褐飞虱发生系统的混沌特性及其预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
害虫的发生变化及其异常对经济和社会发展影响己成为当前世界各国政府和科学
    界十分关注的重大问题。褐飞虱(Nilaparvata lugens stal)是亚洲地区一种远距离迁飞
    性水稻害虫。我国自70年代初以来,暴发频率显著增加,危害面积已扩展到江苏省及
    (?)淮河以北地区。褐飞虱在我国常年发生面积约为2-3亿亩,年均损失稻谷10亿多公
    斤。1991年,褐飞虱在全国各稻区特大暴发,发生面积3.4亿亩,虽经组织防治,仍
    损失稻谷40多亿公斤,从而极大地影响了国民经济和社会的长期发展。虽然投入大量
    人力、物力研究褐飞虱的预测预报,但目前褐飞虱长期预报的准确率仍然较低。因此,
    如何解决褐飞虱长期预测中的“两难”问题,已成为政府和许多昆虫学家的关注热点。
    为此,本文以混沌理论和分形理论为基础,研究了混沌诊断分析方法和褐飞虱发生系统
    的特征及规律;并与统计理论、非线性科学中的混沌理论和神经网络理论相结合,进行
    了褐飞虱发生预测的多种技术方法的研究。
     首先,(1)从生物学、生态学、迁飞规律以及虫源性质等方面,简要介绍了褐飞
    虱的研究概况。
     (2)简述了混沌理论的一些基本概念和在昆虫系统中出现的混沌行为以及对它
    们的研究,并论述了运用混沌理论研究昆虫问题的基本思想和常用的分析方法。
     (3)概略的评述了害虫的预测预报方法及其局限性。探讨了害虫长期预报的可能
    性和导致害虫长期预报不稳定的因素,它们是:①模式害虫发生系统与客观害虫发
    生系统之间的差异,②害虫发生系统中各子系统资料的精度和完备性,③计算方法、
    计算条件和计算误差,④非线性害虫发生系统的内在随机性。并着重对近年发展起
    来的基于非线性理论的神经网络(ANN)、相空间重构(phase construction)和小波
    变换(wavelet transforms)预测法的建模原理及其在害虫预测中的应用进行了详细的
    阐述。
     其次,利用自相关函数、功率谱图、相轨迹图、Poincare截面、返回映象图等方
    法,对褐飞虱发生系统是否具有混沌特性进行了初步诊断,结果表明:即使有随机性的
    噪声影响,仍可判明褐飞虱发生系统具有混沌特性。
     在此基础上,利用我国长江流域太湖地区1986~1998年6~11月褐飞虱田间发生
    时间序列资料,将褐飞虱发生的一维时间序列拓展到多维相空间中去。结果表明:我国
    长江流域短期褐飞虱发生演化,在相空间中存在吸引子,并具有分维结构,其分维数是
    
    4.43,为混炖吸引f(或奇异吸引于),对应的饱和嵌入维为10,证明了褐飞虱发生系
    统的不规整性,描述该系统至少需要5个独立变量;用延滞T=5延拓的相空间,关联
    维数D;h)对相空仰拓展时延滞,的效应是收敛的,各坐标分量是相互独立的,系统动
    力学特征量是稳定的。
     为了进-涉探讨褐B虱发牛系统的可预报尺度等问题,用相空间延拓的方法,计算
    了Kolmogorov $以及褐飞虱发生的可预报尺度,得到K。值为0.0126~0.0236,用定量
    方法再次证明我国K江流域褐6虱田间发生演化是一混饨系统;平均可预报尺度约为
    114.0~253.2天,考虑相空问 e抬数膨胀因素后的平均可预报时间尺度约为 79.0~
    175.5大。
     为了刻画系统在相空间给定各方向上膨胀、收缩过程中的几何性质,用WOlf的方
    法,求出了介不同参数条件’卜的最人 l。y。pUDOV A;。从中发现,对每一纠参数,均得到
    入>0。义一次证叫我国卜江流域褐飞虱发生的短期演化存在着混淹吸引于,该系统的
    演化订为只有混地动力学的演化特征。
     为了更深入的研究褐6虱发生系统的不规则性,运用分形理论以安徽省庐江县植保
    站和门苏省叉县植保站]97pel990年及太湖地区农科所1986-1998年间褐飞虱发生的出
    问系统凋杏资料为例,对褐飞虱发生的性质进行了探讨,结果表明:()庐江站、吴县
    站和人湖地卜农科所褐E虱发生A一定标度域内具有分形性质,其分维值分别为
    0.7158、0.5212和 0.2816:(2)褐飞虱发生的分维值是表征一定标度区问发生程度差异
    的一个新参数,分维值大,则发生程度轻,反之则重;(3)分维数D值与褐K虱发生
    的聚集程度是密切相关的,D值小聚集程度大,反上聚集程度小,D值可以作为褐飞虱
    聚集分布柠度的--个指标;N)褐6虱发生具有多重分形结构,其广义维数谱民曲线
    。。丁以川}褐匕虱发牛的预测预报。
     第二,在址明褐B虱发生系统具订混浊特扯基础上,利用相空问模的“相似”预测、
    相主问“线性回门”预测、相空间“近邻态模的多项式回归”烦测和相空间“多点相似
    改进”预测等多种相空间预测模型对褐飞虱发生预测进行了研究,结果表明:四种预测
    模则的预报相对误井分别为46.010、12.410、13.08%、19.刀O,转化为发生程度,预
    报准确率分别达73.64o、94.27o、97.14o、92.73O。相空间预测法能有效的降低误差
    提高精度,为褐匕虱发生时间序列的叮预测性及预测模型的选择提供了一种新的依据。
     在褐飞虱中长划预测工作中,由于褐E虱发生系统存在混饨现象,各要素之间关系
    非常复杂,采用传统的线性相关处理?
The problem of the influence of insect pest occurrence changes and anomalies on the
     development of economics and societies has drawn more and more attentions not only in
     the worldwide scientific circle but also in many governments. Brown Planthopper(BPH),
     Nilaparvuta Lugens(st鈒), is an important migration insect pest of rice corps both in tropical
     and temperate area in the East and South Asia. BPH has become an increasingly serious
     problem since the 1970s in China. Outbreaks have increased in frequency and the area
     regularly infested has extended into the Jiangsu province (between the Yangtse and l-luaihe
     Rivers) and north of the Huaihe River. On average, some tO?0 million hectares of the crop
     are likely to be affected, with an annual loss of some haifa million tones of grain. In 1991,
     the worst year on record, severe damage extended over the whole rice-growing region and
     17.3 million hectares of paddy fields were infested by Brown Planthopper. in spite of great
     efforts at prevention and control, more than 2 million tones in 1991, were still lost to these
     infestations. These greatly affect the long-term development of economics and societies in
     China. Despite the substantial manpower and material resources is invested to study the
     BPH occurrence laws and forecast, the long-term forecasting power is still lower in these
     days. So what about solving the dilemma problem of insect prediction, it has been turning
     into the concerned hotspot for entomologists. In this paper, based on Chaos Theory and
     Fractal Theory, we study the analysis method of chaotic diagnosis, and analyses the property
     and laws in Brown Planthopper occurrence system. We also study the varied methods of
     Brown Planthopper occurrence forecast by combining the statistics theory, the chaos theory
     and the neural networks theory of nonlinear science.
    
