-resolution electron microscopy and electronic structures of endohedral La@B_(36)N_(36) clusters, Diam. Rel. Mater., 2002, 11:940-944.
    [126] Saito Y., Maida M., Square, Pentagon, and Heptagon Rings at BN Nanotube Tips. J. Phys. Chem. A, 1999, 103: 1291-1293.
    [127] Xia X., Jelski D. A., Bowser J. R. et al. MNDO Study of Boron-Nitrogen Analogues of Buckminsterfullerene, J. Am. Chem. Soc. 1992, 114: 6493-6496.
    [128] Dumitrescu I.S., Haiduc I., Sowerby D.B., Fully Inorganic (Carbon-Free) Fullerenes? The Boron-Nitrogen Case, Inorg. Chem., 1993, 32:3755-3758.
    [129] Sun M.L, Slanina Z., Lee S.L, Square/hexagon route towards the boron-nitrogen clusters, Chem. Phys. Lett., 1995, 233:279-283.
    [130] Seifert G., Fowler P. W., Mitchell D. et al. Boron-nitrogen analogues of the fullerenes: electronic and structural properties, Chem. Phys. Lett., 1997, 268:352-358.
    [131] 崔小英,武海顺, Structure and Stability of B_(20)N_(20) Cluster,Chinese, J. Chem., 2005, 23:117-120.
    [132] Wu H.S., Xu X.H., Zhang F.Q. et al., New Boron Nitride B_(24)N_(24) Nanotube, J. Phys. Chem. A, 2003, 107:6609-6612.
    [133] Wu H.S., Jiao H.J., What is the most stable B_(24)N_(24) fullerene, Chem. Phys. Lett., 2004, 386:369-372.
    [134] Zope R.R., Baruah T., Pederson M.R. et al., Electronic structure, vibrational stability, infrared, and Raman spectra of B_(24)N_(24) cages, Chem. Phys. Lett., 2004, 393: 300-304.
    [135] Zope R.R., Dunlap B.I., Are hemispherical caps of boron-nitride nanotubes possible, Chem. Phys. Lett., 2004, 386: 403-407.
    [136] Wu H.S., Cui X.Y., Qin X.F. et al., Structure and stability of boron nitrides: the B_(28)N_(28) isomers, J. Mol. Struct. (Theochem), 2005, 714:153-155.
    [137] Oku T., Nishiwaki A., Narita I., Formation and structure of B_(28)N_(28) clusters studied by mass spectrometry and molecular orbital calculation, Solid State Commun. 2004, 130: 171-173.
    [138] Wu H.S., Cui X.Y., Xu X.H., Structure and stability of boron nitrides: isomer of B_(32)N_(32), J. Mol. Struct. (Theochem) 2005, 717:107-109.
    [139] Alexandre S.S., Mazzoni M.S.C., Chacham H., Stability, geometry, and electronic structure of the boron nitride B_(36)N_(36) fullerene, Appl. Phys. Lett. 1999,75:61-63.
    [140] Zope R.R., Baruah T., Pederson M. R. et al., Theoretical infrared, Raman, and optical spectra of the B36N36 cage, Phys. Rev. A, 2005, 71:025201-4.
    [141] Strout D.L., Structure and stability of boron nitrides: Isomers of B_(12)N_(12), J. Phys. Chem. A, 2000,104:3364-3366.
    [142] Strout D.L., Structure and Stability of Boron Nitrides: The Crossover between Rings and Cages, J. Phys. Chem. A, 2001,105:261-263.
    [143] Matxain J. M., Ugalde J. M., Towler M. D. et al. Stability and Aromaticity of B_iN_i Rings and Fullerenes, J. Phys. Chem. A, 2003,107:10004-10010.
    [144] Strout D.L., Fullerene-like cages versus alternant cages: isomer stability of B_(13)N_(13), B_(14)N_)(14), and B_(16)N_(16), Chem. Phys. Lett., 2004,383:95-98.
    [145] Boulanger L., Andriot B., Cauchetier M. et al., Concentric shelled and plate-like graphitic boron nitride nanoparticles produced by CO_2 laser pyrolysis, Chem. Phys. Lett., 1995, 234: 227-232.
    [146] Stephan O., Bando Y., Loiseau A., et al., Formation, atomic structures and properties of boron nitride andcarbon nanocage fullerene materials, Appl. Phys. A, 1998,67:107-111.
    [147] Oku T., Kusunose T., Hirata T. et al., Mechanochemical Synthesis of Boron Nitride Nano- tubes, Diamond Relat. Mater., 2000, 9: 911-915.
