硼替佐米对K562细胞增殖、凋亡及其对XIAP表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     泛素-蛋白酶体通路(ubiquitin-proteasome pathway,UPP)是生物体内蛋白质选择性降解的重要途径,可影响基因表达调控、细胞周期、氧化应激反应等多种细胞活动。蛋白酶体活性的异常改变,可引起多种蛋白质降解异常,导致细胞功能紊乱,使肿瘤细胞持续生长,是肿瘤发生的标志之一。蛋白酶体抑制剂特异性地抑制蛋白酶体活性,阻止肿瘤生长、粘附及血管生成,可以作为抗肿瘤治疗的有效靶点。硼替佐米(Bortezomib,商品名万坷,Velcade)是高选择性的,可逆性的蛋白酶体抑制剂,通过抑制多种蛋白质的降解,可以稳定p21,p27和p53蛋白,转录因子(如c-myc、c-fos、c-jun), IκB,细胞周期调节蛋白和一些Bcl-2家族成员(如Bak and Bax)。在生理情况下NF-κB在胞质中与抑制蛋白IκB结合,硼替佐米通过抑制IκB的降解,下调NF-κB的活性,不但可以增加肿瘤细胞的凋亡,还可以增加肿瘤细胞对化疗、放疗、免疫治疗的敏感性。X连锁凋亡抑制蛋白(X chromosome linked inhibitor of apoptosis protein, XIAP)是内源性凋亡抑制蛋白家族(inhibitor of apoptosis, IAPs)中效力最强的蛋白,它主要通过BIR3结构域抑制caspase-9, BIR2结构域抑制caspase-3和-7,达到抑制凋亡的作用。XIAP的表达受多条信号转导通路的影响,NF-κB, PI3K和MAPK等均可间接调节XIAP的转录。有资料显示XIAP基因在多个白血病细胞株及急性白血病原代细胞中高表达,这提示XIAP可能与白血病的发生、病程演变及预后等密切相关。本研究观察硼替佐米对K562细胞增殖、凋亡及XIAP基因和蛋白表达的影响,研究硼替佐米对白血病细胞的作用及其与XIAP之间的关系,为其做为新的抗白血病药物提供实验依据。
     方法
     1.水溶性四唑盐光吸收(WST-1)法检测细胞增殖:终浓度为5nmol/L, 10nmol/L,30nmol/L,50nmol/L,100nmol/L硼替佐米分别作用于K562细胞12h、24h、36h、48h, WST-1法检测细胞的增殖情况,计算增殖抑制率,并找出硼替佐米作用于K562细胞的最适时间及作用浓度。
     2.瑞氏染色观察细胞形态:终浓度为30nmol/L硼替佐米处理K562细胞24h后,瑞氏染色观察细胞生长状态及形态学变化。
     3.流式细胞术检测细胞凋亡:终浓度为5nmol/L, 10mol/L,30nmol/L, 50nmol/L, 100nmol/L硼替佐米分别作用于K562细胞24h,流式细胞仪AnnexinⅤFITC/PI双标检测细胞凋亡率。
     4.原位末端转移酶标记(TUNEL)技术检测细胞凋亡:终浓度为30nmol/L硼替佐米处理K562细胞24h后,TUNEL技术检测细胞的凋亡情况。
     5. RT-PCR法检测XIAP mRNA的表达:终浓度为5nmol/L,10nmol/L 30nmol/L,50nmol/L,100nmol/L硼替佐米分别作用于K562细胞24h,RT-PCR法检测硼替佐米对K562细胞XIAP mRNA表达的影响。
     6.免疫组化法检测XIAP蛋白的表达:终浓度为30nmol/L硼替佐米作用于K562细胞24h,免疫组化法检测硼替佐米对K562细胞XIAP蛋白表达的影响。
     7.统计分析:所得结果应用SPSS13.0统计学软件处理,对计量资料,同一时间点各实验组与对照组之间比较用两样本t检验,计数资料采用χ2检验,统计学数据用均数±标准差(x±s)表示。以α=0.05为检验水准,P<0.05为差异有显著性。
     结果
     1.WST-1结果显示:终浓度为5nmol/L、10nmol/L、30nmol/L、50nmol/L、100nmol/L的硼替佐米分别作于K562细胞24小时,细胞增殖抑制率分别为(13.6±0.15)%、(28.7±0.49)%、(55.4±1.11)%、(68.1±1.12)%、(81.4±0.13)%,分别与空白对照组比较存在显著差异(P<0.01);硼替佐米组间两两比较,具有显著性差异(P<0.05),其24小时IC50为24.6 nmol/L。30nmol/L硼替佐米分别作用于K562细胞12小时、24小时、36小时、48小时,细胞增殖抑制率为(29.1±0.92)%、(55.4±1.11)%、(57.8±0.84)%、(59.8±1.18)%,分别与空白对照组相比,有显著性差异(P<0.05);组间两两比较,硼替佐米12h与24h对K562细胞的抑制率有显著性差异(P>0.05),但24h与36h、48h的抑制率无显著性差异(P>0.05)。
