有机薄膜晶体管绝缘层材料的合成、表征与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机薄膜晶体管是采用有机半导体作为有源层的一种具有逻辑开关特性的场效应器件。它的基本结构和功能与传统的无机薄膜晶体管(TFT)基本相同,与无机薄膜晶体管相比,有机薄膜晶体管具有以下优点:(1)有机材料来源广泛,质轻;(2)制作工艺简单(加工温度低,可溶液加工等),成本低;(3)低弹性模量等。这些优点使得有机薄膜晶体管能够满足电子工业低成本、大面积柔性的发展要求。在有机薄膜晶体管中,绝缘层是有机薄膜晶体管的重要组成部分,有机薄膜晶体管的电荷主要是在临近绝缘层一侧的有机半导体层(2-6个分子层)中传输,因而绝缘层材料性能的好坏影响着整个晶体管的性能。所以研制性能优异的绝缘层材料对晶体管的发展就有重大意义。本论文正是基于这一思路,从传统的聚合物为出发点,合成了可直接光写入的新型聚甲基丙烯酸甲酯与甲基丙烯酸肉桂酸乙酯的共聚物,并测试了以此为有机薄膜晶体管的绝缘层材料的性能;在此基础上,我们设计合成了可直接光写入的聚氨酯,紫外交联后,聚氨酯薄膜形成三维网状结构,具有良好的抗溶剂性,这样就放宽了其上有机半导体薄膜的制备工艺,而且交联后的薄膜具有优良的绝缘性能,我们首次将其应用于有机薄膜晶体管绝缘层材料;为了提高有机聚合物的介电常数及电容,利用溶胶-凝胶技术合成了原位生成二氧化钛或者二氧化锆纳米粒子的杂化材料,通过调节无机部分的含量,实现有机聚合物介电常数及电容可调,有效降低操作电压;最后利用两步溶液聚合的方式制备了光敏表面修饰的聚酰亚胺,该聚酰亚胺具有优良的溶解性能及感光性。通过引入顶端带有联苯结构的长链,降低了聚酰亚胺薄膜的表面能,使得有机半导体与绝缘层之间具有更好的兼容性,从而提高了晶体管的综合性能。
Organic thin film transistors (OTFTs) are transistors device using organic semiconductor materials as active layers and have attracted a great deal of attention because of their flexibility, light weight, low cost, and easy processability. Compared with common inorganic transistors, because of the relatively low mobility of the organic semiconducors, organic thin film transistors can not rival the performance of TFTs based on single-crystalline inorganic senmicondutors, such as Si and Ge, which have charge carrier mobilities about three orders of magnitude higher. So OTFTs are not suitable for use in applications requiring high switching speeds. Because they can be fabricated simply and low-costly at room temperature, which can be competitive for novel TFT applications to meet the requirements of large area, flexibility, low-temperature processing and especially low-cost, so OTFTs are of interest for the fabrication of large area displays and low-end electronic devices, such as electronic identification tags and smart cards, as well as large-area sensing devices. Since the first reported OTFTs in 1986, there have been many on-going efforts to research the OTFTs. The mobility of OTFTs with vacuum-deposited pentacene films at room temperature reached as high as 2.7 cm2/Vs, and the on/off current ratio was larger than 106, which was close to that of hydrogenated amorphous silicon thin-film transistor. However, relative to the impressive advances that have been made in OTFTs, little work has been reported on gate dielectrics, which are extremely vital for the commercialization of the high-performance OTFTs. Ta2O5, ZrO2, TiO2, and ferroelectric metal oxide and so on have been employed as dielectric layers. These materials with high-k would afford comparable or greater capacitance values, and therefore comparable or greater surface charge densities at the TFT semiconductor-dielectric interface at greater insulator thicknesses with lower leakage currents. But these dielectrics are typically deposited in a vacuum and they are brittle such that they are not suitable for flexible device applications. Polymeric materials as gate insulators have been of great attention and considered as one of the strongest candidates due to such advantages: First, they can be fabricated simply and low-costly using solution-based process, such as spin coating, solution casting, dip coating, etc. at room temperature, and exhibiting good characteristics. Second, they can generally produce smooth surfaces and have good interfacial compatibility with organic semiconductors . Third, they have different chemical structures and their characters can be tuned by the design of the monomer precursors or polymerization reaction conditions. Recent process in materials, fabrication processes, device designs, applications related to organic thin film transistors have been reviewed in chapter 1. And the theories of the organic thin film transistors such as carriers transport mechanics have been introduced.
