硅藻土基吸附剂的制备、表征及其染料吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纺织印染、造纸、塑料及皮革等工业每年都产生大量的染料废水,由于许多染料为含偶氮键、多聚芳香环的复杂有机物,可致畸、致癌、致突变,因此,这类废水中染料的去除非常重要。许多染料抗氧化、难降解,采用吸附剂去除废水中的染料具有较大优势。活性炭是一种有效的吸附剂,但价格昂贵,限制了它的广泛应用;而硅藻土资源丰富,多孔、比表面积大,有望成为一种高效廉价的吸附剂。然而,硅藻土原料吸附性能较差,需要进一步提高它的染料吸附性能,目前这方面的研究工作尚少,关于硅藻土染料吸附的应用、理论等方面的研究都有待完善。
     本文根据硅藻土矿物可有效改造的结构特征,通过活化、引入第二组分进行改性等方法,提出氢氧化镁改性及聚丙烯酰胺改性硅藻土基吸附剂制备技术,提高了硅藻土的染料吸附性能;由此,本论文率先开展了硅藻土基吸附剂的制备工艺、材料表征、染料吸附性能、染料吸附理论、染料废水处理应用这一较为系统的研究工作;在其中的理论研究中,本文对浓度比形式的准一级、准二级吸附动力学速率方程进行了修正,并在本文的染料吸附动力学研究中进行应用,验证了其可行性;而且,在染料吸附等温线模型、动力学、热力学研究的基础上,本文提出了硅藻土吸附剂的染料吸附机理。主要的研究成果如下:
     1、研究发现,硅藻土原料对染料溶液吸附时,杂质的存在使吸附后染液对480 nm以下的可见光吸收增强,并影响它的染料吸附性能;经450℃热活化后,杂质被去除,比表面积S_(BET)从67.17减小到52.56 m~2·g~(-1),平均孔径从8.847增大到10.29 nm,零电荷点pH_(zpc)由3.2提高到4.5左右,对染料溶液的脱色率增大。
     2、首次进行氢氧化镁改性硅藻土(MGMD)、聚丙烯酰胺改性硅藻土(HPMD)吸附剂的研究,并提出了它们的制备工艺。结果表明,MGMD中Mg(OH)_2的较佳含量在14%左右,HPMD中聚丙烯酰胺的较佳含量在0.8%左右;MGMD的材料表征结果显示,MGMD比表面积为57.84 m~2·g~(-1),平均孔径9.686 nm,ξ电位测定时其表面出现3次电荷反转,分别表示硅藻土等电点、Mg(OH)_2沉淀开始及Mg(OH)_2等电点;染料吸附结果显示,MGMD对阴离子染料的脱色率大于活性炭,HPMD对阳离子染料的脱色率接近于活性炭。
     3、研究了吸附剂浓度、盐的加入、吸附时间、pH值等因素对硅藻土吸附剂染料吸附的影响。发现了亚甲基蓝(MB)染液在较高pH条件下,因水解或形成二聚体对可见光的吸收强度随时间不断降低的现象。根据此现象,本文提出,pH值增大,硅藻土或其它矿物吸附剂对MB脱色率增大的原因有两个:一是pH值越大,吸附剂表面负电荷量越多,因此对阳离子染料MB的吸附增大;二是在高pH下,MB自身水解或形成二聚体导致脱色率增大。由于MB是表征吸附剂吸附性能最常用的染料之一,该发现对于其它吸附剂的研究也具有参考价值。
     4、修正了浓度比形式的准一级、准二级动力学速率方程。对动力学实验数据拟合时,它们能更直观地表现吸附质浓度随时间的变化过程,而且在平衡吸附容量q_e未测定的情况下,它们均可根据动力学数据直接预测吸附剂的q_e值;从而发展了准一级、准二级动力学模型新的应用模式。
     5、研究了热活化硅藻土与MGMD吸附剂的染料吸附等温线模型、动力学模型、热力学参数,并提出了它们的染料吸附机理。结果表明,在Langmuir、Freundlich及Redlich-Peterson模型中,它们对染料的吸附等温线最符合Redlich-Peterson模型;它们对染料的吸附过程则更符合准二级动力学模型;它们对染料的吸附机理为:通过静电引力、氢键、n-π作用及范德华力吸附染料分子,其中,静电引力和氢键吸附起主要作用。
A huge quantity of dye wastewater is discharged by textile, paper, plastic and leather industries every year. As many dyes are complex organic contained azo and poly aromatic ring, which may cause people abnormal, cancerous and mutagenic, the removal of dyes from these wastewaters is a very important subject. Lots of dyes are resistant to oxidation and degradation, so adopting adsorbent to remove the dyes may be superior to other methods. The activated carbon is a very effective adsorbent, but its high price limits its extensive use. The diatomite is abundant, porous and has high specific surface area, which make it hopeful to be one effective and low-cost adsorbent. However, the adsorption capability of raw diatomite still needs to be improved and the studies on its application and theory on dyes adsorption are still expected to be carried out further.
    In this paper, basing on the structure characteristics of diatomite, the preparation technique of adsorbent of Mg(OH)_2-modified diatomite and polyacrylamide-modified diatomite were developed with the method of activated and combined the second composition, which improved the adsorption capability for dyes. Hence, the system study from preparation process, materials characterization and dye-adsorption property to the dye-adsorption theory and application of diatomite-based adsorbent was carried out. On the study of adsorption theory, the traditional pseudo-first-order and pseudo-second-order kinetics equations were rearranged to be concentration form in the paper, and then they were applied to study the kinetics of dyes adsorption onto diatomite, which verified their practicability. Moreover, the adsorption mechanisms of dyes onto diatomite-based adsorbent were presented in this paper after the study of adsorption isotherms, kinetics and thermodynamics. The main achievements are as follows:
    (1) It was found that when the dye solution was adsorbed by the raw diatomite, the impurity on the raw diatomite made the dye solution after adsorbed increase the absorbance of visible light under the wavelength of 480 nm, which impacted the adsorption capability of diatomite. The impurity was removed when the diatomite was calcined at 450 ℃, with the specific surface area (S_(BET)) decreasing from 67.17 to 52.56
    m~2·g~(-1), the average pore diameter increasing from 8.847 to 10.29 run, the zero charge point (pH_(zpc)) increasing from 3.2 to 4.5, and the removal of dye solution improving.