     2.细胞形态、TUNEL及流式细胞术结果显示:终浓度为30nmol/L硼替佐米处理K562细胞24h,瑞氏染色,光学显微镜下示硼替佐米组细胞呈现凋亡形态学改变,表现为染色质浓缩,核固缩、核边集、核碎裂,胞质中见大量空泡及凋亡小体形成;正常对照组细胞形态正常。TUNEL法计数300个细胞中阳性细胞数为147,阳性率为49.0%,与空白对照组(阳性细胞数7,阳性率2.3%)比较差异有统计学意义(P<0.01)。浓度为5nmol/L、10nmol/L、30nmol/L、50nmol/L、100nmol/L的硼替佐米分别作于K562细胞24小时,AnnexinV FITC/PI双标结果显示凋亡率分别为:(15.36±0.7)%,(32.21±1.2)%,(53.87±1.3)%,(77.85±1.0)%,(81.25±2.8)%。均高于对照组(0.32±0.6%),P<0.01。进一步行组间两两比较,有显著统计学差异(P<0.05)。
     3. RT-PCR和免疫组化结果显示:浓度为5nmol/L、10nmol/L、30nmol/L、50nmol/L、100nmol/L的硼替佐米分别作于K562细胞24小时后,RT-PCR扩增结果显示,XIAP mRNA灰度比值分别为0.89±0.029,0.79±0.022,0.59±0.031,0.34±0.037,0.24±0.042,与空白对照组(0.96±0.020)相比有显著差异,p<0.01;不同浓度硼替佐米之间XIAP mRNA灰度比值相比有显著差异,p<0.05。终浓度为30nmol/L硼替佐米处理细胞24h后,经免疫组化法染色法检测结果显示:K562细胞中XIAP蛋白阳性表达率在硼替佐米组为(13.33±2.71)%,与空白组(55.90±1.65)%相比显著降低(P<0.01)。硼替佐米组XIAP蛋白表达阳性平均积分为42.00±8.54,较空白组248.33±20.74有显著性差异(P<0.01)。
     结论
     1.硼替佐米能有效抑制K562细胞的增殖,其抑制作用具有时间和浓度依赖性。
     2.硼替佐米能明显诱导K562细胞凋亡,随时间增加凋亡率增加。
     3.硼替佐米能明显下调K562细胞XIAP mRNA及XIAP蛋白的表达,从而增加细胞凋亡。
     4.蛋白酶体抑制剂可以有效诱导白血病K562细胞凋亡,这种效应可能通过硼替佐米下调NF-κB活性,降低XIAP基因的转录,从而使caspase活性增高来发挥,以此为白血病的治疗提供了新的策略及新的治疗思路。
Objective
     The ubiquitin-proteasome pathway(UPP), an important intracellular pathway of selective protein degradation, has an effect on multiple cell functions, such as transcriptional regulation, cell cycle, oxidation and stess reaction and so on. Abnormal proteasome activity can lead to cell dysfunction through pathological protein degradation, which can cause continuous growth of tumor cells. So it is one of the important tumor markers. Proteasome inhibitors specifically inhibit tumor growth, adhesion and angiogenesis by modulating proteasome activity, which can serve as an effective target for tumor treatment.
     Bortezomib (Velcade), a highly selective, reversible proteasome inhibitor, can stabilize p21, p27, p53, IκBα, cyclins, transcriptional factors (e.g.c-myc, c-fos, and c-jun), and Bcl-2 family members (e.g., Bak and Bax) by inhibiting multiple protein degradation. It blocks the activation of NF-κB by preventing proteasome degradation of NF-κB inhibitor,IκBα.Through inhibition of NF-κB, bortezomib not only promotes apoptosis of cancer cells but also sensitizes them to chemotherapy, radiation, or immunotherapy.
