冲突探测与解脱技术在未来空中交通管理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着我国民航业的快速发展,持续的空中交通流量的加大,自由飞行将成为解决未来支线飞行问题的发展趋势,自由飞行环境下的冲突探测与解脱问题将是未来保障飞行安全和提高效益的一项关键技术。
     本文首先充分调查了现有的各类冲突探测与解脱技术,通过对冲突解脱成本的分析,建立了自由飞行的简化模型;然后根据遗传算法具有较强的鲁棒性和并行性的优势,以及博弈论具有求解均衡策略的特点,从降低解脱成本的角度,分别选取了基本遗传算法和遗传算法-博弈论结合法这两种方法,对同时进入扇区的飞行冲突解脱问题进行了研究,发现这两种方法都能有效的解决自由飞行环境下的飞行冲突问题;最后在简化模型的基础上,通过实例对这两种方法进行了分析和比较。仿真结果表明,相对于模拟退火算法而言,利用基本遗传算法进行的冲突解脱具有更好的求解质量和效率;在保障飞行安全的前提下,为达到各飞机之间利益的均衡,采用遗传算法-博弈论相结合的方法具有更好的应用前景。
With the rapid development of China’s civil aviation and ever-growing air traffic flow, free flight tends to solve the problem of lateral flight in the future. Conflicts detection and resolution under the circumstance of free flight will be a key technology which will guarantee the flight safety and the improvement of benefits.
     In the first part of this paper, the author fully studies all the existing methods of conflict detection and resolution and establishes a simplified model of free flight after the analysis of the cost of conflict resolution. Then, according to the advantages of Genetic algorithm’s robustness and parallelismand and to the characteristics of Game therory’s equilibrium strategy, the author, from a perception of cutting down the cost, respectively uses the basic genetic algorithm and a combination of genetic algorithm and Game therory to study the conflict resolution and finds that both can solve the problem under the circumstances of free flight. In the last part, the author makes an analysis and a comparison of the two methods. The emulative results shows that, when compare the basic genetic algorithm with the combination of genetic algorithm and Game therory, the conflict resolution of the former has a better result of quality and efficiency. Based on the premise of the flight safety, it will have a vaster vista if the method of the combination of genetic algorithm and Game therory is used in order to obtain a balance of the benefits of every plane.
引文
[1] Morrel,J.s.,“The Mathematics of Collision Avoidance in the Air”,Journal of Navigation,Vol.11,No.1,pp.13-28,Jan.,1958.
    [2] Holt,J.M. and Marner, G.R.,“Separation Theory in Air Traffic Control System Design”, Proc. of the IEEE, Vol.58,No.3,pp.369-376,March,1970.
    [3] Sorensen,J.A., Merz,A.W., Cline,T.B., Karmarkar,J.S., Heine,W., and Ciletti,M.D., Horizontal Collision Avoidance Systems Study, Final Report, FAA-RD-73-203,Systems Control, Inc., Palo Alto,CA,Dec.,1973.
    [4] Nolan,M.S., Fundamentals of Air Traffic Control, Wadsworth Pub. Comp., Belmont,CA,1994.
    [5] National Airspace System Configuration Management Document: Oceanic Display and Planning System (ODAPS) Conflict Probe, Federal Aviation Administration Technical Center, Tech. Report NAS-MD-4319,July,1993.
    [6] Hauser, S.J., Gross, A.E., and Tornese, R.A., En Route Conflict Resolution Advisories: Functional Design Specification, Tech. Report MTR-80W137,The MITRE Corp., McLean, VI, Feb., 1983.
    [7] Cardosi, K.M., Burki-Cohen, J., Boole, P.W., Hourihan, J., Mengert, P., and DiSario, R., Controller Response to Conflict Resolution Advisory, Dept. of Transportation Tech. Report, DOT/FAA/NA-92/2, Volpe National Trans. Systems Center, Cambridge, MA, Dec., 1992.
    [8] RTCA, Final Report of RTCA Task Force 3, Free Flight Implementation, Nov., 1994.
    [9] Sacher, B.H. and Winokur, D.J., Operational Concept for the User Request Evaluation Tool(URET), MITRE Tech.Report, May, 1995.
    [10] Davis, T.J., Erzberger, H., and Green, S.M.,“Design and Evaluation of an Air Traffic Control Final Approach Spacing Tool”, Journal of Guidance, Control, and Dynamics, Vol. 14, No. 4, pp. 848-854, 1991.
    [11] Erzberger,H. CTAS: Computer Intelligence for Air Traffic Control in the Terminal Area, NASA TM-103959,Ames Research Center, Moffett Field, CA, July, 1992.
    [12] Erzberger, H.,“Design Principles and Algorithms for Automated Air Traffic Management”, Knowledge-Based Functions in Aerospace Systems, AGARD-LS-200, Nov., 1995.
    [13] Ballin, M.G. and Erzberger, H.,“Benefits Analysis of Terminal-Area AirTraffic Automation at the Dallas/Fort Worth International Airport”, AIAA Guidance, Navigation, and Control Conf., San Diego, CA, July, 1996.
    [14] Davis, G.A., AERA2 APR Knowledge Base, MITRE Tech. Report MTR-89W00120, The MITRE Corp., McLean, VI, Jan., 1992.
    [15] Cross, S.E., Qualitative Reasoning in an Expert System Framework, Ph.D. Thesis, Univ. of Illinois at Urbana-Champaign, Urbana, IL, May, 1983.