    (2) The preparation processes of adsorbents of Mg(OH)_2-modified diatomite (MGMD) and polyacrylamide-modified diatomite (HPMD) were developed first time. It was found that the optimum content of Mg(OH)_2 in MGMD was about 14% and that of polyacrylamide in HPMD was about 0.8%. The characterization study of MGMD showed that the S_(BET) of MGMD was 57.84 m~2·g~(-1) and the average pore diameter was 9.686 nm, and there were three times of charge reverse during the determination of zeta potential, which denoted the isoelectric point of diatomite, the precipitation start of Mg(OH)_2 and the isoelectric point of Mg(OH)_2. Moreover, the dye removal of anionic dyes onto MGMD was higher than that onto activated carbon while the removal of cationic dyes onto HPMD was close to that onto activated carbon.
    (3) The effects of adsorbent concentration, salt, adsorption time and pH value on the dyes adsorption of diatomite adsorbent were analyzed. It was found that the absorbance of visible light of Methylene blue (MB) solution decreased at high pH because of hydrolysis or forming dimer of MB. On the basis of this find, we proposed that there were two reasons for the increasing removal of MB onto diatomite or other mineral adsorbents with the increasing pH value: one was the increasing negative charge on the adsorbents surface with pH increasing and the other was the hydrolysis or dimer forming of MB which causing the removal increase. As MB is one of the most popular dyes for characterization of various adsorbents, this find may be also taken as reference to other adsorbent studies.
    (4) The concentration forms of pseudo-first-order and pseudo-second-order kinetics equations were rearranged in the paper. When they are applied to fit the kinetic data, they can describe the variation process of the dye concentration with time more visually, and under the condition of without equilibrium adsorption capacity (q_e) determination, both of them can be used to predict the q_e value directly after the fitting.
    (5) The adsorption isotherms model, kinetics model and thermodynamic parameters of dyes onto heat activated diatomite and MGMD were firstly studied and their dyes adsorption mechanisms were then proposed in the paper. The adsorption isotherms were studied using Langmuir, Freundlich and Redlich-Peterson models. It showed that the
    Redlich-Peterson model was the best one. The adsorption process of dyes can be better described by the pseudo-second-order model than the pseudo-first-order model. And the adsorption mechanisms of dyes were proposed as: adsorption by an electrostatic force, hydrogen bond, n-π interaction and Van der Waals force, of which the electrostatic force and hydrogen bond were the main effects.
引文
[1] http://info.water.hc360.com/2005/07/01132355549.shtml
    [2] Al-Degs Y., Khraisheh M. A. M., Allen S. J., et al. Effect of Carbon Surface Chemistry on the Removal of Reactive Dye from Textile Effluence. Water Research, 2000, 34(3): 927
    [3] 冯栩、廖银章、李旭东,印染废水生物处理技术的进展,印染,2006(15):48-51
    [4] Sujoy K. D., Jayati B., Akhil R. D., et al. Adsorption Behavior of Rhodamine B on Rhizopus oryzae Biomass. Langmuir, 2006, 22: 7265-7272
    [5] Cooper P. Removing colour from dyehouse waste waters - a critical review of technology available, J. Soc. Dyers Col. 1993 (109): 97-100
    [6] 刘转年、金奇庭、周安宁,废水的吸附法处理,水处理技术,2003,29(6):318—322
    [7] Lambert S. D., Graham N. J. D., Sollars C. J. and Fowler G. D. Evaluation of inorganic adsorbents for the removal of problematic textile dyes and pesticides. Water Sci. Technol., 1997, 36: 173-180
    [8] 杨宇翔、吴介达、黄忠良等,几种硅藻土的表面电化学性质的研究,无机化学学报,1997,13(1):11-15
    [9] Antonides L. E., Diatomite: US Geological survey Mineral Commodity Summaries, 1998: 56-57
    [10] Pearee C. I., Lloyd J. R., Guthrie J. T. The removal of colour, from textile wastewater using whole bacterial ceils: a review. Dyes Pigments 2003(58): 179-196.
    [11] 王菊生,染整工艺原理,中国纺织出版社,北京:1997
    [12] The Color Index International, 4th ed., Soc. Dyers Colorists, 2002
    [13] Van de Zee F. P. Anaerobic azo dye reduction. PhD Thesis, Wageningen University. Wageningen, the Netherlands, 2002
    [14] Wesenberg D., Kyriakides I., Agathos S. N.. White-rot fungi and their enzymes for the treatment of industrial dye effluents, Biotechnology Advances 2003 (22): 161-187
    [15] Forgacs E., Cserha T., Oros G. Removal of synthetic dyes from wastewaters: a review, Environment International, 2004 (30) 953-971