     In this dissertation, we can define four general approaches to achieving novel and high performance materials for the gate insulator of organic thin film transistors, such as photosensitive poly(MMA-CO-EMC), photosensitive polyurethane, photosensitive hybrid material and crosslinkable polyimide.
     In chapter 2, we have synthesized a photosensitive Poly(methyl methacrylate-co- ethylene methylacrylate cinnamoylate). The structures of the resulting copolymers were characterized using FT-IR, 1H NMR, gel permeation chromatography(GPC), and differential scanning calorimeter(DSC). And they have high photosensitivity, good solubility and film-forming properties and in addition, after crosslinking they show excellent resistance towards solvents and good compatibility with organic semiconductor and substrates. The photoinitiation of the copolymer films were recorded by UV spectra. The surface morphology of the films before and after UV irradiation was investigated using AFM. Results indicated that the spin-coated films had smooth surfaces with the root-mean-square (RMS) surface roughness was 0.23 nm, 0.41 nm, respectively. Finally, we have investigated the characteristics of vanadyl-phthalocyanine (VOPc) OTFTs with the photosensitive copolymer as gate insulator and found that carrier mobility was 0.25 cm2/Vs, on/off ratio was 104.
     In chapter 3, A novel photosensitive, solution-processable and low-temperature processable polyurethane as the gate insulator of organic thin film transistors through the one-step condensation polymerization of the monomers Bis(2-hydroxyethyl)terephthalate, 4, 4’-Methylenebis(cyclohexyl isocyanate) and 2, 2-Bis(hydroxymethyl)butyl cinnamoylate was designed and synthesized. The resulting polyurethane displays excellent thermal stability and good adhesion on substrate after crosslinking. The photosensitive polyurethane with the molecular weights (Mn:10100 g mol-1) and polydispersities (1.1) was useful for the fabrication of organic thin film transistors because of its good solubility, low-temperature in common organic solvent and photopatternability at room temperature. The polyurethane was characterized by FT-IR and 1H NMR. The polyurethane film had good electrical characteristics, and the gate insulator leakage of the film was less than 1×10-10 A cm-2. In addition, we have successfully fabricated VOPc OTFTs with the polyurethane as gate insulator, and found the OTFTs exhibiting good performance with mobility of 0.13 cm2/Vs, and on/off ratio of 104.
     In chapter 4, In order to further improve the polyurethane performance, TiO2 (ZrO2) was covalently incorporated into the thiethoxysilane-capped photosensitive polyurethane through an in situ sol-gel method. The thiethoxysilane-capped photosensitive polyurethane was synthesized through the two-step condensation polymerization of the monomers Bis(2-hydroxyethyl)terephthalate, 4, 4’-Methylenebis(cyclohexyl isocyanate), 2, 2-Bis(hydroxymethyl)butyl cinnamoylate, Abstract 2-ethyl-2-(hydroxymethyl)propane-,3-diol, and 3-isocyanatopropyl thiethoxysilane. The polyurethane was characterized by FTIR, 1HNMR, gel permeation chromatography(GPC). The TiO2 or ZrO2 content in the hybrid materials was adjusted from 30% to 70% by the feed ratio of precursor Ti(OBu)4 or Zr(OBu)4 to polyurethane. Both FT-IR, DSC and TGA analyses indicated that there was chemical bonding between the inorganic domain and the polyurethane. The surface morphology of the hybrid films were investigated using AFM and the root-mean-square (RMS) surface roughness was 0.35 nm, 0.48 nm, 0.62 nm , respectively. The dielectric constant and capacitance of the hybrid materials was increased with the increasing of TiO2 or ZrO2 content in the hybrid materials. Finally, we have investigated the characteristics of VOPc OTFTs with the hybrid materials as gate insulator and found that carrier mobility was 0.08 cm2/Vs, on/off ratio was 103.