    [16] Eby, M.S.,“A Self-Organizational Approach for Resolving Air Traffic Conflicts”, The Lincoln Laboratory Journal, Vol. 7, No. 2, 1994.
    [17] Wangermann, J.P. and Stengel, R.F.,“Principled Negotiation Between Intelligent Agents: A Model for Air Traffic Management”, 19th ICAS Congress, Anaheim, CA, Sept., 1994.
    [18] Wangermann, J.P. and Stengel, R.F.,“Optimization and Coordination of Multi-Agent Systems Using Principled Negotiation”, AIAA Guidance, Navigation, and Control Conf., San Diego, CA, July, 1996.
    [19] Schultz, Robert L., Shaner, Donald A., and Zhao Yiyuan,“Free-Flight Concepts,”AIAA Guidance, Navigation and Control Conference, New Orleans, LA, Aug 11-13,1997, Collection of Technical Papers.Pt.2(A97-37001 10-63)
    [20] Kuchar, J., and Yang, L.,“Survey of Conflict Detection and Resolution Modeling Methods”, Proceedings of the AIAA Guidance, Navigation and Control Conference, New Orleans, LA, Aug. 1997.
    [21] J.Krozel, M. Peters, and G. Hunter. Conflict detection and resolution for future air transportation management. Technical Report TR-97138-01,Seagull Technology, Inc., Los Gatos, CA, April 1997.
    [22] J.K.Kuchar and L.C. Yang.“A review of conflict detection and resolution modeling methods”,IEEE Transactions on Intelligent Transportation Systems, 1(4), 2000.
    [23] Changkil Lee.,“Constrained Path Problems in Air Traffic Management”, UMI Number:3067580, State University of New York at Stony Brook The Graduate School, may 2002.
    [24] R.Rajvanshi,“Optimal Strategies for Cooperative Air Traffic Conflict Detection and Resolution”, UMI Number:1425171 The University of Texas at Arlington, DEC.2004.
    [25]刘星,胡明华董襄宁,遗传算法在飞行冲突探测解脱中的应用,南京航空航天大学学报,2002 34(1).
    [26]刘星,胡明华,韩松臣,自由飞条件下的冲突探测与解脱方法,南京理工大学学报,第26卷增刊, 2002年12月.
    [27]刘星,韩松臣,用于自由飞行冲突探测的Delaunay方法,数据采集与处理,第17卷第4期,2002年12月.
    [28]靳学梅,韩松臣,孙樊荣,自由飞行中冲突解脱的线性规划法,交通运输工程学报,第3卷第2期,2003年6月.
    [29]程丽媛,韩松臣,刘星,采用内点约束的最优冲突解脱方法,交通运输工程学报,第5卷第2期,2005年6月.
    [30]靳学梅,自由飞行空域中多机冲突探测与解脱技术研究,南京航空航天大学民航学院,硕士学位论文, 2004年1月.
    [31]程丽媛,自由飞行空域中多机冲突探测与解脱技术研究,南京航空航天大学民航学院,硕士学位论文,论文编号:1028707 05-0024,2005年1月.
    [32]裴志刚,模拟退火遗传算法在飞行冲突解脱中的应用,西北工业大学硕士学位论文,2005年3月.
    [33]崔德光,程朋等,空中交通管制自动化中的冲突概率分析,清华大学学报,2000,40(11).
    [34]陈晨,崔德光等,空中交通管制中改进型冲突探测算法研究与应用,计算机工程与应用,2002 38(19),250-253.
    [35]崔德光,程朋等,基于信息集成的空中交通管制指挥监测系统,管理科学学报,第4卷第4期,2001年8月.
    [36]崔德光,王哲鹏,空中交通管制自动化系统中飞行冲突概率解析算法的应用,计算机工程与设计,第22卷第5期,2001年10月.
    [37]王绍平,崔德光,空中交通控制的冲突探测算法,清华大学学报(自然科学版)第44卷第10期,19/36,1368-1371,2004年.
    [38]朱代武,低空空域飞行冲突避让算法,交通运输工程学报,第5卷第3期,2005年9月.
    [39]魏光兴,杨昌其,飞行冲突检测与调配的方法研究,中国民航学院学报,第23卷第6期,2005年12月.
    [40]魏光兴,基于雷达的多机冲突检测与调配,西南交通大学学报,第41卷第4期,2006年8月.
    [41]梅勇兵,朱允民,基于Kalman滤波的飞行冲突探测,四川大学学报(自然科学版),第42卷第3期, 2005年6月.
    [42]舒红平,游志胜等,基于飞行姿态的潜在冲突预警算法,计算机工程,第30卷第15期,28-30, 2004年8月.
    [43]宫峰勋,基于球形边界的ATC飞行冲突概率预测,计算机工程与应用,文章编号:1002-8331-(2005)28-0177-02,2005年.
    [44] Goldberg D E.Genetic Algorithms in Search, Optimization and Machine Learning.Addison-Wesley,1989.
    [45]周明,孙树栋,遗传算法原理及应用,国防工业出版社,1996,p18-64.
    [46]刘勇,康立山等,非数值并行算法,科学技术出版社,1995,p38-70.
    [47] Alliot J M,Gruber H,Joly G, et al. Genetic algorithms for solving air traffic control conflicts[C]. In: The Ninth Conference on Artificial Intelligence for Applications, 1993.338~344.