    [16] 张宇峰、滕洁、张雪英等,印染废水处理技术的研究进展,工业水处理,2003,23(4):23-27
    [17] 李风亭、陆雪非、张冰如,印染废水脱色方法,水处理技术,2003,29(1):12-14
    [18] Slokar Y. M., Marechal L. Methods of decoloration of textile wastewaters. Dyes and Pigments, 1997, 37, 335-356.
    [19] Raghavacharya C. Colour removal from industrial effluents- a comparative review of available technologies. Chem. Eng. World, 1997, 32: 53-54
    [20] Robinson T., McMullan G., Marchant R., et al. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource Technology, 2001, 77: 247-255
    [21] Al-Degs Y., Khraisheh M. A. M., Allen S. J., et al. Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res. 2000, 34, 927-935
    [22] Ozacar M., Sengil A. I. Adsorption of reactive dyes on calcined alunite from aqueous solutions. J. Hazardous Mater. 2003, B98, 211-224
    [23] Allen S. J., Gan Q., Matthews R., et al. Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresource Technology 2003, 88, 143-152
    [24] Martin M. J., Artola A., Balaguer D, et al. Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chem. Eng. J. 2003, 94, 231-239
    [25] Choy K. K. H., Porter J. F., McKay G. Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. J. Chem. Eng. Data, 2000, 45: 575-584.
    [26] Aksu Z., Tezer S. Biosorption of reactive dyes on the green alga Chlorella vulgaris. Proc. Biochem. 2005, 40, 1347-1361
    [27] 陆朝阳、沈莉莉、张全兴,吸附法处理染料废水的工艺及其机理研究进展,工业水处理,2004,24(3):12-16
    [28] Walker G M, et al. Adsorption of dyes from aqueous solution - the effect of adsorbent pore size distribution and dye aggregation. Chemical Engineering Journal, 2001, 83(3): 201-206
    [29] Tamai H., et al. Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex. Carbon, 1999, 37(6): 983-989
    [30] Hu Zhonghua, et al. Novel activation process for preparing highly microporous and mesoporous activated carbons. Carbon, 2001, 39(6): 877-886
    [31] 李方文、邱喜阳、马淞江,海泡石改性及处理印染废水的研究,环境科学与技术,2005,28(1):77-79
    [32] 贾堤、刘金泉、张守彬等,海泡石对不同价态有机阳离子染料吸附机理探讨,非金属矿,2003,26(4):39-41
    [33] 王琪全,等,麦饭石对水溶性燃料及印染废水吸附的研究,上海环境科学,1993,12(10):7-9
    [34] 裘祖楠,等,用凹凸棒脱除染色废水的色度,环境工程,1995,12(5):5-7
    [35] 王连军,等,膨润土的改性研究,工业水处理,1999,19(1):9-11
    [36] 冀静平,等,膨润土的改性及对染料废水的处理研究,中国给水排水,1998,14(4):7-9
    [37] 曾秀琼,弱酸性深蓝GR在羟基柱撑膨润土上的吸附研究,水处理技术,2001,27(4):200-203
    [38] Baskaralingam P., Pulikesi M., Ramamurthi V., et al. Adsorption of acid dye onto organobentonite, Journal of Hazardous Materials, 2006, B 128: 138-144
    [39] Ozcan A.S., Erdem B., zcan A. Adsorption of acid blue193 from aqueous solutions onto Na-bentonite and DTMA-bentonite. J. Colloid Int. Sci. 2004, 280: 44-54
    [40] Walker G. M., Hansen L., Hanna J. A., et al. Kinetics of a reactive dye adsorption onto dolomitic sorbents. Water Res. 2003, 37: 2081-2089
    [41] zacar M., Sengil A.I. Adsorption of reactive dyes on calcined alunite from aqueous solutions. J. Hazardous Mater. 2003, B98: 211-224
    [42] Ozdemir O., Armagan B., Turan M., et al. Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals. Dyes Pigments, 2004, 62: 49-60
    [43] Lazaridis N. K., Karapantsios T. D., Geogantas D. Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption. Water Res. 2003, 37: 3023-3033
    [44] Bagane M., Guiza S. Removal of a dye from textile effluents by adsorption. Ann. Chim. Sci. Mater. 2000, 25: 615-626
    [45] Gurses A., Karaca S., Dogar C., et al. Determination of adsorptive properties of clay/water system: methylene blue sorption. J. Colloid Int. Sci. 2004, 269: 310-314
    [46] Al-Ghouti M. A., Khraisheh M. A. M., Allen S. J., et al. The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manage. 2003, 69: 229-238
    [47] Shawabkeh R. A., Tutunji M. F. Experimental study and modeling of basic dye sorption by diatomaceous clay. Appl. Clay Scj. 2003, 24: 111-120
    [48] Woolard C. D., Strong J., Erasmus C. R. Evaluation of the use of modi.ed coal ash as a potential sorbent for organic waste streams. Appl. Geochem. 2002, 17: 1159-1164
    [49] Ho Y. S., Chiang C. C., Hsu Y. C. Sorption kinetics for dye removal from aqueous solution using activated clay. Sep. Sci. Technol. 2001, 36: 2473-2488
    [50] Alkan M., Celikcapa S., Demirbas O. et al. Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite. Dyes Pigments 2005, 65: 251-259