     Firstly, (1) Many researches on Brown Planthopper, Nilaparvata Lugens(st醠) in
     biology, ecology, migration mechanism, migration rule and source of Brown Planthopper
     fields, are described briefly.
    
     (2) We present a brief review of some principal cOncepts in the theory of chaos
     and mention the chaotic activities of the systems in insects. Also we introduce some
     methods in the research on problems in insects by the theory of chaos.
    
     (3) we generalize and evaluate pest forecasting methods and its limitations.
     Probability and unsteady factors of long- term pest forecasting is discussed and
    
    
    
     iv
    
    
    
    
    
    
    
    
    
     suniznarized. Those factors are U) the difference between theoretic and practical pest
    
     occurrence systems; @) the precision and integrality of data in all subsystems; ?the
     method, condition and error of calculation; ?the inherent randomicity in nonlinear
     System of pest occurrence. We paiticularly expatiate the modeling principle and steps
     of forecasting methods of atificial neural networks (ANN), phase space reconstruction
     and wavelet transforms based on nonlinear theory developed in recent years and their
     application in pest forecasting, and foresee their development trend.
    
     Secondly, Properties of Brown Planthopper occurrence system based on methods of
     autoeorrelation function, power spectrwn figure, phase trajectory figure, Poincare section,
     and return map, are preliminary analyses. Even though the iifluence of random noises, it is
     distinguished that Brown Pl&ithopper occurrence system has chaotic property.
    
     Based on above-mentitmed conclusion, time series data from June to November on
引文
1.[美]包约翰.自适应模式识别与神经网络.北京:科学出版社,1992:103
    2.曹昌日,首章北,廖茂华.白背飞虱和褐飞虱抗性监测.南京农业大学学报,4(增刊):1987,135-138
    3.陈瑞鹿等.应用昆虫雷达检测昆虫的研究.生态学报,1988,8(2):176-182
    4.陈若篪.褐飞虱的飞翔能力.昆虫学报,1984,27(2):121-127
    5.陈若篪等.迁飞昆虫学.北京:农业出版社,1989
    6.陈若篪等,褐飞虱卵巢发育及其与迁飞的关系.昆虫学报,1979,22(3):280-287
    7.陈若篪等.褐飞虱起飞行为与自身生物学节律、环境因素同步关系的初步研究.南京农业大学学报,1980.,1(2):1-8
    8.陈若篪等,脂类作为褐飞虱飞行能量来源的研究.昆虫学报,1983,26(1):42-49
    9.陈述彭.地球科学的复杂性与系统性.地理科学,1991,4:297-305
    10.程家安,章连观,等.水稻褐飞虱种群动态模拟模型及其有效性检验.浙江农业大学学报,1989,15(2):131-136
    11.程乾生,武连文,王守章.基于属性聚类网络和径向基函数的融合预测.科学通报,2000,45(11):1211~1216
    12.程遐年,浦茂华,陈钰英.褐飞虱防治理论研究与进展.南京:江苏科学技术出版社,1993
    13.程遐年.中国迁飞昆虫研究进展,昆虫知识,1992,29(3):149-149
    14.程遐年等.褐飞虱在中国东部秋季同迁的雷达观察.南京农业大学学报,1994,17(3):24-32
    15.程遐年等.稻褐飞虱迁飞规律的研究.昆虫学报,1979,22(1):1—21
    16.戴汝为,沙飞.复杂性问题研究综述:概念与研究方法.自然杂志,1995,17(2):73-78
    17.戴汝为.从定性到定量的综合集成技术.模式识别与人工智能,1991,1:5-11
    18.戴汝为.组织管理的途径与复杂性探讨.科学,1998,50(6):8-12
    19.邓望喜等.褐飞虱及白背飞虱空中迁飞规律的研究.植物保护学报,1981,8(2):73-81
    20.邓自旺等.小波分析及其在大气科学中的应用.南京大学学报,1996,32,地学专辑:47-50
    21.丁世飞,周法莲.数学判别模型在预测害虫种群动态上的应用.昆虫知识,1997,34(2):75-77
    22.丁世飞.用多级判别技术预测害虫种群动态.昆虫知识,1997,34(5):292-294
    23.董连科 编箸.分形理论及其应用.沈阳:辽宁科学技术出版社,1991,64~210
    