     X-linked inhibitor of apoptosis protein (XIAP), as a member of endogenous inhibitors of apoptosis(IAPs), is considered to be a key physiological regulator of apoptosis, which inhibits caspase-9 by BIR3 region, and caspase-3 or caspase-7 by BIR2 region. Various signaling pathways, including NF-kB, PI3K and MAPK, indirectly modulate XIAP gene transcription. Data shows that XIAP gene were highly expressed in leukemia cell lines and leukemia cells of patients with acute leukemia, which suggests that XIAP may be associated with leukemia incidence, evolution and prognosis. In our experiments, proliferation and apoptosis of the K-562 cells were observed before and after cells treated with bortezomib, and the expression of XIAP mRNA and protein in K-562 cells was assayed. In this article, the possibility that bortezomib can be used in blastic phase of chronic myeloid leukemia was explored.
     Method
     1. WST-1 assay cell proliferation:K562 cell was cultured and treated with 5 nmol/L, 10nmol/L,30nmol/L,50nmol/L, 100nmol/L of bortezomib for 12h,24h,36h and 48h., The proliferation of cells were examined by WST-1 assay. Then the growth inhibitory rates were counted and the optimal concentration and time was found.
     2. Wright staining observe cell morphology:30nmol/L of Bortezomib treated K562 cells for 24h, morphological changes and growth state of cell were observed under the microscope by Wright staining.
     3. Flow cytometry detect cell apoptosis:K562 cells was treated with 5 nmol/L, 10nmol/L,30nmol/L,50nmol/L, 100nmol/L of Bortezomib for 24h,applicate of flow cytometry Annexin V FITC/PI double-labeled to detect cell apoptosis.
     4. TUNEL staining analyzed cell apoptosis:The cell apoptosis was analyzed by TUNEL staining when the K562 cells were treated with 30nmol/L Bortezomib for 24h. The positive cell was defined as brown pellet in cytoplasm.300 cells in each slide were randomly counted with positive and negative cells. Positive rate of cells was calculated based on formula:positive rate= positive cells/300×100%.
     5. RT-PCR assessed the expression of the XIAP mRNA:The expression of the XIAP gene was assessed by RT-PCR in K562 cells treated with 5 nmol/L, 10nmol/L, 30nmol/L,50nmol/L, 100nmol/L of Bortezomib for 24h.
     6. Immuno-histochemistry assayed the expression of XIAP protein:The expression of the XIAP protein was assayed by immuno-histochemistry in K562 cells treated with 30nmol/L of Bortezomib for 24h.
     7. Data analyzed:The were using software SPSS 13.0. The counting data were analyzed with theχ2 test. The quantative data were presented as mean±standard difference. Taking a=0.05 as the significant standard of test.
     Results
     1. Growth inhibitory effect of Bortezomib on K-562 cells
     After the K562 cells were treated with 5nmol/L, lOnmol/L,30nmol/L, 50nmol/L,100nmol/L Bortezomib for 24h, cells growth were significantly inhibited with inhibition rates at(13.6±0.15)%、(28.7±0.49)%、(55.4±1.11)%、(68.1±1.12)%、(81.4±0.13)%, respectively. Then Compared with the inhibitory effect of different Bortezomib groups there were significant difference (P<0.05). Data analysis revealed that Bortezomib could suppress the proliferation of K562 cells in dose-dependent manners. The IC50 was 24.6 nmol/L of Bortezomib treated K562 cell 24h.Then K562 cells were treated with 30 nmol/L Bortezomib for 12h,24h,36h,48h, inhibition rates at(29.1±0.92)%、(55.4±1.11)%、(57.8±0.84)%、(59.8±1.18)%, respectively. Bortezomib could suppress the proliferation of K562 cells in time-dependent manners, but there was no statistical difference between 24h group,36h group and 48h group, the optimal time was 24h.