    [51] Wang C. C., Juang L. C., Hsu T. C., et al. Adsorption of basic dyes onto montmorillonite. J. Colloid Int. Sci. 2004, 273: 80-86
    [52] 张全兴,等,我国应用树脂吸附法处理有机废水的进展,化工环保,1994,14(6):344-347
    [53] 陆朝阳,等,树脂吸附法处理分散蓝NKF脱磺母液,化工环保,2002,22(6):342-346
    [54] 余颖,等,树脂NKY对染料活性艳蓝KN-R的吸附特性,离子交换与吸附,2000,16(5):432-440
    [55] 肖羽堂、王继徽,纺织印染废水的吸附脱色技术研究进展,重庆环境科学,1996,18(5),24-29
    [56] Silke K., et al. Screening of commercial sorbents for the removal of reactive dyes. Dyes and Pigments, 2001, 51(2-3): 111-125
    [57] Yu Y., et al. Adsorption of Water soluble Dye onto Functional ized Resin. Journal of Colloid and Interface Science, 2001, 242 (2): 288-293
    [58] Wang S., Wu H. Environmental-benign utilisation of fly ash as low-cost adsorbents. Journal of Hazardous Materials, 2006, 136(3): 482-501
    [59] Talman R., Atun G. Effects of cationic and anionic surfactants on the adsorption of toluidine blue onto fly ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281: 15-22
    [60] Rajeshwarisivaraj, et al. Carbon from Cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution. Bioresource Technology, 2001, 80(3): 233-235
    [61] Badie S. G., et al. Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Materials Letters, 2002, 57(1): 164-172
    [62] Feng C. W., et al. Pore structure and adsorption performance of the activated carbons prepared from plum kernels. Journal of Hazardous Materials, 1999, 69(3): 287-302
    [63] Namasivayam C, et al. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments, 2002, 54(1): 47-58
    [64] Nassar Mamdouh M, et al. Removal of different basic dyes from aqueous solutions by adsorption on palm fruit bunch particles. Chemical Engineering Journal, 1997, 66(3): 223-226
    [65] Rajeshwarisivaraj, et al. Activated parthenium carbon as an adsorbent for the removal of dyes and heavy metal ions from aqueous solution. Bioresource Technology, 2002, 85(2): 205-206
    [66] Chen Buning, et al. Film pore diffusion modeling and contact time optimization for the adsorption of dyestuffs on pith. Chemical Engineering Journal, 2001, 84(2): 77-94
    [67] Werbowesky R, et al. Extraction ofazo dyes by polyurethane foam. Talanta, 1996, 42(3): 263-274
    [68] Karcher S., Kommuller A, Jekel M. Removal of Reactive Dyes by Sorption/Complexion with Cucurbituril. Wat. Sci. Tech., 1999, 40(4-5): 425-433.
    [69] Karcher S., et al. Cucurbituril for water treatment. Part Ⅰ: Solubility ofcucurbituril and sorption of reactive dyes. Water Research, 2001, 35(14): 3309-3316
    [70] Chiou M. S., et al. Equilibrium and kinetic modeling of adsorption of reactive dye on cross linked chitosan beads. Journal of Hazardous Materials, 2002, 93(2): 233-248
    [71] Juang R S, et al. Use of chemically modified chitosan beads for sorption and enzyme immobilization. Advances in Environmental Research, 2002, 6(2): 171-177
    [72] 马子川,等.新生态MnO_2吸附剂对酸性媒介染料废水脱色特性研究.环境污染治理技术与设备,2002,3(1):19—22
    [73] 杨宇翔,王鹏,陈荣三.硅藻土比表面的研究.南京大学学报,1991,27(4):706—714
    [74] Http://www.chinamm.com/zyandkf/guizaotu.htm
    [75] 杨宇翔,陈荣三,戴安邦.国产硅藻土结构的研究.化学学报,1996,54:57—64
    [76] 袁鹏,吴大清.硅藻土在一些高附加值产品中的应用及其基础研究.矿物岩石,2000,20(1):101-104
    [77] 杨宇翔,吴介达,王鹏,等.硅藻土表面酸性质的研究.无机化学学报,1996,12:356-361
    [78] 杨宇翔,吴介达,黄忠良.儿种硅藻土的表面电化学性质的研究.无机化学学报,1997,13:11-15
    [79] Koretsky D., Sverjensky J., Salisbury J., et al. Detection of surface hydroxyl species on quartz, Calumina, and feldspars using diffuse reflectance infrared spectroscopy. Geochimicaet Cosmochimica Acta, 1997, 61: 2193-2210
    [80] G. E. Brown Jr., How minerals react with water, Science, 2001, 294: 69-70
    [81] Frost R L, KristofJ, Paroz G N, et al. Raman microscope of dickete, kaolinite and their interface Analyst, 1998, 123(4): 611-616
    [82] 吴大清,刁桂仪,袁鹏.矿物表面活性及其量度,矿物学报,2001,21(3):307-311
    [83] Brady P V, Physics and Chemistry of Mineral surface [M]. Florida: CRC press, 1996, 1-61
    [84] 吴大清,刁桂仪,魏俊峰,等.矿物表面基团与表面作用,高校地质学报,2000,6(2):225-232
    [85] Koretsky C. M., Sverjensky D. A., Sahai N. A model of surface site types on oxide and silicate minerals based on crystal chemistry. Implications for site types and densities, multi-site adsorption, surface infrared spectroscopy, and dissolution kinetics. Amer. J. Science, 1998, 295(5): 349-438
