磁共振波谱后处理技术研究及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁共振波谱学(MRS, Magnetic Resonance Spectroscopy)的临床应用价值在于对获得的磁共振波谱进行定量分析,MR设备采集到的FID信号经由傅立叶变换即可得到磁共振波谱,但该波谱并不具备临床参考价值,仍需要进行一系列的后处理方可获得适用于临床诊断的磁共振波谱。磁共振波谱后处理中的相位校正和涡流校正是为了获得洛仑兹线型纯吸收谱的两个重要处理过程。近年来,MRS软件包已经逐渐成为了高场磁共振设备的标准配置,因此在我公司1.5T磁共振设备上实现MRS数据采集及后处理功能已成为迫切的任务之一
     本文研究了MRS系列后处理技术中的相位校正技术和涡流校正技术。主要侧重于讨论相位校正算法的优缺点和零阶涡流校正算法。在简要地阐述了磁共振成像、磁共振波谱的基本原理和磁共振波谱后处理的关键步骤后,讨论了Ernst积分法、DISPA线型分析法、PAMPAS简单积分法和熵最小化法等四种相位校正算法和零阶涡流校正算法,给出了其数学表达。本文对前两种相位校正方法和零阶涡流校正ECC法进行了实现,通过模拟数据和活体谱数据的大量分析实验,给出了上述算法的结果分析。在东软飞利浦磁共振成像系统软件Superstar基础上,本文对MRS的数据采集和后处理部分进行了软件实现。软件实现采用了面向对象的需求分析及架构设计技术,本文同时还分析了使用UML的对象建模技术对于软件系统设计开发的影响,阐述了MRS数据采集及后处理软件包的具体实现,给出了软件的业务建模、需求、分析和设计及代码示例。
     实验结果表明,本文实现的两种相位校正算法很好地完成了波谱处理中对相位角修正的要求;零阶涡流校正的算法理论正确,数学推理正确,由于目前系统无法获得相应的数据,且模拟涡流影响比较困难,该部分算法代码暂时无法进行效果验证;本文实现的MRS数据采集及后处理分析软件包满足了用户的需求,可以用于我公司1.5T磁共振设备。
The clinical value of Magnetic Resonance Spectroscopy (MRS) is providing quantitative analysis to the obtained spectrum. Since the spectrum transformed from the FID which is acquired by the MR equipment via a FFT directly can not be used for clinical referencing, only after a series of Post-Processing applying to the spectrum it can be the reference to the clinical diagnosis. Recently, MRS software package has been configured as standard function in most heigh-field MRI system. Therefore, it is one of important taskes that provide MRS software package in our 1.5T scanner.
     This paper discusses and expounds some methods of phase correction and eddy current correction, and it mainly describes the advantages and weaknesses of such algorithms of phase correction and eddy current correction. At beginning it gives a brief overview about basics of MRI and MRS, and the common post-processing technologies and procedure of MRS. After that, four methods of phase correction, Ernst integral, DISPA line shape, PAMPAS simple integral and entropy minimization, and zero order eddy current correction are described with mathematics of these algorithms. The first two algorithms of phase correction are realized in this paper. Based on lots of experiments, this paper has discussed the results of these algorithms. And also, this paper describes the realization of the data acquisition software and the post-processing software based on the Superstar software system. During the developing of the software, the UML symbols are used to analyse the system and describe the system. This paper also describes the benefit of OO method using UML in software developing. To describe the software architecture, the Business Model, Requirements Specification, System Use Case and Sequence Diagram of the software are given in this paper. At last, some codes of the software are given to demonstrate the design and coding phase.
     Based on the result of experiment, the two algorithms of phase correction realized in this paper achieve the requirements of spectrum phase correction commendably. Because of our 1.5T scanner can not provide fid data with eddy current now, the ECC algorithm can not be verify now. The software business model, requirements, design and analysis meet the user requirements completely, and they can be used to our 1.5T scanner.
引文
1.赵喜平.磁共振成像[M],北京:科学出版社,2004,805-831
    2.俎栋林.核磁共振成像学[M],北京:高等教育出版社,2004,715-738
    3. Dick J. Drost, William R. Riddle, and Geoffrey D. Clarke. Proton magnetic resonance spectroscopy in the brain [J], Med. Phys.2002,29(9):2178-2195
    4. Li Chen, Zhiqiang Weng, LaiYoong Goh, and Marc Garland. An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization [J], Journal of Magnetic Resonance,2002,158:164-168
    5.余长亮,余永强.磁共振波谱技术及其临床应用[J],中国医学影像技术,1999,15(3):229-230
    6. Uwe Klose. In Vivo Proton Spectroscopy in Presence of Eddy Currents [J], MAGNETIC RESONANCE IN MEDICINE,1990,14:26-30
    7. Filip Jiru. Introduction to post-processing techniques [J], European Journal of Radiology,2008,5:34-49
    8. Ray H. Hashemi, William G. Bradley. MRI the basics [M]. Williams & Wilkins,1997, 25-38
    9. E. Mark Haacke, Rober W. Brown, Michael R. Thompson, and Ramesh Venkatesan. Magnetic Resonance Imaging:Physical Principles and Sequence Design [M]. Wiley, 1999,153-155
    10. Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing [M]. Prentice Hall,2002,561-565
    11. Jean-Baptiste Poullet, Diana M. Sima, and Sabine Van Huffel. MRS signal quantitation:a review of time-and frequency-domain methods [J], Journal of Magnetic Resonance,2008,10:26-45
    12. A.A. De Graaf, J.E. Van Dijk, and W. M. M. J. Bovee. QUALITY:Quantification Improvement by Converting Lineshapes to the Lorentzian Type [J], Magnetic Resonance in Medicine,1990,13:343-357