     2. Apoptosis of K562 cells induced by Bortezomib
     After the K562 cells were treated with 30 nmol/L Bortezomib for 24h, Wright staining, optical microscopy showed bortezomib treated cells showed morphological changes of apoptosis, apoptotic cells showed chromatin condensation, nuclear condensation, nuclear margination, nuclear fragmentation, cytoplasmic vacuoles and see a large number of apoptotic body formation; control cells with normal morphology. The apoptotic cells increased significantly as detected by TUNEL staining. The positive rate was 83.67% in Bortezomib treated group. Compared with untreated group(positive rate 2.33%), the differences had statistical significance (P<0.01). Concentration 5nmol/L,10nmol/L,30nmol/L,50nmol/L,100nmol/L of bortezomib were treated with K562 cells 24 hours, Annexin v FITC/PI double labeling showed that apoptotic rates were:(15.36±0.7)%, (32.21±1.2)%, (53.87±1.3)%, (77.85±1.0)%, (81.25±2.8)%. Higher than the control (0.32±0.6%), P <0.01.There was a significant difference between groups with different concentrations of bortezomib groups, (P<0.05).
     3. Expression of XIAP mRNA and protein
     K562 cells were treated with 5nmol/L,10nmol/L,30nmol/L,50nmol/L, 100nmol/L of Bortezomib for 24h, expression of XIAP mRNA was assayed by RT-PCR:The expression of XIAP mRNA was decreased by a dose-dependent manner. There were significant difference between different concentrations of Bortezomib groups and blank control group (P<0.01). Then Compared with the inhibitory effect of different Bortezomib groups there were significant difference (P<0.05).
     When the K562 cells were treated with 30nmol/L of Bortezomib for 24h, the result of immuno-histochemistry showed that the mean score of XIAP protein in Bortezomib treated cells was 42.00±8.54, which was significantly lower than that in untreated cells 248.33±20.74 (P<0.01).
     Conclusion
     1. Bortezomib can obviously inhibit the cell survival of K562 cells in time-and dose-dependent manners with the optimal time at 24h.
     2. GEM induces apoptosis of HL-60 cells in dose-dependent manners.
     3. Bortezomib can significantly down-regulate expression of XIAP mRNA and protein in K562 cells.
     4. Proteasome inhibitors can induce apoptosis of leukemia K562 cells, this effect may be played by bortezomib reduced NF-κB activity, XIAP gene transcription,then increased caspase activity, this is new strategies and new treatment ideathe for therapy of leukemias.
引文
[1]吴慧娟,张志刚.泛素-蛋白酶体途径及意义.国际病理科学与临床杂志,2006,26(1):7-10
    [2]King RW, Deshaies RJ, Peters JM, et al. Science,1996,274:1652-1659
    [3]A Ciechanover.Intracellular protein degradation:from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting.Cell Death and Differentiation,2005,12:1178-1190
    [4]Landowski TH, Megli CJ, Nullmeyer KD, et al. Mitochondrialmediated disregulation of Ca2+ is a critical determinant of Velcade(PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res,2005,65:28-36
    [5]Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res,2001,61:3071-3076
    [6]Ma MH, Yang HH, Parker K, Manyak S, et al. The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res,2003,9:1136-1144
    [7]Cusack JCJ, Liu R, Houston M, et al.Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341:implications for systemic nuclear factor-kappaB inhibition. Cancer Res,2001,61:3535-3540
    [8]Russo SM, Tepper JE, Baldwin ASJ, et al. Enhancement of radiosensitivity by proteasome inhibition:implications for a role of NF-kappaB.Radiation Oncology Biolocy Physics,2001, 50(1):183-193
    [9]Tan C, Waldmann TA. Proteasome inhibitor PS-341, a potential therapeutic agent for adult T-cell leukemia. Cancer Research,2002,62:1083-1086
    [10]Suzuki Y, Nakabayashi Y, Nakata K,et al. X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and-7 in distinct modes. J.Biol.Chem,2001,276:27058-27063