    
    24.都健,丁锦华.褐飞虱的取食行为和取食生理研究综述.昆虫知识,1988,25(3):182-187
    25.杜正文 主编.中国水稻病虫害综合防治策略与技术.北京:农业出版社,1991
    26.冯长根,李后强,祖元刚.主编.非线性科学的理论,方法和应用.北京:科学出版社,1997.1~198
    27.郝柏林.自然界中的有序和混沌.百科知识,1984,1
    28.郝柏林.复杂性的刻画与“复杂性科学”.科学,1999,51(3):3-8
    29.郝树广,程遐年,罗跃进.褐飞虱为害水稻不同生育期对产量结构的影响.植物保护学报,1997,24(4):321-325
    30.何小荣等,改善BP网络检验效果的研究,清华大学学报(自然科学版),1995,35(3):31-36
    31.贺太纲,郑崇勋.混沌序列的非线性预测.自然杂志,1997,19(1):10-13
    32.胡伯海,姜瑞中.农作物病虫长期运动规律与预测.北京:中国农业出版社,1997:7-12
    33.胡国文,唐启义,马巨怯等,中国褐飞虱酌分布与为害.昆虫知,1997,34(1):5041
    34.胡增臻,石伟.小波变换及其在大气科学中的应用研究.大气科学,1997,21(1):58-72
    35.华红霞,邓望喜.褐飞虱不同地理种群生物学特性的比较.昆虫学报,1997,40(增刊):147-152
    36.黄次伟,冯炳灿.水稻白背飞虱、褐飞虱取食动态研究.昆虫学报,1993,36(2):251-255
    37.黄登仕,李后强,《自然杂志》1991,13(8):477
    38.黄方能,程遐年.褐飞虱为害对水稻产量结构的影响研究.中国水稻科学,1990,4(3):117-121
    39.黄嘉佑.气象统计分析与预报方法.北京;气象出版社,1990,387
    40.黄嘉佑.我国月降水频数的时空特征,气象,1987,13(1):10-14
    41.黄嘉佑.转动主分量分析在天气气候分析中的应用,气象,1988,14(9):47-51
    42.黄嘉佑.黄河三花地区汛期逐日降水MOS预报的因子选择试验,气象学报,1993,51(2):232-236
    43.黄小原 肖四汉.神经网络预警系统,预测,1995,(2):63-66
    44.江苏省檀保站.江苏省农作物主要病虫害预测预报办法.江苏省植物保护站,1995,189-223
    45.江西省稻螟电算测报协作组.用逐步判别法进行二化蜩中长期数量预测,植物保护学报,1985,12(2):
    46.赖仲廉.日本关于稻飞虱迁飞的研究概况.贵州农业科学,1981,(5):34-36
    
    
    47.李百炼.昆虫种群动态预测的加权列联表分析法.昆虫知识,1984,21(3):141-144
    48.李百炼.棉红蜘蛛大发生预测的Fuzzy数学模型初探.华中农业大学学报,1984,3(4):25-32
    49.李典漠,丁岩钦,动物学集刊,1981,1:149-160
    50.李典谟.论计算机化的病虫害管理系统的原理.生态学报,1983,3(3):252-261
    51.李后强 汪富泉著.分形理论及其在分子科学中的应用.北京:科学出版社,1993.1~319
    52.李后强,方曙.分形若干理论进展.自然杂志,1991,14(4):245~252
    53.李建平,唐远炎.小波分析方法的应用.重庆:重庆大学出版社,1999:17-24
    54.李青等.广西褐飞虱生物型研究初报.广西农业科学,1991,(1):29-32
    55.李青等.我国褐飞虱生物型研究.西南农业学报,1994,7(3):89-96
    56.李汝铎,丁锦华,等.主编.褐飞虱及其种群管理.上海,复旦大学出版社,1996,1~5
    57.李绍石等.二化螟发生趋势的马尔柯夫链预测.植物保护,1987,13(2):13
    58.李天民.论复杂系统.系统工程,1986,2:24-29
    59.李学勤,王万良,许维胜等.混沌及其控制研究进展.机电工程,1999,5:56-59
    60.李柞泳等.基于人工神经网络的农业病虫害预测模型及其效果检验.生态学报,1999,19(5):759-762
    61.林振山 著.长期预报的相空间理沦和模式.北京:气象出版社,1993:1-155
    62.林振山 著.气候建模·诊断和预测的研究.北京:气象出版社,1996:37-61
    63.刘国栋等.BP网络用于水文预测的几个问题探讨.水利学报,1999,1:65-70
    64.刘了凡,冯殿英,张厚成.主成分分析在麦蚜发生量预报中的应用.昆虫知识,1997,34(5):260-263
    65.吕雨土.褐飞虱灰色灾变长期预测初探.昆虫知识,1989,26(5):257-260
    66.罗了复.探索复杂性、探索生命的奥秘.大自然探索,1990,9(4):41-43
    67.罗善昱 等.三个新品种对褐飞虱生物型Ⅱ的抗性观察.广西农业科学,1995,(1):39-41
    68.马飞 李红兵 程遐年.褐飞虱(Nilaparvata lugens)发生的分形性质研究.生态学报,2001,21(2):112-119
    69.马飞 程遐年.害虫预测预报研究进展.安徽农业大学学报,2001,28(1):92~97
    70.马飞 张夕林 程遐年.褐飞虱长期预测建模中的因子选择.南京农业大学学报,2001,24 (2):
    71.马飞等.基于相空间重构的预测方法及其在害虫预报中应用.生态学报,2001,(待发表)
    
