水下移动通信系统硬件设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对海洋探索的不断深入,水下机器人技术已成为一种重要的海洋开发手段,并得到了迅速的发展。对于水下机器人的控制命令和航行作业状态信息的传送,岸基或船基平台通常借助于水声通信来完成。本文开发的水声通信系统就是以水下机器人为工作载体,设计与实现一个水下移动通信系统的硬件平台。
     水声通信系统的设计充分的考虑了水下机器人的应用需求,主要围绕系统低功耗、“ARM+DSP”的双处理器结构、以及嵌入实时操作系统VxWorks三个方面展开。系统硬件平台主要包括基于CODEC的音频编解码模块、基于FPGA的逻辑控制与数据缓冲模块、基于ARM的嵌入式系统模块和基于DSP的协处理器模块。整套硬件平台能够完成数据采集、通信信号处理和系统控制。
     信号处理板是硬件平台的研究重点。在信号处理板设计与调试过程中,首先通过可编程逻辑器件FPGA建立了系统的数据通路,实现了FPGA、ARM、DSP三个模块间相互通信;其次,进行了独立模块的存储器与外设的调试和底层软件设计;最后,在基于ARM的嵌入式系统模块上建立了操作系统VxWorks,以实现系统任务调度和进程管理,并在VxWorks下完成了与硬件相关的应用模块调试,从而实现了可应用于水下机器人的实时水声通信系统的基本功能。
Along with the rapid exploitation of the ocean, the underwater vehicle technology has become an important means. The vehicle control commands from shore-based or ship-based platforms and status messages are usually transmited by the acoustic communication system. The content of the paper is the design and implementation of a hardware platform in the underwater mobile communications system which carries in the underwater vehicle.
     The application requirements of underwater vehicle is adequately taken account into the design of the system, which mainly focus on the following aspects: low-power chips, dual-processor structure - "ARM + DSP", as well as embedded real-time operating system - VxWorks. The hardware platform includes the audio codec modules, FPGA-based logic control and data buffer module, ARM-based embedded system modules and DSP-based co-processor module. The entire hardware platform is designed to realize the functions including data acquisition, communication signal processing and system control.
     The key of the hardware platform is a signal processing board. In the course of designing and debugging signal processing board, data access is set up by FPGA at first, which realizes the communication among FPGA, ARM and DSP. Secondly, memories and peripherals of the independent chips-based modules are debugged successfully. And low-Level software of the system is implemented subsequently. Finally, a VxWorks is built in the ARM-based embedded system module in order to realize the task scheduling and process management. Moreover, debugging the application modules relating to the hardware can be carried out in the VxWorks operating system. Thus, the basic functions are realized, which are applied to the real-time acoustic communication part of underwater vehicle.
引文
[1]蒋新松,封锡盛,王棣棠.水下机器人.辽宁科学技术出版社,2000.9:40-48页
    [2]徐玉如,苏玉民.关于发展智能水下机器人技术的思考.舰船科学技术,2008.8(30):17-21页
    [3]饶芊.水下机器人控制与通信系统研究.浙江大学硕士学位论文2008.5:1-5
    [4]戴荣涛,王青春.现代水声通信技术的发展及应用.科技广场,2008.8:241-242
    [5]黄晓萍,桑恩方.水声扩频通信的关键技术及实验研究.压电与声光,2008(30):404-407
    [6]Teledyne Benthos Inc.Teledyne underwater acoustic modems products.www.benthos.com,2007
    [7]Jahn,ED,Deployable Autonomous Distributed System(DADS).Space and Naval Warfare(SPAWAR) system center.San Diego,Aug 1998
    [8]王明华.高速水声通信中OFDM的关键技术与应用研究.哈尔滨工程大学博士学位论文.2007