    [86] Davis J. A., Kent D. B., Surface complexation modeling in aqueous geochemistry, In: Hochella MF, White AF., Mineral-water Interface Geochemistry: Reviews in Mineralogy, Vol23. Washington, D C: Miner Soc Am. 1990, 177-259
    [87] Osmanlioglu A. E., Natural diatomite process for removal of radioactivity from liquid waste, Applied Radiation and Isotopes 2007, 65: 17-20
    [88] Murathan A, Benli S. Removal of Cu~(2+), Pb~(2+) and Zn~(2+) from aqueous solutions on diatomite via adsorption in fixed bed. Fresenius Environmental Bulletin, 2005, 14(6): 468-472
    [89] Hicham Z., Tarik C. FTIR determination of adsorption characteristics for volatile organic compounds removal on diatomite mineral compared to commercial silica, C. R. Chimie, 2005(8): 1701-1708
    [90] Wu J. L., Yang Y. S., Lin J., Advanced tertiary treatment of municipal wastewater using raw and modified diatomite, Journal of Hazardous Materials 2005 (B 127): 196-203
    [91] Karatepe N., Erdogan N., Mericboyu A. E., et al. Preparation of diatomite/Ca(OH)2 sorbents and modelling their sulphation reaction, Chemical Engineering Science 2004 (59): 3883-3889
    [92] Khraisheh M., AI-degs Y. S., Mcminn W.A.M., Remediation of wastewater containing heavy metals using raw and modified diatomite, Chemical Engineering Journal 2004 (99) 177-184
    [93] Degs Y., Khraisheh M. A. M., Tutunji M. F. Sorption of Lead Ions On Diatomite and Manganese Oxides Modified Diatomite. Water Research, 2001, 35 (15): 3724-3728.
    [94] Castro Dantas T. N., et al. Removal of chromium from aqueous solutions by diatomite treated with micro- emulsion. Water Research, 2001, 35 (9): 2219-2224.
    [95] 高保娇,姜鹏飞,安富强,等.聚乙烯亚胺表面改性硅藻土及其对苯酚吸附特性的研究.高分子学报,2006,2(1):70—75
    [96] 刘景华,吕晓丽,魏丽丹,等.硅藻土微波改性及对污水中硫化物吸附的研究.非金属矿,2006,29(3):36-37
    [97] 沈岩柏,朱一民,魏德洲,等.硅藻土对诺卡氏菌的吸附作用.东北大学学报:自然科学版,2005,26(2):183-185
    [98] 翁焕新,沈忠悦,张兴茂,等.硅藻土改性对工业废水降氟效果的影响研究.硅酸盐学报.2002,30(3):366-371
    [99] 朱利中,魏林.有机粘土吸附处理水中苯酚的性能及应用.水处理技术,1996,22(2):107-112
    [100] 杨宇翔,张亚匡,吴介达,等.硅藻土脱色机理及其在印染废水中应用的研究.工业水处理, 1999,19(1):15—17.
    [101] 彭书传.硅藻土复合净水剂处理印染废水.环境科学与技术,1998(1):24-25
    [102] 木冠南.添加剂及预处理对寻甸硅藻土吸附染料的影响.云南化工,1995(3):8-10
    [103] 何媛媛,李正山,范莉,等.TiO_2硅藻土复合光催化剂研制及光催化氧化水中亚甲基蓝的研究,染料与染色,2005,42(1):53-55
    [104] 王利剑,郑水林,舒锋,硅藻土负载二氧化钛复合材料的制备与光催化性能,硅酸盐学报,2006,34(7):823-826
    [105] Dung N. T., Van K. N., Herrmann J. M. Photocatalytic degradation of reactive dye RED-3BA in aqueous TiO_2 suspension under UV-visible light, International Journal of Photoenergy, 2005, 7 (1): 11-15
    [106] Reyad A. Shawabkeh, Maha F. Tutunji. Experimental study and modeling of basic dye sorption by diatomaceous clay. Applied Clay Science, 2003 (24): 111-120
    [107] Emin Erdem, Gülay Colgecen, Ramazan Donat. The removal of textile dyes by diatomite earth. Journal of Colloid and Interface Science, 2005 (282): 314-319
    [108] M. A. Al-Ghouti, M. A. M. Khraisheh, S. J. Allen. The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. Journal of Environmental Management, 2003 (69): 229-238.
    [109] M. Al-Ghouti, M. A. M. Khraisheh, M. N. M. Ahmad. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: A kinetic study. Journal of Colloid and Interface Science, 2005 (287): 6-13
    [110] M. A. Al-Ghoutia, M. A. M. Khraishehb, M. N. Ahmadc, S. J. Allenc, Microcolumn studies of dye adsorption onto manganese oxides modified diatomite, Journal of Hazardous Materials (2006), doi: 10.1016/j.jhazmat.2006.12.024
    [111] Khraisheh MAM, Al-Ghouti MA, Allen SJ. The effect ofpH, temperature, and molecular size on the removal of dyes from textile effluent using manganese oxides-modified diatomite. Water Environment Research, 2004, 76 (7): 2655-2663
    [112] Khraisheh MAM, AI-Ghouti MA, Allen SJ. Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Research, 2005(39): 922-932
    [113] Khraisheh MAM, Al-Ghouti MS. Enhanced dye adsorption by microemulsion-modified calcined diatomite (μE-CD), Adsorption, 2005, 11: 547-559
    [114] Castro Dantas T. N., Dantas Neto A. A., Beltrame L. T. C., Microemulsion as surface modifier agent in color removal from textile wastewater, CHISA 2004 - 16th International Congress of Chemical and Process Engineering, 2004, 4487-4493
    [115] Gregorio Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresource Technology, 2006 (97): 1061-1085