    
    72.马镜娴,罗哲贤,干早、半干旱区域降水趋势可预报期限的初步研究.气象学报,1996,54(1);117-120
    73.马世骏.昆虫种群的空间、数量、时间鲒构动态.昆虫学报,1969,13(1):38-55
    74.马世骏,丁岩钦,李典谟,东亚飞蝗中长期数量预测的研究.昆虫学报,1965,14(4):319-338
    75.马世骏,丁岩钦.东亚飞蝗种群数量预测中调节机制.动物学报,1965,17(3):261-277
    76.南京农学院植保系.褐飞虱、白背飞虱的标记回收试验 生态学抵1981,1(1):49-53
    77.庞雄飞,粱广文.昆虫天敌作用的评价.生态学报,1984,4(1):46-56
    78.庞雄飞,梁广文.昆虫种群生命系统研究的状态方程.华南农业大学学报,1988,9(2):1-10
    79.彭忠魁.国内外水稻抗虫性研究.昆虫知识,1980,17(2):92-94
    80.蒲蛰龙 主编.农作物害虫管理数学模型与应用.厂州:广东科技出版社.1990,166-220
    81.綦立正,黄方能,黄建义等.褐飞虱生命系统管理模型的研究.应用生态学报,1991,2(3):214-220
    82.綦立正.褐飞虱预测和管理模型.见:杜正文 主编,中国水稻病虫害综合防治策略与技术.北京:农业出版社,1991
    83.钱学森,于景元,戴汝为.一个新的学科领域—开放的复杂巨系统及其方法论.自然杂志,1990,13(1):3-10
    84.秦前川,杨宗凯.实用小波分析.西安:西安电子科技大学出版社,1994
    85.任光耀,潘晓玲等.灾害系统中结构与功能之间的内在联系.大自然探索,1999,18(1):107-110
    86.汤金仪.1991稻褐飞虱大发生及其原因浅析.病虫测报,1992,12(2):16-20
    87.陶林勇等.我国褐飞虱生物型监测初报.中国农业科学,1992,25(3):9-13
    88.汗秉宏 编箸,非线形科学在地震预报中的应用.北京:地震出版社,1992
    89.江秉宏 著.生命过程中的混沌.长春:东北师范大学出版社,2000,26-45
    90.汪四水.稻纵卷叶螟中、长期预报及其灾变预警系统的研究.1999(博士论文)
    91.王东生,曹磊.混沌,分形及其应用.合肥:中国科学技术大学出版杜,1995:379-411
    92.王海扣.用轨迹分析法探索褐飞虱夏季迁入虫源.南京农业大学硕士论文.1990
    93.王贺军.棉铃虫长期数量预报研究—平稳随槐时间序列预报方法的应用,植物保护,1985,11(4):7-8
    94.王明进 程乾生.Kohonen自组织网络在混沌时间序列预测中的应用,系统工程理论与实践,1997,2:12~17
    
    
    95.王荣富,程遐年,邹运鼎.褐飞虱和白背飞虱的取食为害对水稻营养生长的影响.应用生态学报,1998,9(1):51-54
    96.王荣富,程遐年.稻褐飞虱翅型分化的调节机制.安徽农业大学学报,1996,23(4):496-499
    97.魏一鸣.洪水灾害研究的复杂性理论.自然杂志,1999,21(3):139-142
    98.魏一鸣.自然灾害复杂性研究,地理科学,1998,1:1-8 1993,6:21-24
    99.文新辉等.基于神经网络的多维时间序列分析在烟蓟马预测上的应用.预测,1993,6:21-24
    100.巫国瑞,胡翠.许绍井等,稻飞虱.北京:农业出版社,1987
    101.巫国瑞,俞晓平,陶林勇.褐飞虱和白背飞虱灾害的长期预测.中国农业科学,1997,30(4):25-29
    102.巫国瑞等 1983 稻褐飞虱生物型的研究 昆虫学报26(2):154-159
    103.巫国瑞等.褐飞虱生物型的发生与现状.昆虫知识,1990,27(1):47-51
    104.巫国瑞等.褐飞虱生物型及其监测.病虫测报,1990,(1):39-43
    105.吴进才等.Fuzzy 控制理论在粘虫数量预报中的应用尝试.南京农业大学学报,1986,9(4):21-23
    106.吴荣宗等.我国主要稻区褐稻虱生物型的研究 植物保护学报,1981,8(4):217-225
    107.辛厚文 主编.分形理论及其应用.合肥:中国科学技术大学出版社,1993.1~456
    108.休.丁格 编著.巫国瑞等译.昆虫和滞育的进化.北京:科学出版社,i984
    109.徐汝梅,刘来福.变维距阵模型在温室白粉虱种群动态模拟中的应用.生态学报,1981,1(2):142-158
    110.严绍瑾等.一维气候时间序列的李亚普诺夫指数所显示的动态系统的演化特征.热带气象,1990,6(3):210-217
    111.严绍瑾等.一维气候时间序列的拓展及其相空间中混沌吸引子维数的确定.热带气象,1989,5(2):97-103
    112.严绍瑾等.一维气候时间序列所包含的混沌吸引子的Kalmogorov熵的确定.热带气象,1991,7(2):97-103
    113.严英俊,尤明生,吴中孚.褐飞虱危害损失测算方法的研究.植物保护学报,1991,18(2):139-142
    