    [11]Carter BZ, Milella M, Tsao T, et al. Regulation and targeting of antiapoptotie XIAP in acute myeloid leukemia.Leukemia,2003,17:2081-2089
    [12]陈广华,林凤茹,任金海XAF1/XIAP在急性白血病中表达及意义.Chin J Hematol, 2006,27(5),349-350
    [13]Roccaro A.M,Hideshima T, Richardson P.G, et al. Bortezomib as an antitumor agent. Current Pharmaceutical Biotechnology,2006,7(6):441-448
    [14]Richardson P, Barlogie B, Berenson J,et al.Clinical factors predictive of outcome with bortezomib in patients with relapsed,refractory multiple myeloma. Blood,2005,106:2977-2981
    [15]Wu M, Oratal L, Gil J, er al. Immunohistochemieal detection of XIAP and p63 in adenomatous hyperplasia, atypical adenomatous hyperplasia, bronehioloalveolar carcinoma and well-diferentiated adenocarcinoma[J]. Mod Pathol,2008,21 (5):553-558
    [16]Burstein D.E, Idress M.T, Li G, et al. Immunohistochemieal detection the X-linked inhibitor of apoptosis protein (XIAP) in cervical squamous intraepithelial neoplasia and squamous carcinoma[J]. Ann Diagn Pathol,2008,12(2):85-89
    [17]杨展,王旭光,吴英健等.人参总皂苷对K562细胞凋亡相关基因XIAP和Survivin表达的影响.中国现代医药杂志,2009,11(2):13-15
    [18]焦姣,姚祝军.泛素调节的蛋白质降解-2004年诺贝尔化学奖成果简介.科技导报,2005,23(2)
    [19]吴慧娟,张志刚.泛素-蛋白酶体途径及意义.国际病理科学与临床杂志,2006,26(1):7-10
    [20]瞿文,邵宗鸿.蛋白酶体抑制剂硼替佐米治疗血液恶性肿瘤的研究.医学综述,2007,13(15):1181-1182
    [21]Kisselev AF, Apoian TN, Woo KM,et al.Thesizes of peptides generated from protein by mamalian 26S and 20S proteasome[J]. Biol Chem,1999,274(6):3363-3371
    [22]Adams J. Proteasome inhibitors as new anticancer drugs.Cur Opinion Oncol,2002,14 (6): 628-634
    [23]Julian A. The proteasome:A suitable antineoplastic target. Cancer,2004,4:349-360
    [24]Cezary W, Mario D.N.Ubiquitin-Proteasome system and Proteasome Inhibition:New Strategies in Stroke Therapy. Stroke,2004,35:1506-1518
    [25]Richardson P,Barlogie B,Berenson J,et al. Clinical factors predictive of outcome with bortezomib in patients with relapsed,refractory multiple myeloma.Blood,2005,106:2977-2981
    [26]Adams J.The proteasome:a suitable antineoplastic target.Nat Rev Cancer,2004,4:349-360
    [27]A Ciechanover.Intracellular protein degradation:from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting.Cell Death and Differentiation,2005,12:1178-1190
    [28]Landowski T.H, Megli C.J, Nullmeyer K.D, et al. Mitochondrialmediated disregulation of Ca2+ is a critical determinant of Velcade(PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res,2005,65:3828-3836
    [29]Hideshima T, Mitsiades C, Akiyama M,et al.Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood,2003,101:1530-1534
    [30]Chauhan D, Li G, Podar K,et al:Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood,2004,104:2458-2466
    [31]Fribley A, Zeng Q, Wang C.Y:Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol,2004,24:9695-9704
    [32]Rakonczay Z, Hegyi P, Takacs T, et al. The role of NF-kappaB activation in the pathogenesis of acute pancreatitis [J]. Gut,2008,57(2):259-267
    [33]Wang CY,Cusack JC,Liu R,et al.Control of inducible chemoresistance:enhanced antitumor therapy through increased apoptosis by inhibition of NF-kappaB.Nat Med,1999,5:412-417
    [34]Voorhees PM, Dees EC, O'NeilB, et al. The proteasome as a target for cancer therapy. Clin Cancer Res,2003,9:6316-6325
    [35]JULIAN A. The development of proteasome inhibitors as anticancer drugs(J). Cancer Cell, 2004,5(5):417-421
    [36]BoccadoroM, Morgan G, Cavenagh J. Preclinical evaluation of the proteasome inhibitor bortezomib in cancer. Cancer Cell Int,2005,5:18-27
    [37]Aghajanian C, Dizon D.S, Sabbatini P, et al. Phase I trial of bortezomib and carbop latin in recurrent ovarian or p rimary peritoneal cancer. J Clin Oncol,2005,23:5943-5949
    [38]Dreicer R, Petrylak D, Agus D, et al. Phase Ⅰ/Ⅱ study of bortezomib plus docetaxel in patients with advanced androgen-independent prostate cancer. Clinical Cancer Research, 2007,13:1208-1215