    [116] Wang, S., Boyjoo, Y., Choueib, A., Zhu, Z.H. Removal of dyes from aqueous solution using fly ash and red mud. Water Res. 2005, 39, 129-138
    [117] WANG Z. L., YANG Y. X., ZHU H., et al. A study on adsorption properties of Zhejiang diatomites, 功能材料, 2006, 37(1): 160-165
    [118] 王利剑,郑水林,陈骏涛.硅藻土提纯及其吸附性能研究,非金属矿,2006,29(2):3-5
    [119] Mohan, D., Singh, K.P., Singh, G., Kumar, K.. Removal of dyes from wastewater using fly ash, a low-cost adsorbent. Ind. Eng. Chem. Res. 2002, 41: 3688-3695
    [120] Parks G. A., Bruyn P. L. The zero point of charge of oxides. J. Phys. Chem. 1962, 66: 967-973
    [121] Tewari, Campbell. Point of zero charge. Journal of colloid and interface science, 1976, 55: 531
    [122] Noh J. S., Schwarz J. A. Estimation of the point of zero charge of simple oxide by mass titration. Journal of colloid and interface science, 1989, 130 (1): 157-164
    [123] Chen J. P., Lin M. Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies. Water Res. 2001, 35 (10): 2385-2394
    [124] Hazen A. A new color standard for natural water. Am. Chem. J. 1892, 12: 427-428
    [125] Yuan P., Wu D. Q., He H. P., et al. The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study. Applied Surface Science, 2004 (227): 30-39
    [126] 马崇勇,黄发政.硅藻土处理造纸等有机废水,CN 86106871A
    [127] Hunter R. J., Measuring surface charge and potential, in "Introduction to Modem Colloid Science", 1st Ed., Oxford Science Publication: New York, 1993: 227-261
    [128] 高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M],北京:化学工业出版社,2003年
    [129] 李建萍,王存政,刘宝林,等.粉煤灰在废水处理中的应用,再生资源研究,2004,3:36-39
    [130] Wang S., Boyjoo Y., Choueib, A. A comparative study of dye removal using fly ash treated by different methods. Chemosphere, 2005, 60(10): 1401-1407
    [131] Mitchell I. V. Pillared layered structures: current treads and applications, London: Elsevier Applied Science, 1990.
    [132] Tahir S. S., Rauf N., Thermodynamics studies of Ni(Ⅱ) adsorption onto bentonite from aqueous solution, J. Chem. Thermodyn. 2003 (35): 2003-2009
    [133] Ozcan A. S., Erdem B., Ozcan A., Adsorption of Acid Blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite, J. Colloid Interface Sci. 2004 (280): 44-54.
    [134] J. A. Smith, S. L. Bartelt-Hunt, S. E. Burns, Sorption and permeability of gasoline hydrocarbons in organobentonite porous media, J. Hazard. Mater. 2003 (B96): 91-97
    [135] 候万国,孙德军,张春光.应用胶体化学[M].北京:科学出版社,1998:162-163
    [136] Ozdemir O., Armagan B., Turan M., et al. Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals. Dyes Pigments 2004, 62: 49-60
    [137] Wang S., Soudi M., Li L., Zhu, Z. H. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. Journal of Hazardous Materials, 2006, 133(1-3), 243-251
    [138] Espantaleon A. G., Nieto J. A., Fernandez M., Marsal A. Use of activated clays in the removal of dyes and surfactants from tannery waste waters. Appl. Clay Sci., 2003, 24, 105-110
    [139] Ghosh D., Bhattacharyya K.G. Adsorption of methylene blue on kaolinite. Appl. Clay Sci., 2002, 20, 295-300.
    [140] 朱利中,等.CTMAB-粘土吸附水中苯酚、苯胺和对硝基苯酚的性能及应用研究.水处理技术,1997,23(5):291-296
    [141] Sung C. K., Dong I S., Adsorption of phenol and nitrophenol isomers onto montmorillonite modified with hexadecyltrimethylammonium cation. Separation Sci. and Tech., 1998, 33: 1981-1998
    [142] Baskaralingam P., Pulikesi M., Ramamurthi V., et al. Adsorption of acid dye onto organobentonite, Journal of Hazardous Materials, 2006, B 128: 138-144
    [143] Manohar D. M., Krishnan K. A., Anirudhan T. S., Removal of mercury(Ⅱ) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay, Water Research 2002 (36): 1609-1619
    [144] Talman R. Y., Atun G. Effects of cationic and anionic surfactants on the adsorption of toluidine blue onto fly ash, Colloids and Surfaces A: Physicochem. Eng. Aspects 2006 (281) 15-22
    [145] Kuan W. H., Lo S. L., Wang M. K., et al. Removal of Se(Ⅳ) and Se(Ⅵ) from water by aluminum-oxide-coated sand. Water Research, 1998, 32: 915-923
    [146] Theopharis G. D., Triantafyllos A. A., et al. Removal of chlorinated phenols from aqueous solution by adsorption on alumina pillared clays and mesoporous alumina aluminum phosphates. Water research, 1998,32 (2):295-302
    