    
    114.严英俊,尤明生,吴中孚.褐飞虱危害水稻经济阈值的研究.华南农业大学学报,1992,13(2):40-46
    115.严中伟.华北早涝变化的混沌性质分析.气象学报,1995,53(2):232-237
    116.杨培才.厄尔尼诺/南方涛动的可预报性.大气科学,1990,14(1):64-71
    117.仪垂祥 编箸.非线性科学及其在地学中的应用.北京:气象出版社,1995.176~267
    118.尤卫红.气候变化的多尺度诊断分析和预测的多种技术方法研究.北京:气象出版社,1998:26-51
    119.俞晓平,巫国瑞,陶林勇.褐飞虱在品种上的为害特性.中国水稻科学,1991,5(2):91-93
    120.臧伟,郝树广,王海扣.江淮稻区褐飞虱种群动态模拟模型.南京农业大学学报,1997,20(4):32-38
    121.曾宪森等.福州地区褐稻虱生物测定.福建农业科学1983,(3):11-12
    122.翟保平等.迁飞过程中昆虫的行为:以风温场的适应与选择.生态学报,1993,13(4):356-363
    123.张海松.油松毛虫发生的非线性灰色预测模型.昆虫知识,1993,30(1):36-37
    124.张济忠 编箸.分形.北京:清华大学出版社,1995.294~347
    125.张家树,肖先赐.混沌时间序列的Voltera自适应预测.物理学报,2000,49(3):403~407
    126.张建明,张治,蒋学辉.水稻穗期褐飞虱为害对米粒干物质积累的影响.植物保护学报,1997,24(4):326-330
    127.张建树 编箸. 混沌生物学.西安:陕西科学技术出版社,1998.1~110
    128.张立明.人工神经网络的模型及应用.上海:复旦大学出版社,1993:10-51
    129.张汝霖,于锁英,徐艳霞.高梁蚜灰色灾变预测模型.昆虫知识,1994,31(6):327-329
    130.张润杰,古德祥等.模糊控制模型在三化螟数量预报中的应用探讨,生态科学,1989,2
    131.张尚志,张遵雄.三化螟中长期统计预测初步研究.植物保护学报,1982,9(2):41-48
    132.张孝羲,李运甓等,昆虫生态及预测预报.北京:农业出版社,1985:300-333
    133.张孝羲,周立阳.害虫预测预报基础. 昆虫知识,1995,32(1):55-60
    134.张扬等.褐飞虱生物型普查与监测.广东农业科学,1991,(2):22-25
    135.张遵雄等.回归分析法在三化螟中长期预测中的应用.昆虫知识,1980,17(6):246
    136.赵惠燕.科学通报,1989,22:1745-1748
    137.赵士熙吴中孚.农作物病虫害数理统计测报BASIC程序库.福州:福建科学技术出版社,1989
    
    
    138.赵松年,熊小芸。子波变换与子波分析.北京:电子工业出版社.1997
    139.赵志模,周新远.生态学引论-害虫综合防治的理论及应用.重庆:科学技术文献出版社,1984:1-8
    140.赵志模,周新远.生态学引论-害虫综合防治的理论及应用.重庆:科学技术文献出版社,1984:213-232
    141.郑祖光,刘式达.用天气变量时间序列估计天气的可预报性.气象学报,1992,50(1):72-80
    142.中华人民共和国国家统计局和中华人民共和国民政部.中国灾情报告.北京:中国统计出版社,1995:114-138,
    143.周立阳,张孝羲,等.多维时间序列分析在稻纵卷叶螟长期预测上的应用.植物保护学报,1995,22(1):1-6
    144.朱绍先,邬建中,杜景佑.稻飞虱及其防治.上海:上海科学技术出版社,1984
    145.邹运鼎等.稻株营养物质与褐飞虱翅型分化的关系.昆虫学报,1982,25(2);220-222
    146.祖元刚,马克明.分形理论与生态学.现代生态学讲座(李博主编).北京:科学出版社,1995:65.72
    147.Allen, J. C. Are natural enemy populations chaotic? See Ref, 1989, 70:190-205
    148.Allen, J. C. Factors contributing to chaos in population feed back systems. Ecol. Model,1990, 51:281-298
    149.Asahina, S. & Tsumoka, Y. Records of the insects which visited a weather ship located at the Ocean Weather Station "Tango" on the Pacific Ⅱ. Kontu, 1968, 36:190-202
    150.Bellows, T. S. et al. The descriptive properties of some models for density dependence.J.Anim. Ecol, 1981, 50:139-156
    151.Berger, J.M. & Mandelbrot, B. B., IBM.J. Res. and Develop. 1963, 7:224
    152.Blasius, B.,et al. Complex dynamics and phase synchronization in spatially extended ecological systems. Nature, 1999, 399:354-359
    153.Berryman, A. A., and J. A. Millstein. Are ecological systems chaotic and if not, why not? Trends in Ecology and Evolution, 1989, 4:26-28
    154.Brown, G. G., A.R. Lutgardo, and S.H. Gage. Data base management systems in IPM programs. Envirorn.Entomol..1980, 9(5): 475-482
    155.CasdaBli, M. Nonlinear prediction of chaotic time series. PhysicaD, 1989, 35:335
    156.Cheng, J. A& Holt, J. A systems analysis approach to brown planthopper control on rice in Zhejing Province, China. l:Smulation of outbreaks, dournal of Applied ecology, 1990, 27:85-99
    