    
    [148] Loiseau A., Willaime F., Demoncy N. et al., Boron Nitride Nanotubes with Reduced Numbers of Layers Synthesized by Arc Discharge. Phys. Rev. Lett., 1996, 76: 4737-4740.
    [149] Oku T., Hirata T., Kuno M. et al., High-resolutionelectron microscopy and structural optimization of C_(36), B_(36)N_(36) and Fe@B_(36)N_(36) clusters Mater. Sci. Eng. B, 2000, 74: 206-217.
    [150] Oku T., Kuno M., Kitahara H. et al., Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials, International J. Inorganic Mater., 2001, 3: 597-612.
    [151] Hirano T., Oku T., Suganuma K., Synthesis of boron nitride nanotubes by using YB_6 powder, J. Mater. Chem., 1999, 9: 855-859.
    [152] Hirano T., Oku T., Suganuma K., Atomic structure and electronic state of boron nitride fullerenes and nanotubes, Diam. Rel. Mater., 2000, 9: 625-628.qql51
    [153] Oku T., Kitahara H., Kuno M. et al., Synthesis, atomic strucyures and arrangement of carbon nitride nanocage materials, Scripta Mater. 2001,44:1557-1560.
    [154] Oku T., Kuno M., Kitahara H. et al., Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials, Inter. J. Inorg. Mater. 2001,3: 597-612.
    [155] Oku T., Nishiwaki A., Narita I., Formation and atomic structure of B_(12)N_(12) nanocage clusters studied by mass spectrometry and cluster calculation, Sci. Tech. Adv. Mater., 2004, 5:635- 638.
    [156] Oku T., Nishiwaki A., Narita I., Formation and atomic structures of B_nN_n (n=24-60) clusters studied by mass spectrometry, high-resolution electron microscopy and molecular orbital calculations, Physica B, 2004, 351:184-190.
    [157] Lourie O.R., Jones C.R., Bartlett B.M. et al., A solid-state process for formation of boron nitride nanotubes, Chem. Mater., 2000,12:1808-1810.qqq161
    [158] Yu D.P., Sun X.S., Lee C.S. et al., Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature, Appl. Phys. Lett., 1998, 72:1966-1968.
    [159] Oku T., Nishiwaki A., Narita I. et al., Formation and structure of B_(24)N_(24),clusters. Chem. Phys Lett., 2003, 380: 620-623.
    [160] Pokropivng V.V., Skorokhod V.V., Oleinik G.S. et al., Boron Nitride Analogs of Fullerenes (the Fulborenes), Nanotubes, and Fulledtes (the Fulborenites), J. Solid State chem., 2000, 154: 214-222.
    [161] Sheichenko D.M., Pokropivng A.V., Pokropivny V.V., Nanotube growth by surface diffusion Semiconductor Phys. Semiconductor, Phys. Quantem. Electr., 2000, 3: 545-549.
    [162] Alexandre S.S., Mazzoni M.S.C., Chatham H., Stability, geometry, and electronic structure of the boron nitride B_(36)N_(36) fullerene, Appl. Phys. Lett., 1999, 75: 61-63.
    [163] Jung Y., Schleyer P.R., Head-Gordon M., Aromaticity of Four-Membered-Ring 6p-Electron Systems: N_2S_2 and Li_2C_4H_4, J. Am. Chem. Soc., 2004, 126: 3132-3138.
    [164] Fowler P.W., Rogers K.M., Seifert G. et al., Production of zigzag-type BN nanotubes and BN cones by thermal annealing, Chem. Phys. Lett., 1999, 324: 359-364.
    [165] Alexandre S.S., Chatham H., Nunes R.W., Structure and energetics of boron nitride fullerenes: The role of stoichiometry, Phys. Rev. B, 2001, 63:0454021-4.
    [166] Rogers K.M., Fowler P.W., Seifert G., Antiferroelectricity in achiral mesogenie mixtures of organic materials, Chem. Phys. Lett., 2000, 332: 43-50.
    [167] Wong E.W., Sheehan P.E., Lieber C M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science, 1997, 277: 1971-1975.
    [168] Chopra N.G., Zettl A., Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling, Solid State Comm., 1998, 105: 297-300.
    [169] Giuffreda M.G., Deleuze M.S., Francois J.P., Valence one-electron and shake-up ionization bands of carbon dusters. Ⅱ. The C_n(n=4,6,8,10) tings, J. Chem. Phys., 2000, 112: 5325-5348.
    [170] Strout D.L., Structure and Stability of Boron Nitrides: Isomers of B_(12)N_(12), J. Chem. Phys. A, 2000, 104: 3364-3366.