    [9]樊昌信,张甫翊,徐炳祥等编著.通信原理.第五版.北京:国防工业出版社,2001:4-5页
    [10]徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望.智能系统学报,2006.3(1):9-16页
    [11]Roger L.Peterson,Rodger E.Ziemer,David E.Borth.Introduction to Spread Spectrum Communications.PHEI,2006.7:1-21
    [12]查光明,熊贤祚.扩频通信.西安电子科技大学出版社,2002:5-15页
    [13]韦惠民.扩频通信技术及应用.西安电子科技大学出版社,2007.11:7-12
    [14]王文博,郑侃.宽带无线通信OFDM技术.人民邮电出版社.2003
    [15]张海滨.正交频分复用的基本原理与关键技术.国防工业出版社,2005
    [16]朱彤.基于正交频分复用的水声通信技术研究.哈尔滨工程大学博士学位论文.2004
    [17]李晓敏.基于VxWorks的水下机器人通信系统软件设计.哈尔滨工程大学硕士学位论文.2006
    [18]Atmel Inc.AT91RM9200 Datasheet.2005
    [19]汪春梅,孙洪波,任志刚.TMS320C5000系列DSP系统设计与开发实例.电子工业出版社,2004.7:4-7页
    [20]Cirrus Logic Inc.CS42L51 Low Power,Stereo CODEC with Headphone Amp Datasheet.2006
    [21]毛德操,胡希明.嵌入式系统-采用公开代码和StrongARM/XScale 处理器.浙江大学出版社,2003.10:50-57页
    [22]Xilinx Inc.Virtex-Ⅱ Platform FPGA Handbook.2003
    [23]石英,李新新,姜宇柏.ISE应用于开发技巧.机械工业出版社,2007.1:5-9页
    [24]王诚,薛小刚,钟信潮.FPGA/CPLD设计工具-Xilinx ISE使用详解.人民邮电出版社,2005:95-96页
    [25]黄智伟.FPGA系统设计与实践.电子工业出版社,2005.9:38-44页
    [26]黄智伟,邓月明,王彦.ARM9嵌入式系统设计基础教程.北京航空航天大学出版社,2008.8:20-27
    [27]Texas Instruments Inc.TMS320C55x DSP CPU Reterence Guide.2001
    [28]Texas Instruments Inc.TMS320C55x DSP Peripherals Reference Guide.2003
    [29]张太镒,任宏.TI DSP在通信系统中的应用.电子工业出版社,2008.4:234-238页
    [30]田坦,刘国枝,孙大军.声纳技术.哈尔滨工程大学出版社,2002:177-178页
    [31]Maxim Inc.4th-and 8th-Order Continuous-Time Active Filters.1996
    [32]Xilinx Inc.Asynchronous FIFO v6.1.2004.11
    [33]Texas Instruments Inc.TMS320VC5510A DSP External Memory Interface(EMIF) Reference Guide.August 2004
    [34]Texas Instruments Inc.TMS320VC5510A DSP Host Port Interface reference guide.2004
    [35]Mark I.Montrose.Printed Circuit Board Design Techniques For EMC Compliance.China Machine Press,2008.1
    [36]Texas Instruments Inc.TPS767D301,TPS767D318,TPS767D325DUAL-OUTPUT LOW-DROPOUT VOLTAGE REGULATORS Datasheet.April 2000
    [37]Texas Instruments Inc.TPS7301Q,TPS7325Q,TPS7330Q,TPS7333Q,TPS7348Q,TPS7350Q LOW-DROPOUT VOLTAGE REGULATORS data Sheet.January 1999
    [38]申敏,邓矣兵.DSP原理及其在移动通信中的应用.人民邮电出版社,2001.9:7-12页
    [39]Texas Instruments Inc.TMS320VC5501/5502/5503/5507/5509/5510 DSP Multichannel Buffered Serial Port(McBSP) Reference Guide.June 2004
    [40]张绮文,谢建熊,谢劲心.ARM嵌入式常用模块与综合系统设计实例精讲.电子工业出版社,2007.1:90-92页
    [41]苏东.主流ARM嵌入式系统设计技术与实例精解.电子工业出版社,2007.7:27-35页
    [42]Davicom Inc.DM9161E 10/100 Mbps Fast Ethernet Physical Layer Single Chip Transceiver.May 2002
    [43]SD Group.SD Memory Card Specification/part 1.Physical Layer Specification:Version 1.0.2000
    [44]田泽.ARM9嵌入式开发实验与实践.北京航空航天大学出版社,2006.10:21-26页
    [45]程敬原.VxWorks软件开发项目实例完全解析.中国电力出版社,2005.9:113-130页
    [46]VxWorks BSP Developer's Reference.Wind River Systems,Inc.U.S.A: WSR.2002
    [47]周启平,张杨.VxWorks下设备驱动程序及BSP开发指南.中国电力出版社,2004.9:150-170页
    [48]孔祥营,柏桂枝.嵌入式实时操作系统VxWorks及其开发环境Tomado.中国电力出版社,2003.3:1-3页
    [49]广州周立功单片机发展有限公司.12C总线规范.1-15页
    [50]陈智育,温彦军,陈琪.VxWorks程序开发实践.人民邮电出版社,2004.5