    13. Davidb.Clayton. In Vivo Proto Spectroscopy without Solvent Suppression [J], Concepts Magnetic Resonance,2001,13:260-275
    14. UlrichL. Gunther, et al. WAVEWAT-Improved Solvent Suppression in NMR Spectra Employing Wavelet Transforms [J], Journal of Magnetic Resonance,2002, 156:25-34
    15. TomasSundin, Leentje Vanhamme et al. Accurate Quantication of H spectra:From Finite Impulse Response Filter Design for Solvent Suppression to Parameter estimation [J], Journal of Magnetic Resonance,1999,139:189-204
    16. Jae-Seung Lee, A.K.Khitrin. Algorithmic subtraction of high peaks in NMR spectra [J], Chemical Physics Letters,2006,433:244-246
    17. Leetje Vanhamme et al. Fast Removal of Residual Water in Proton Spectra [J], Jouranl of Magnetic Resonance,1998,132:197-203
    18. Mahir Sinan Ozdemir, De Deene, Y. Achten, E. Dasseler, Y. Lemahieu. Quantitative proton magnetic resonance spectroscopy in presence of sidebands [J], Biomedical Imaging,2007,10:1008-1011
    19. E. Cabanes; S.confort-Gouny, Y.LeFur, G.Simond, and P.J.Cozzone. Optimization of Residual Water Signal Removal by HLSVD on Simulated Short Echo Time Proton MR Spectra of the Human Brain [J], Journal of Magnetic Resonance,2001,150: 116-125
    20. T.Landadio et al. Improved Lanczos Algorithms for Blackbox MRS Data Quantitation [J], Journal of Magnetic Resonance,2002,157:292-297
    21. Hacene Serrai et al. Water Modeled Signal Removal arid Data Quantication in Localized MR Spectroscopy Using a Time-Scale Post acquisition Method [J], Journal of Magnetic Resonance 2001,149:45-51
    22. Robin A.de Graaf. In Vivo NMR Spectroscopy 2nd Edition:Principle and Techiques [M], John Wiley & Sons Ltd.,2007,470-493
    23. J.W.Cooley and J.W.Tukey. And algorithm for the machine calculation of complex Fourier series [J], Math.Comput.1965,19:297-301
    24.王超,黄颖颖,杨光.核磁共振谱图自动相位校正新方法—等密度点连线法[J],波谱学杂志,2004,21(4):35-42
    25. Zeljko Dzakula. Phase Angle Measurementt from Peak Areas (PAMPAS) [J], Journal of Magnetic. Resonance,2000,146:20-32
    26. Kang D,Ming X, Xiafei Z. Phase difference correction method for pahse and frequency in spectral analysis [J], Mech Syst Signal Proces,1999,14(5):835-843
    27. Zeng Yingzhi, Marc Garlnd. An improved algorithm for estimating pure component spectra in exploratory chemometric studies based on entropy minimization [J]. Anal Chim Acta,1998,359:303-305
    28. Reto Koradi, Martin Billeter, Max Engeli, et al. Automated Peak Picking and Peak Integration in Macromolecular NMR Spectra Using AUTOPSY [J], Journal of Magnetic Resonance,1998,135:288-297
    29. Hoffman Spectra R E, Delaglio F, Levy GC. Phase Correction of Two-Dimensional NMR Spectra Using DISPA [J]. Journal of Magnetic Resonance,1992,98:231-237
    30. Heuer. A new algorithm for automatic phase correction by symmetrizing lines [J], Journal of Magnetic Resonance,1991,91:240-241
    31. Van Vallst JJ, Van Gerwen P HJ. Novel methods for automatic phase correction of NMR Spectra [J], Journal of Magnetic Resonance,1990,86:129-147
    32. Wachter EA, Sidky EY, Farrar TC. Calculation of Phase-Correction Using the DISPA Phase-Angle Estimation Technique [J], Journal of Magnetic Resonance,1989, 82:352-359
    33. Brown Douglas E, Campbell Thomas W, Moore Richard N. Automated phase correction of FT NMR spectra by baseline Optimization [J], Journal of Magnetic Resonance,1989,85:15-32
    34. Craig Edward C, Marshall Alan G. Automated Phase Correction of FT NMR Spectra by Means of Phase Measurement Based on Dispersion versus Absorption Relation (DISPA) [J], Journal of Magnetic Resonance,1988,76:458-475.
    35.裘祖文,裴奉奎.核磁共振波谱[M],北京:科学出版社,1989,202-203
    36. Sotak Christopher H, Dumoulin Charles L, Newsham Mark D, Automatic Phase Correction of Fourier Transform NMR Spectra Based on the Dispersion versus Absorption (DISPA) Lineshape Analysis [J], Journal of Magnetic Resonance,1984, 57:453-462
    37. Herring F G, Philips P S. Automatic Phase Correction in Magnetic Resonance Using DISPA [J], Journal of Magnetic Resonance,1984,59:489-496
    38. Sergey Golotvin, Antony Williams. Improved Baseline Recognition and Modeling of FT NMR Spectra [J], Journal of Magnetic Resonance,2000,146:122-125
    39.孟平.核磁共振数据处理软件[D],武汉:中国科学院研究生院,2006
    40. Rebecca Wirfs-Brock, Alan McKean, et al.对象设计[M],北京:人民邮电出版社,2006,35-36
    41. Mickeal Blaha, James Rumbaugh. UML面向对象建模与设计第2版[M],北京:人民邮电出版社,2006,89-108
    42. Martin Fowler, Kendall Scott,徐家福译.UML精粹第2版[M],北京:清华大学出版社,2002,42-59
    43. James Rumbaugh, Ivar Jacobson, Grady Booch, UMLChina译.UML参考手册第2版[M],北京:机械工业出版社,2005,235-451