    [171] Strout D.L., Structure and Stability of Boron Nitrides: The Crossover between Rings and Cages, J. Phys. Chem. A,2001, 105 (1):261-263.
    [172] Jia J.F., Wu H.S., Jiao H.J., Structure and Stability of (BN)_n Clusters, Acta Chirnica Sinica, 2003, 61: 653-659.
    [173] 吴海顺,贾键峰,C_(24)和(BN)_(12)团簇的结构与稳定性,Chinese J.Struct.Chem.2004,23(5):580-585.
    [174] Oku T., Suganuma K., High-resolution electron microscopy and structural optimization of C_(36), B_(36)N_(36) and Fe@B_(36)N_(36) clusters, Diam. Rel. Mater. 2001, 10: 1205-1209.
    [175] Oku T., Kuno M., Synthesis, argonyhydrogen storage and magneticpr operties of boron nitride nanotubes and nanocapsules, Diamond and Related Materials, Diam. Rel. Mater. 2003, 12: 840-845.
    [176] Oku T., Narita I., Nishiwaki A., Formation and structures of B_(36)N_(36) and Y@B_(36)N_(36) clusters studied by high-resolution electron microscopy and mass spectrometry, J. Phys. Chem. Solids, 2004, 65:369-372.
    [177] 田欣欣,吴海顺,内包嵌式化合物Fe@(BN)_(24)的结构与稳定性研究,Journal of Normal University Natural Science Edition,2006,20(2):49-53.
    [178] Wu H., Jiao H., What is the most stable B_(24)N_(24) fullerene, Chem. Phys, Lett., 2004, 386: 369-372.
    [179] 吴海顺,许小红,贾建峰,B_(24)N_(24)团簇的结构和稳定性[J].化学学报,2004,62(1):28-33.
    [180] Nishiwaki A., Oku T., Suganuma K., Atomic and electronic structures of endohedral B_(36)N_(36) dusters with doping elements studied by molecular orbital calculations, Physica B,2004, 349:254-259.
    [181] Wang Q., Sun Q., Oku T. et al. First-principles study of La-B_(36)N_(36) cage, Physica B, 2003, 339:105-109.
    [182] Batista R. J. C., Mazzoni M. S. C., Chatham H., Boron nitride fullerene B_(36)N_(36) doped with transition metal atoms: First-principles calculations, Phys. Rev. B, 2007, 75: 035417-5.
    [183] Oku T., Kuno M., Nadta I., Hydrogen storage in boron nitride nanomaterials studied by TG/DTA and duster calculation, J. Phys. Chem. Solids 2004, 65:549-552.
    [184] Koi N., Oku T., Hydrogen storage in boron nitride and carbon clusters studied by molecular orbital calculations, Solid State Commun, 2004, 131: 121-124.
    [185] Sun Q., Wang Q. Jena P., Storage of Molecular Hydrogen in B-N Cage: Energetics and Thermal Stability, Nano. Lett. 2005, 5:1273-1277.
    [186] 徐光宪,黎乐民,量子化学,北京:科学出版社,1999
    [187] Heitler著,丁陈汉译,《量子化学初步及价键理论》,台湾中华书局,1973,10
    [188] 孙志拥,“南开之星”重在科研与人才培养,开放系统世界,10,2003,17-19
    [189] Hatree D.R., The wave mechanics of an atom with a non-coulombic central field, Proc. Cambridge Phill. Sot., 1927, 24: 89-132.
    [190] 何天敬,量子化学(Ⅱ),中国科学技术大学化学物理系,1997
    [191] Hohenberg P., Kohn W., Inhomogeneous electron gas. Phys. Rev., 1964, 136: B864-B871.
    [192] Harris J., Simplified method for calculating the energy of weakly interacting fragment. Phys. Rev. B, 1985, 31: 1770-1779.
    [193] Fock V., Naherungsmethode zur Losung des quantenmechanischen mehrkorper problems. Z. Physik, 1930, 61:126-148.
    [194] Frresner R.A., An automatic grid generation scheme for pseudospectral self-consistent field calculations on polyatomic molecules. J. Am. Chem. Sot., 1988, 92: 3091-3096.
    [195] Ringnalda M.N., Belhadj M., Friesner R.A., Pseudospectral Hatree-Fock theory: applications and algorithmic improvements. J. Chem. Phys., 1990, 93: 3397-3407.
    [196] Thomas L., Proe H., The talculation of atomic fields, Cambridge Phil. Sot., 1927, 23: 542-548.
    [197] Hodges C.H., Quantum corrections to the Thomas-Fermi approximation-the Kirzhnits method, Can. J. Phys., 1973, 51:1428-1437.