    
    157.Cheng, J.A., Norton, G.A and Holt, J. A system-analysis approach to brown planthopper control on rice in Zhejiang province, China. Ⅱ. Investigation of control strategies. Journal of AppiledEcology, 1990, 27:100~112
    158.Claridge, M.F & de Vrijer, P.W. 1994. Reproductive behavior: The role of acoustic signals in species recognition and speciation. Dermo, R.E,Peffect, T.J.(eds.). Planthoppers: Their Ecology and Management. Chapman & Hall, New York/London
    159.Claridge, M.E 1985a. Acoustic behavior of leafhoppers and planthopper: Species problems and speciation. In: The leafhoppers and Planthopper(L.R. Nault & J.G.Rodriguez eds.). 1985, Wiley, New York
    160.Claridge, M.E 1985b. Acoustic signals in the Homoptera: behavior, taxonomy, and evolution. Annu. Rey. Entomol., 1985, 30:297-317
    161.Croft, B. A., J. L. Howes, and S.M. Welch. A computer-based extension pest management delivey system. Environ. Entomol. 1976, 5(1): 20-34
    162.Danthanarayana, W.Inset flight: Dispersal and migration. 1986, Springer-verlag, Berlin Heidlberg
    163.Denno, R .F., Perfect, T. J.(eds.). Planthoppers: Their Ecology and Management. 1994, Chapman & Ha!l, New York/London
    164.Denno, R. F., Roderick, G.K. Population biology of planthopper. Anrau.Rey. Entomol., 990, 35:489-520
    165.Drake,V.A. and R.A.. Farrow. The influence of atmospheric structure and motions of insect migration. Annuai Review of Emtomology, 1988, 33:183-210
    166.Eckmann,J.P. Ergodic theroy of chaos and strange attractors. Rev Mod. Phys.,1985, 57:617-655
    167.Eckmann.,J.P., Ruelle, D.. Physica D, 1992, 56:185-187
    168.FalconerKJ.曾文曲等译.分形儿何——数学基础及其应用,沈阳:东北工学院出版社,1991
    169.Farmer, J. D., Sidorowich, J.J. Predicting chaotic time series. Physical Review Letters, 1987,59(8): 845-848
    170.Feigenbaum, M .J. Universal behavior in nonlinear systems. Physica, 1983, 7D:16-39
    
    
    171. Feigenbaum, M. J. Journal of Statis.Phys. 1978,19:25
    172. Fox, R.F. Quantum chaos in two-level quantum systems. See Ref. 1990, 50. pp. 105-14
    173. Fraedrich, K. Estimating the dimensions of weather and climate attractors. J.Atmos.Sci., 1986,43:419-432
    174. Fraedrich, K. Estimating weather and climate predictability on attractors. J.Atmos.Sci., 1987, 44:722-728
    175. Froehling,H., et al. Physica 3D ,1981:605
    176. Frontier S. Application of fractal theory to ecology. In: (Lengendre P & L Eds). Developments in Numerical Ecology. Berlin, Heidelberg; Springer-Verlag, 1987
    177. Gage,S.H.,ME.Whalon, and DJ.Miller. Pest event scheduling system for biological monitoring and pest management. Environ.Entomol., 1982,11(6) : 1127-1133
    178. Gage,S.H.,T.M.Writh and GASimmons. Predicting regional gypsy moth (Lymantriidae) population trends in an expanding population using pheromone trap catch and spatial analysis. Environ.Entomo, 1990,19(2) : 370-377
    179. Gencay R. Nonlinear prediction of noisy time series with feedforward networks. Phys.Lett. A, 1994,187:397
    180. Glass L, et al. Bifurcation and chaos in a periodically stimulated cardiac oscillator. Physica, 1983, 7D: 89-101
    181. Gleick,J.,Chaos:MakingaNew Science, Viking Penguin Inc. 1987; 中译本:《混沌,开创新 科学》,上海译文出版社,1990.
    182. Grassberger, P. and I. Procaccia,. Characterization of strange attractors. Phy.Rev.Let, 1983, 50(5) : 346-349
    183. Grassberger, P. and I. Procaccia,. Measuring the strangeness of strange attractors. Physica D, 1983,9:198-208
    184. Grassberger P and Procaccia I On the characterization of strange attractors. Physica 9D, 1983, 349
    185. Grossmann , S., et al. Invariant distributions and stationary correlation functions of one-dimensional discrete processes. Naturforsch, 1977,32a(12) : 1353
    186. Gumey, W.S.C, Blythe, S.P. and Nisbet, S.R.M. Nature. 1980,287(4) : 17
    187. Gutierrez, A.P. Applied Population Ecology, John Wiley & Sons, N.Y. 1996
    188. H.Riedl,B.A.Croft,and AJ.Howitt, Forecasting codling moth phenology based on
    