    [147] Meng X., Letterman R.D. Modeling ion adsorption on aluminum hydroxide modified silica, Environ. Sci. Technol. 1993,27:1924-1929
    
    [148] Edwards M., Benjamin M.M., Adsorption filtration using coated sand: a new approach for treatment of metal-bearing wastes, J. Water Pollut. Control Fed. 1989, 61:1523-1533
    
    [149] Al-sewailem M.S., Khaled E.M., Mashhady A.S. Retention of copper by desert sands coated with ferric hydroxides, Geoderma, 1999, 89: 249-258
    
    [150] Zachara J.M., Gassman P.L., Smith S.C., et al. Oxidation and adsorption of co-EDTA complexes in subsurface materials with iron and manganese oxide grain coatings, Geochim. Cosmochim. Acta, 1995,59:4449-4463
    
    [151] Merkle P.B., Knocke W.R., Gallagher D.L., et al. Method for coating filter media with synthetic manganese oxide, J. Environ. Eng., 1997, 123: 650-658
    
    [152] Han R.P., Zou W. H., Zhang Z.P., et al. Removal of copper (II) and lead (II) from aqueous solution by mangnanese oxide coated sand, Journal of Hazardous mat., 2006, B137: 384-395
    
    [153] Brando M., Galembeck F. Copper, lead and zinc adsorption on MnO_2 impregnated cellulose acetate, Colloids Surf., 1990,48: 351-362
    
    [154] GS. Xeidakis. Stabilization of swelling clays by Mg(OH)_2 - Factors affecting hydroxyl-Mg-interlayering in swelling clays. Eng. Geo. 1996,44: 93-106
    
    [155] Allen S. J., Whitte L. J., Mckay G, Characteristic of actived carbon: a review, Dew. Chem. Eng. Mineral Process 1988 (615) 231-261
    
    [156] Brunnauer S., Emmett P.H., Teller E. Adsorption of gases in multi-molecular layers. J. Am. Chem. Soc. 1938,60: 309
    
    [157] Chiang Y.C., Chiang P.C., Huang C.P. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 2001,39: 523-534
    
    [158] Barrett E.P., Joyner L.G., Halenda P.H. The determination of pore volume and area distribution in porous substance .I. computations from nitrogen. J. Amer. Chem. Soc. 1951, 73:373
    
    [159] Parks G.A. The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxo complex systems, Chemical Review 1965, 67: 177-198
    
    [160] James R.O., Healy T.W. Adsorption of hydrolysable metals ions at the oxide-water interface II charge reversal of SiO_2 and TiO_2 colloids by a desorbed Co(II), La(II) and Th(IV) as model system. J. Colloid Interface Sci. 1972, 40(1): 42-65
    [161] 嵇鸣,赵宜江,张艳,等.氢氧化镁对印染废水的脱色处理,水处理技术,2000,26(4):245-248
    [162] 丁先峰,朱聪.氢氧化镁的制备及对直接墨绿染料的吸附性能研究,浙江理工大学学报,2006,23(2):128-132
    [163] Vilagines P., Sarrette B., Vilagines R. Preformed magnesium hydroxide precipitate for second-step concentration of enteroviruses from drinking and surface waters. Can. J. Microbiol. 1982, 28: 783-787
    [164] Leentvaar J., Rebhun M. Effect of magnesium and calcium precipitation on coagulation-flocculation with lime. Water Research, 1982, 16: 655-662
    [165] 翁焕新,沈忠悦,袁明永,等.硅藻质氧化硅的稳定性及其地球化学意义,科学通报,1999,44(12)
    [166] Chaisena A., Rangsriwatananon K. Synthesis of sodium zeolites from natural and modified diatomite. Materials Letters 2005. (59): 1474-1479
    [167] 陈红,叶兆杰,方土,等.不同状态MnO_2对废水中As(Ⅲ)的吸附研究.中国环境科学,1998,18(2):126-130
    [168] 刘瑞霞,汤鸿霄.不同染料化合物在天然锰矿界面的脱色特性,环境化学,2000,19(4):341-347
    [169] 张治安,杨邦朝,邓梅根,等.超级电容器纳米氧化锰电极材料的合成与表征,2004,62(17):1617-1620
    [170] 马子川,蒋兰宏,董丽丽,等.新生二氧化锰吸附法去除水中直接大红染料,2002,22(1):38-41
    [171] Hong M. S., Lee S. K., Kim S. W. Use of KCI aqueous electrolyte for 2V manganese oxide/activated carbon hybrid capacitor. Electrochem. Solid State Lett. 2002, 5: A227
    [172] Karickhoff W. S., Brown D. S., Scott T. A., Sorption of hydrophobic pollutants on natural sediments. Water Research. 1979 (13): 241-248
    [173] El-Nahhai Y. Z., Safi J. M., Adsorption of phenanthrene on organoclays from distilled and saline water, J. Colloid Interface Sci. 2004 (269): 265-273
    [174] Palheiros I. B., Duarte A. C., Oliveira J. P., Hall A., The influence of pH, ionic strength and chloride concentration on the adsorption of cadmium by sediment, Water Sci. Technol. 1989 (21): 1873-1876
    [175] Boon H. T., Tjoon T. T., Mohd Omar A. K. Removal of dyes and industrial dye wastes by magnesium chloride, Water Research, 2000, 34(2): 597-601
    [176] Cooney D.O. Adsorption design for wastewater treatment. Lewis Publishers, CRC Press LLC, Boca Ration, Florida, U.S.A., 1999.
    