    [198] Grammmicos B., Voros A., Semidassical approximations for nuclear Hamiltonians, Ⅱ. Spin-dependent potentials, Ann. Phys., 1979, 129:153-171.
    [199] Murphy D.R, Sixth-order term of the gradient expansion of the kinetic-energy density functional, Phys. Rev. A, 1981,24:1682-1688.
    [200] Yang W., Gradient correction in Thomas—Fermi theory, Phys. Rev. A, 1986, 34:4575-4585.
    [201] Hohenbergh P.C, Kohn W., Inhomogeneous Electron Gas, Plays. Rev., 1964, 136: B864- B871.
    [202] Von B.U., Hedin L., A local exchange-correlation potential for the spin polarized case, Phys. C: Solid State Phys., 1972,5:1629-1642.
    [203] Langreth D.C., Perdew E.P., Theory of Nonuniform Electronic Systems Phys. Rev. B, 1980, 21:5469-5493.
    [204] Perdew J.P., Transport and relaxation of hot condition electrons in an organic dielectric, Phys. Rev. B, 1986,33:8822-8827.
    [205] Perdew J.P., Generalized gradient approximations for exchange and correlation: a look backward and forward, Physica B, 1991,172:1-2.
    [206] Perdew J. P., Wang Y., Theory of the cyclotron resonance spectrum of a polaron in two dimensions. Phys. Rev. B, 1986,33:8800-8809.
    [207] Perdew J. P., Chevary J. A., Vosko Sh. Et al., Atom, molecules, solid and surfaces: Approximation of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992, 46:6671-6687.
    [208] Perdew J.P., Ziesche P. I., Eshring H., Eletronic Structure of Solids, Berlin, Akademie Verlag, 1991.
    [209] Becke A.D., Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 1988,38: 3098-3100.
    [210] Becke A.D., Density-Functional Thermochemistry, l.The Effect of the Exchange—only Gradient Correction, J. Chem. Phys., 1992, 96:2155-2160.
    [211] Lee G, Wang W., Parr R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 1988, 37:785-789.
    [212] Kudmovsky J., Turek I., Drehal V., Self-consistent Green's functional method for random alloys and their surfaces, in: Lectures on Methods of Electronic Structure Calculations, eds. World Scientific, Singapore, 1994:231-258.
    [213] Becke A.D., Density-functional thermochemistry IV. A new dynamical correlation functional and implications for exact-exchange mixing, J. Chem. Phys., 1996, 104:1040-1046.
    [214] Becke A.D., Density-functional thermochemistry II The effect of the Perdew-Wang generalized-gradient correlation correction, J. Chem. Phys., 1992,97: 9173-9177.
    [215] San Diego, Accelrys Ins., Material Studio Version 3.0, 2002.
    [216] http:/Avww.neotrident.com/newpage/Show_page.asp?ArticleID=669&ClassID=38&GroupI D=26#14
    
    [217] http://www.neotrident.com/pdf/Materials%20Studio/Dmol3.pdf
    [218] http://www.neotrident.com/pdf/Materials%20Studio/CASTEP.pdf
    [219] Frisch M. J., Truck s G. W., Schlegel H. B. et al., Gaussian, Inc., Pittsburgh PA, 2003.
    
    [220] Zork(译),ADF2003参考手册(电子版), spectroscopy@263.net:11-20.
    
    [221] Ziegler T.> Rauk A., On the calculation of Bonding Energies by the Hartree Fock Slater method. I. The Transition State Method. Theoretica Chimica Acta, 1978. 46:1-10.
    [222] Ziegler T., Rauk A., Baerends E.J., On the Calculation of Multiplet Energies by the Hartree- Fock Slater Method. Theoretica Chimica Acta, 1977,43: 261-265.
    [223] Perdew J.P., Wang Y., Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy, Phys. Rew. B, 1992,45:13244-13249.
    [224] Wang X.B., Ding C.F., Wang L.S., High Resolution Photoelectron Spectroscopy of C_(60), J. Chem. Phys. 1999,110:8217-8220.
    
    [225] Hertel I.V., Steger H., Vries J. et al., Giant Plasmon Excitation in Free C_(60) and C_(70) Molecules Studied by Photoionization, Phys. Rev. Lett., 1992,68: 784-787.
    [226] Becke A. D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 1993, 98:5648-5652.
    
    [227] Delley B., An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules, J. Chem. Phys. 1990,92:508-517.
    [228] Zhao J. J., Buldum A., Han J. et al., Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology, 2002,13:195-200.