    [39]Gatto S, Scapp ini B, Pham L, et al. The proteasome inhibitor PS-341 inhibits growth and induces apoptosis in Bcr/Abl positive cell lines sensitive and resistant to imatinib mesylate. Haematologica,2003,88:853-863
    [40]Horton TM,Gannavarapu A,Blaney S.M, et al. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol,2006,58:13-23
    [41]Voorhees P.M, Dees E.C, O'Neil B, et al. The proteasome as a target for cancer therapy. Clin Cancer Res,2003,9:6316-6325
    [42]Enrique Colado, Stela Alvarez-Fernandez, Patricia Maiso.The effect of the proteasome inhibitor bortezomib on acute myeloid leukemia cells and drug resistance associated with the CD34+ immature phenotype.Haematologica,2008,93(1),57-66
    [43]Taknhashi R, Deveraux Q, Tamm I, et al. A single BIR domain of XIAP suficient for inhibiting caspases[J]. J Biol Chem,1998,273(14):7787-7790
    [44]Wright ME, Han DK, Hoekenbery DM.Caspase-3 and inhibitor of apoptosis protein(s) interactions in Saccharomyces cerevisiae and mammatian cells[J]. FEBS Lett,2000,481(1): 13-18
    [45]Chai J, Shiozaki E, Srinivasula SM. Structural basis of caspase-7 inhibition by XIAP[J]. Cell,2001,107(5):769-780
    [46]Zou T, Rao JN, Guo X, et al. NF-kappaB-mediated IAP expression induces resistance of intestinal epithelial cells to apoptosis after polyahe depletion [J]. Am J Physiol Cell Physiol,2004,286(5):1009-1018
    [47]Warbinek RH, Shmid JA, Stehlik C, et al. Activation of NF-kB by XIAP, the X Chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAKI [J]. J Bio Chem,2000,275:22064-22068
    [48]Sanna MG, da Silva Correia J,Ducrey O,et al. IAP suppression of apoptosis involves distinct mechanisms:the TAK1/JNK1 signaling cascade and caspase inhibition. Mol Cell Biol,2002,22(6):1754-1766
    [1]焦姣,姚祝军.泛素调节的蛋白质降解-2004年诺贝尔化学奖成果简介.科技导报,2005,23(2)
    [2]Ciechanover A.Intracellular protein degradation:from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting.Cell Death and Differentiation,2005,12:1178-1190
    [3]Adams J.Proteasome inhibitor as new anticancer drugs. Cur Opinion Oncol,2002,14(6): 628-634
    [4]吴慧娟,张志刚.泛素-蛋白酶体途径及意义.国际病理科学与临床杂志,2006,26(1):7-10
    [5]瞿文,邵宗鸿.蛋白酶体抑制剂硼替佐米治疗血液恶性肿瘤的研究.医学综述,2007,13(15):1181-1182
    [6]Palombella VJ, Rando OJ, Goldberg AL, et al.Cell,1994,78:773-785
    [7]Peters JM,Franke WW,Kleinschmidt JA.Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm.J Biol Chem, 1994,269(10):7709-7718
    [8]Hatakeyama S,Yada M,Matsumoto M, et al.U box proteins as a new family of uhiquitin-protein ligases[J]. Biochem Biophys Res Commam,2003,302(4):635-645
    [9]Kisselev AF, Apoian TN, Woo KM, et al.Thesizes of peptides generated from protein by mamalian 26S and 20S proteasome[J].J Biol Chem,1999,274(6):3363-3371
    [10]King RW, Deshaies RJ, Peters JM, et al.How protrolysis drives the cell cycle. Science,1996,274:1652-1659
    [11]Li B, Dou Q.P. Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression.Proc Natl Acad Sci USA,2000,97(8): 3850-3855
    [12]Richardson P,Barlogie B,Berenson J,et al.Clinical factors predictive of outcome with bortezomib in patients with relapsed,refractory multiple myeloma.Blood,2005,106: 2977-2981
    [13]Adams J.The proteasome:a suitable antineoplastic target. Nat Rev Cancer,2004,4:349-360
    [14]Landowski TH,Megli CJ,Nullmeyer KD,et al.Mitochondrialmediated disregulation of Ca2+ is a critical determinant of Velcade(PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res,2005,65:3828-3836
    [15]Kane RC, Bross PF, Farrell AT, et al.Velcade:U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist,2003,8:508-513
    [16]Mario Boccadoro,Gareth Morgan,Jamie Cavenagh,et al.Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy.Cancer Cell International,2005,5:18
    [17]Thanos D,Maniatis T.NF-kappa B:a lesson in family values. Cell,1995,80 (4):529~532