    [177] Fu Y.Z. Removal of dyes from aqueous solution by the fungus aspergillus niger. Ph.D. thesis, Engineering University of Regina, Saskatchewan: 2002.
    
    [178] 王淑荣, 染整废水处理. 北京: 中国纺织出版社, 2005.9
    
    [179] Langmuir, I. The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 1916, 38 (11): 2221-2295.
    
    [180] Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 1918,40 (9): 1361-1403
    
    [181] Freundlich, H.M.F. (u|¨)ber die adsorption in losungen (adsorption in solution). Zeitschrift f(u|¨)r Physikalische Chemie (Leipzig), 1906,57A: 384-470
    
    [182] Redlich, O. and Peterson, D.L. A useful adsorption isotherm. Journal of Physical Chemistry, 1959, 63(6): 1024
    
    [183] Lagergren, S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 1898,24 (4), 1-39
    
    [184] Ho Y.S. Adsorption of heavy metals from waste streams by peat. Ph.D. thesis, University of Birmingham, Birmingham, UK, 1995.
    
    [185] Ho Y.S., McKay G. Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash. J. Environ. Sci. Health, 1999, A34: 1179-1204
    
    [186] Ho Y.S., Comment on "Adsorption of naphthalene on zeolite from aqueoussolution" by C.F. Chang, C.Y. Chang, K.H. Chen, W.T. Tsai,J.L. Shie, Y.H. Chen, Journal of Colloid and Interface Science 2005 (283): 274-277
    
    [187] Weber W.J., Morris J.C., Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div. Am. Soc. Civ. Eng. 1963, 89: 31-60
    
    [188] Thoms W.J., Crittenden B. Adsorption technology and design, Reed Education and Professional Publishing, Oxford, 1998
    
    [189] Khan, S.A., Rehman, R., Khan, M.A. Adsorption of Cr (III), Cr (VI) and Ag (I) on bentonite. Waste Manage. 1995, 15: 271-282
    
    [190] Ghosh D., Bhattacharyya K. Adsorption of methylene blue on kaolinite, Applied clay Science, 2002, 20:295-300
    [191] Hall K. R., Eagleton L. C., Acrivos A., Vermeulen T., Pore and solid diffusion kinetics in fixed-bed adsorption under constant pattern conditions, Ind. Eng. Chem. Fund. 1966, 5 (2): 212-223
    [192] Wang S., Boyjoo Y., Choueib A., & Zhu Z. H. Removal of dyes from aqueous solution using fly ash and red mud. Water Research, 2005, 39(1): 129-138
    [193] Das S. K., Bhowal J. Das A. R. et al. Adsorption behavior of rhodamine B on Rhizopus oryzae Biomass. Langmuir, 2006, 22: 7265-7272
    [194] Nollet H., Roels M., Lutgen P., Van der Meeren P., Verstraete W. Removal of PCBs from wastewater using fly ash. Chemosphere, 2003, 53: 655-665
    [195] Gupta V. K., Mohan D., Sharma S., et al. Removal of basic dyes (rhodamine B and methylene blue) from aqueous solutions using bagasse fly ash. Sep. Sci. Tech., 2000, 35: 2097-2113
    [196] Rytwo G., Tropp D., Serban C. Adsorption of diquat, paraquat and methyl green on sepiolite: experimental results and model calculation. Applied Clay Science, 2002, 20: 273-282
    [197] Estevez M. J. T., Arbeloa F. L., Arbeloa T. L., et al. Characterization of rhodamine 6G adsorbed onto hectorite by electric spectroscopy. Journal of Colloid and Interface Science, 1995, 171: 439-445
    [198] 杨书铭,黄长盾.纺织印染工业废水治理技术,北京:化学工业出版社,2002.4
    [199] 王淑荣,杨蕴敏.染整废水处理,北京:中国纺织出版社,2005.9