    pheromome trap catch and physiological time models. Can.Eintomol. 1976,108(5) : 449-460
    189. Hao B L. Elementary symbolic dynamics and chaos in dissipative systems. 1989, World Scientific
    190. Hao Bailin (eds.). Chaos. World Scientific, 1984
    191. Hassell.M.PJ.H-LaWtort.and R.M.May.Pattems of dynamical behavior in single species populations. J.Anim.Ecol, 1976, 45:471-486
    192. Henon.M. Commun.MatH.Phys. 1976,50:69
    193. Holt,J.,Cheng, J. A& Martini, G. A. A systems analysis approach to brown planthopper control on rice in zhejing Province, China. Ⅲ: An expert system for making recommendations. Journal of Applied ecotigy, 1990,27:113-122
    194. Hu,B. & Satija,l.l. Ptys.Lett. 98,4, 1983, 143
    195. Ikeguchi T., Aihiara K. Prediction of chaos time series with noise. leiae Items. Fubdamentals, 1995, E78(10)
    196. Jensen R V , et al. Chaotic price behavior in a nonlinear cobweb model. Econ.Lett, 1984,15:235-240
    197. Jensen, R.V. Quantum diaos. See Ref. 1990,50. pp.98-104
    198. Kaplan,J.L. & Yorka,J.A., Approx. of Fixed Points, ed.by Peitgen,H, & Walther,H.,Springer Verlag,1979,p204
    199. Keppence, C. & Nicolis C. Global properties and local structure of the weather attractor over Western Europe. J.Atmos Sci. 1989, 46: 2356-2370
    200. Kerr,R.A. Does chaos permeate the solar system? Science, 1989,244:144-45
    201. Laskar, J.. A numerical experiment on the chaotic behavior of the solar system. Nature, 1989, 238:237-38
    202. Li, T.-Y. & Yorke, J.A., Amer.Math.Month. 1975,82:985
    203. Libchaber,A. Nonlinear Phenomena at Phase Transitions and Instabilities, ed. by Riste.T., Plenum. 1982,p.259
    204. Logan, J. A. et al. Nonlinear dynamics and chaos in insect population. Annu. Rev. Entomol, 1992,37:455-477
    205. Lorenz, E.N. Deterministic nonperiodic flow. J.Atmos. Sci. 1963,20:130-41
    206. Ma Fei, Ding Zongze, Cheng Xianian. CHAOS AND PREDICTABLE TIME-SCALE OF THE BROWN PLANTHOPPER NILARVATA LUGENS(STAL) OCCURRENCE SYSTEM.
    
    INTER-COUNTRY FORCASTING SYSTEM AND MANAGEMENT FOR BROWN PLANTHOPPER IN EAST ASIA. November 15-17, 2000 Zhejiang University Hangzhou, China, p3-14
    207. Mandelbrot,B.B.Fracta]:forms .chances and dimension. Newyork: W.H.freeman, 1997
    208. Mandelbrot,B.B. Fractal Geometry of Nature. Freeman, 1982
    209. Matsumoto,T. Chaos in electronic circuits . Proc.IEEE, 1987,75: 1033-1057
    210. May, R.M. Chaos and the dynamics of biological populations. Proc.KSoc.Lond. 1987. A413: 27-44
    211. May, R. M. Simple mathematical models with very complicated dynamics. Nature, 1976, 261:459-467.
    212. May, R.M. 1987. Proc.R. Soc.Lond. A413:27
    213. May, R.M. 1974. Biological populations with non-overlapping generations: stable points, stable cycles and chaos. Science 186:645-47
    214. Mees.A.I. Dynamics of Feedback Systems. Wiley Interscience, New York, 1981:59-60
    215. Milne B T. Lessons from applying fractal methods to landscape patterns in: Quantitative methods in landscape ecology (Turner M G & Gardner R H Eds). New York: Springer-Verlag, 1991
    216. Mitchell Waldrop(陈玲译).复杂,北 :生活·读书·新知三联想书店,1997:1-6.
    217. Morris,R.F. Predictive population equations based on key-factors . Men.Ent.Soc.Can. 1963, 32: 16-21
    218. Morse, D. R.,Lawton,J. H., Dodson,M.M. and Williamson,M.H. Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature, 1985,314:731-734
    219. Murray, C. Is the solar system stable? New Sci. 1989,25:60-63
    220. Nault, L.R. and Rodrignez, J.G., 1985. The leajhopper and planthoppers (ED. By L.R. Nault & J.G. Rodrignez), pp.259-288. A wiley-Interscience Publication, John Wiley & Sons.
    221. Nisbet,R., S.Blythe, B.Gumey, H.Metz,and K.Stokes. Avoiding chaos. Trends in Ecology and Evolution, 1989,4:238-239
    222. Nobili, A.M., Burns, J.A.. Solar system chaos. Science, 1989,244:1425
    223. Noda, Hiroak, Pre-mating flight of rice planthopper migrants (Homoptera: Delphacidae) Collected on the East China Sea Applied. Entomology and Zoology, 1986,21(1) : 175-176
    224. O'Brien,L.B. Wilson,S.W. Planthopper systematics and external morphology, In: The
    