    [18]Suzuki T. Role of NF-KB in Macrophage Activation (review) In Endotoxin in Health and Diseaseeds by DC Morrison, H Brade, S Opal and S vogel[M]. Marcel Dekker, NY N. Y, 1999,502-520
    [19]Perkins ND. Integrating cell-signaling pathways with NF-kappaB and IKK function. Nature reviews,2007,8(1):49-62
    [20]陆世丰,陆化,刘澎等.硼替佐米对K562细胞株粘附分子ICAM-1表达的影响.中国误诊学杂志,2007,7(27):6472-6474
    [21]Stanford BL, Zondor SD. Bortezomib treatment for multiple myeloma[J]. Ann Pharmaco ther,2003,37(12):1825-1830
    [22]Hideshima T, Richardson P, Chauhan D, et al.The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res,2001,61:3071-3076
    [23]Ma MH, Yang HH, Parker K, et al.The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents.Clin Cancer Res,2003,9:1136-1144
    [24]Cusack JCJ, Liu R, Houston M, et al.Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341:implications for systemic nuclear factor-kappaB inhibition. Cancer Res,2001,61:3535-3540
    [25]Russo SM, Tepper JE, Baldwin ASJ, et al.Enhancement of radiosensitivity by proteasome inhibition:implications for a role of NF-kappaB. Int J Radiat Oncol BiolPhys,2001, 50:183-193
    [26]Tan C, Waldmann TA.Proteasome inhibitor PS-341, a potential therapeutic agent for adult T-cell leukemia. Cancer Res,2002,62:1083-1086
    [27]Hideshima T, Chauhan D, Richardson P, et al.NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem,2002,277:16639-16647
    [28]Gabai VL, Meriin AB, Yaglom JA, et al.Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett,1998,438:1-4
    [29]Chauhan D, Li G, Podar K, et al.Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood,2004,104:2458-2466
    [30]Yang Y, Ikezoe T, Saito T, et al.Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non-small cell lung cancer cells via the JNK/c-Jun/AP-1 signaling. Cancer Sci,2004,95:176-180
    [31]Hideshima T, Mitsiades C, Akiyama M, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood,2003,101:1530-1534
    [32]MacLaren AP, Chapman RS, Wyllie AH, et al. P53-dependentapoptosis induced by proteasome inhibition in mammary epithelial cells. Cell Death Differ,2001,8:210-218
    [33]Ling YH, Liebes L, Jiang JD, et al.Mechanisms of proteasome inhibitor PS-341 induced G(2)-M-phase arrest and apoptosis in human nonsmall cell lung cancer cell lines. Clin Cancer Res,2003,9:1145-1154
    [34]Adams J, Palombella VJ, Sausville EA, et al.Proteasome inhibitors:a novel class of potent and effective antitumor agents. Cancer Res,1999,59:2615-2622
    [35]Davis NB, Taber DA, Ansari RH, et al. Phase Ⅱ trial of PS-341 in patients with renal cell cancer:a University of Chicago phase Ⅱ consortium study. J Clin Oncol,2004,22:115-119
    [36]Cusack JCJ, Liu R, Houston M, et al.Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341:implications for systemic nuclear factor-kappaB inhibition. Cancer Res,2001,61:3535-3540
    [37]Podar K, Shringarpure R, Tai YT, et al.Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res,2004,64:7500-7506
    [38]Bancroft CC, Chen Z, Dong G, et al.Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-kappaB signal pathways. Clin Cancer Res,2001,7:435-442
    [39]Fribley A, Zeng Q, Wang CY.Proteasome inhibitor PS-341induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol,2004,24:9695-9704
    [40]Kostova Z, Wolf DH.For whom the bell tolls:protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J,2003,22:2309-2317
    [41]Meister S, SchubertU, Neubert K, et al.Extensive immunoglobulin p roduction sensitizes myeloma cells for p roteasome inhibitionl. Cancer Res,2007,67 (4):1783-1792
    [42]Pelletier N, Casamayor,Palleja M, De Luca K, et al.The endoplasmic reticulum is a key component of the plasma cell death pathway. J Immunol,2006,176 (3):1340-1347
    [43]Jemal A, Siegel R, Ward E, et al. Cancer statistics:CA Cancer J Clin,2008,58:71-96
    [44]Ferlay J, Bray F, Pisani P, et al. GLOBOCAN 2002 Cancer Incidence, Mortality and Prevalence Worldwide.IARC CancerBase No.5 Version 2.0. Lyon:IARC Press,2004