    leafhoppers and planthoppers(L.R.Nault & J.G.Rodriguez eds.). Wiley, New York, 1985
    225. Packard, N. H., et al. Geometry from a time series. Phys.Rev. Letts, 1980,45(9) : 712-716
    226. Pomeau,Y. & Manneville,P. Commun.Math.Phys. 1980, 74:189
    227. Rand,D. etal. Phys.Rev.Lett,,. 1982,49:132
    228. Reynolds, D.R.and J.R.Riley. Radar observatios of concentrations of insect above a river in Mail West Africe. Ecological Enlomlogy, 1979,4:161-174.
    229. Riley J. R., Cheng X..N.,Zhang X..X.,et al. The long distance migration of Nilaparvata lugens (Stal)in China:radar observation of mass return flight in the autumn. Ecology, 1991 16:471-489
    230. Riley, J.R.,D.R.Reynolds and R.A.Farrow. The migration of Nilaoarvata lugens (Stai)(Delphacidae) and other Hemiptera associated with rice duringthe dry season in the Philippines a study using radar,visual observationsa erial netting and ground trapping . Bulletin of Entomological Research, 1987, 77:145-169.
    231. Rosenberg LJ. Magor J.I. Predicting windborne displacements of the brown planthopper, Nilaprvata lugens from dynoptioc weather data..l long-distance displacements in the monsoon Journal of Animal Ecology, 1987, 56:39-51.
    232. Rosenberg, L.J. and Magor, J.I. Flight duration of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Ecological. Entomology, 1983, 8:341-350
    233. Roux,J.-C. et al.. Physica 8D, 1983, 257
    234. Ruelle,D. & Takens,F. Commun.Math.Phys, 1971, 20:167
    235. Rykiel, E.J. et al. Computer-aided decision-making and information accessing in pest management system, with emphasis on the southern pine beetle (Coleopetera: Scolytidae). J.Eco.Entomol, 1984,77: 1073-1081
    236. Saperstein, A.M. Chaos: a model for the outbreak of war. Nature, 1984, 309: 303-305
    237. Schaifer, W.M. Stretching and folding in lynx fur returns: evidence for a strange attractor in nature? Am.Nat, 1984,124:798-821
    238. Schaffer, W.M., and M. Kit. Are ecological systems governed by strange attractors? BioScience, 1985,35:342-350
    239. Schreiber, T. Phys.rev.Lett, 1996, 77(4) :635
    240. Shimada,I. & NagashimaJ. Progress of Theor.Phys, 1979, 61:1605
    241. Simoyi R H , et al. One-dimensional dynamic in a multicomponent chemical
    
    reaction. Phys.Lett, 1982,49:245-248
    242. Sogawa, K. The rice brown planthopper: Feeding physiology and host plant interactions. Annu. Rev.Entomol, 1982,27:49-93
    243. Song, Y.H. and K.L.Heong. Use of geographical information systems in analyzing large area distribution and dispersal of rice insects in South Korea. Korean. J.Appl.Entomol, 1993,32(3) : 307-316
    244. Stinner,R.E.,R.E.Rabb and J.R.Bradley . Population dynamics of Heliothis Zea (bailie) and H.Virescens (F.) in North Carolina: A simulation model . Environ. Entomol, 1974, 3(1) : 163-169
    245. Stone, N.D. Chaos in an individual-level predator-prey model. Nat. Rws. Model, 1990,4:1-15
    246. Sugihara, G. & May, R. M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature ,1990,344:734-741
    247. Sussman, G.J., Wisdom, J. Numerical evidence that the motion of pluto is chaotic. Science , 1988,241:433-37
    248. Takens, F. Detecting strange attractors in turbulence. in:Rand ,D.A . Young ,L.S.(eds)JLecture Notes in Mathematics, 1980,898:366
    249. Tekens F. Detecting strange attractors in turbulence. In:Rand ,D.A . Young, L.S. Dynamical Systems and Turbulence . Berlin: Springer-Verlag, 1981
    250. Tekens F. Detecting strange attractors in turbulence. In:Rand ,D.A and Young , L.S. editors. Dynamical Systems and Turbulence.Springer-Verlag, New York,USA, 1981. :366-381
    251. Thomas, W.R. et al. Chaos asymetric growth and group selection for dynamical stability. Ecology, 1980,61:1312-1366
    252. Thriler, et al. Physica. D, 1992. , 58: 77
    253. Thriler, et al. Phys.Lett. A, 1995,196:335
    254. Turchin, P. Rarity of density dependence or population regulation with lags? Nature, 1990, 344: 660-663
    255. Turchin,P.,P.L.Lorio,A.D.Taylor,andR.F.Billings. Why do populations of southern pine beetles(Coleoptera:Scolytidae) fluctuate? Envir.Entom.,1991,20: 401-409
    256. Valetine , H.T.,et al . Compatible systems and decision models for pest management. Environ.Entomol., 1976, 5(5) :
    257. Varley, G.C.,Gradwell,G.R.. Recent advances in insect population dynamics. Am.Rev.Entomol,
    
    1970,15: 1-24
    258. Voges,W.et al. Astrophys.J. 1987, 320:794
    259. Wang,Y.-Q. & Cnen,S.-G. Acta Physica Sinica, 1984 , 33: 341
    260. Watanabe, T., Sogawa, K. 1994 a. Growth and yield analysis of rice plants infested with long-distance migratory rice planthopper. I . Effects of oeriod and intensity of the white-backed planthoppers, Sogatella furcifera Horvath (Homoptera:Delphacidae), infestation on vegetative and yield Jpn. J.Appl. Entomol.Zool. 1994,33:153-160
    261. Watanabe, T.,Yamamoto,H., Sogawa, K. 1994 b. Growth and yield analysis of rice plants infested with long-distance migratory rice planthopper. II. Measurement of recovery of vegetative growth of rice plants infested with the white-backed planthoppers, Sogatella furcifera Horvath (Homoptera:Delphacidae), by spettral reflectively. JpnJ.Appl. Entomol Zool. 1994,31; 169-175
    262. Whalon,M.E. and Z.Smilowitz.. Temperature-dependent model for predicting field populations of green peach aphid. Myzus persicae (Homoptera : Aphididae). Can.Enomol, 1979, IR: 1025-1032
    263. Wolf A.Swift J B.Swinney H L,et al, Determining Lyapunov exponents from a time series. Physica, 1985, I6D: 285-298
    264. Zadoks, J. C. EPIPRE:a disease and pest management system for winter wheat development in the Netherlands. EPPO Bull, 1981,11:365-369
    265. Zhou.G. and A.M.Liebhold Forecasting gypsy moth defoliation with a geographical information system. Entomol.,Sinica, 1995,2(1) :83-91