    [45]Hideshima T, Mitsiades C, Akiyama M, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood,2003,101(4):1530-1534
    [46]Mitsiades N, Mitsiades CS, Poulaki V, et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma:therapeutic applications. Blood,2002,99(11):4079-4086
    [47]Nencioni A, Grunebach F, Patrone F, et al. Proteasome inhibitors:antitumor effects and beyond. Leukemia,2007,21 (1):30-36
    [48]Obeng EA, Carlson LM, Gutman DM, et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood,2006,107(12):4907-4916
    [49]Anderson KC. Targeted therapy of multiple myeloma based upon tumor microenvironmental interactions. Experimental hematology,2007,35(4):155-162
    [50]Hideshima T, Mitsiades C, Tonon G, et al. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer,2007,7(8):585-598
    [51]Karin M, Cao Y, Greten FR, et al. NF-kappa in cancer:from innocent bystander to major culprit. Nat Rev Cancer,2002,2:301-310
    [52]Hideshima T, Mitsiades C, Akiyama M, et al.Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341.Blood,2003,101:1530-1534
    [53]Rajkumar SV, Richardson P, Hideshima T, et al. Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol,2005,23:630-639
    [54]LeBlanc R, Catley LP, Hideshima T, et al.Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res,2002, 62:4996-5000
    [55]San Miguel JF, Schlag R, Khuageva NK, et al. Updated follow-up and results of subsequent therapy in the phase Ⅲ VISTA Trial:bortezomib plus melphalanprednisone versus melphalan-prednisone in newly diagnosed multiple myeloma. Blood.2008,112:650
    [56]San Miguel JF, Schlag R, Khuageva NK, et al.Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Eng J Med,2008,359:906-917
    [57]Mateos MV, Oriol A, Martinez J, et al. Bortezomib (Velcade)-melphalan-prednisone (VMP) versusvelcade-thalidomide-prednisone (VTP) in elderly untreated multiple myeloma patients:which is the best partner for Velcade:an alkylating or an immunomodulator agent? Blood,2008,112:651
    [58]Palumbo A, Bringhen S, Rossi D, et al. A prospective,randomized, phase Ⅲ study of bortezomib, melphalan,prednisone and thalidomide (VMPT) versus bortezomib, melphalan and prednisone (VMP) in elderly newly diagnosed myeloma patients.Blood,2008,112:652
    [59]黄灵芝.硼替佐米有望成为治疗非霍奇金淋巴瘤新药[J].Foreign Medical Sciences, 2006,33 (5):382-383
    [60]Connor OA, Wright J, Moskowitz C.et al. Phase Ⅱ clinical experionce with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma and mantle cell lymphoma[J]. Clin Oncol,2005,23(4):676-684
    [61]Cortes J, Omas D, Koller D, et al. Phase Ⅰ study of bortezomib in refractory or relapsod acute leemias[J]. Clin Cancer Res,2004,10(10):3371-3376
    [62]Attar EC, Deangelo DJ, Supko JG, et al.Phase Ⅰ and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patientswith acute myelogenous leukemia.Clin Cancer Res,2008,14 (5):1446-1454
    [63]Teicher BA, Ara G, Herbst R, et al.The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res,1999,5:2638-2645
    [64]DaviesAM, Ruel C, Lara PN, et al.The proteasome inhibitor bortezomib in combination with gemcitabine and carbop latin in advanced non-small cell lung cancer:a California Cancer Consortium Phase I study[J]. Thorac Oncol,2008,3:68-74
    [65]Fanucchi MP, Fossella FV, Belt R, et al.Randomized phase 11 tudy of bortezomib alone and bortezomib incombination with docetaxel inPreviously treated advancednon-small-cell lungcancer[J].J Clin oncol,2006,24(31):5025-5033
    [66]Rosenberg JE, Halabi S, Sanford BL.Phase Ⅱ study of bortezomib in patients with previously treated advanced urothelial tract transitional cell carcinoma:CALGB 90207. Ann Oncol,2008,19(5):946-950
    [67]Schmid P, Kuhnhardt D, Kiewe P et al.A phase Ⅰ/Ⅱ study of bortezomib and capecitabine in patients with metastatic breast cancer previously treated with taxanes and/or anthracyclines, 2008,19(5):871-876