     In chapter 5, solution-processable photosensitive and the surface-modified polyimide was synthesized based on 2, 4-amino phenoxyethyl methacrylate, 1-biphenyl-4-ylmethyl dodecanoate-12-(2’, 4’-amino phenoxy) ethyl dodecanoate and 4, 4’-(hexafluoroisopropylidene) diphthalic anhydride. The polyimide had good solubility in most of the organic solvents such as dichloromethane, chloroform, tetrahydrofuran,dioxane and N,N-dimethylformamid. The structures of the polyimide was characterized using FT-IR, 1H NMR, GPC and TGA. The film which was made by spinning coated had good UV light lithograph sensitivity. In addition, we have successfully fabricated VOPc OTFTs with inorganic/organic double gate insulators, in which the inorganic gate insulator was SiO2, the organic gate insular was crosslinked polyimide. And we found the OTFTs exhibiting very good performance with mobility of 1.2 cm2/Vs, on/off ratio was 106.
引文
[1]Neamen D A. Semiconductor physics and devices basic principles [M]. 3rd ed. Beijing: Eletronics industry, 2005.
    [2]Anderson B C. Semiconductor devices basic principles [M]. 1st. ed. Beijing: Qinghua, 2008.
    [3]Torsi L, Dodabalapur A, Rothberg L J, et al. Intrinsic transport properties and performance limits of organic field-effect transistors [J]. Science, 1996, 272: 1462-1464.
    [4]Sirringhaus H, Tessler N, Friend R H. Integrated optoelectronic devices based on conjugated polymers [J]. Science, 1998, 280: 1741-1744.
    [5]Sheraw C D, Zhou L, Haung J R, et al. Organic thin film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates [J]. Appl. Phys. Lett., 2002, 80: 1088-1090.
    [6]Shtein M, Mapei J, Benziger J B, et al. Effects of film morphology and gate surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors [J]. Appl. Phys. Lett., 2002, 81: 268-270.
    [7]Koch N. Organic electronic devices and their functional interfaces [J]. Chem. Phys. Chem., 2007, 8: 1438-1455.
    [8]Facchetti A, Yoon M-Y, Mark T J., Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics [J]. Adv. Mater., 2005, 17: 1705-1725.
    [9]Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic [J]. 2004, 428: 911-918.
    [10]Katz H. Recent advances in semiconductor performance and printing processes for organic transistor-based electronics [J]. Chem. Mater., 2004, 16: 4748-4756.
    [11]Sirringhaus H. Device physics of solution processed organic field effect transistors [J]. Adv. Mater. 2005, 17: 2411-2425.
    [12]Dimitrakopoulos C, Malenfant P R L. Organic thin film transistors for large areaelectronics [J]. Adv. Mater., 2002, 14: 99-117.
    [13]Tsumura. A., Koezuka. H., Ando. T., Macromolecular electronic device field-effect transistors with a polythiophene thin-film [J] Appl. Phys.Lett., 1986, 49: 1210-1212.
    [14]Horowitz G, Fichou D, Peng X H, et al. A field-effect transisror based on conjugated alphasexithienyl [J]. Solid State Commun., 1989, 72: 381-384.
    [15]Akimichi H, Waragai W, Hotta S, et al. Field-effect transistors using alkyl substituted oligothiophenes [J]. Appl. Phys. Lett., 1991, 58: 1500-1502.
    [16]Garnier F, Hajlaoui R, Yassar A, et al. All-polymer field-effedt transistor realized by printing techniques [J]. Science, 1994, 265: 1684-1686.
    [17]Katz H E, Torsi L, Dodabalapur A. Synthesis, material properties, and transistor performance of highly pure thiophene oligomers [J]. Chem. Mater., 1995, 7: 2235-2237.
    [18] Dodabalapur A, Katz H E, Torsi L, et al. Organic heterostructure field effect transistors [J]. Science, 1995, 269: 1560-1562.
    [19]Laquindanum J G, Katz H E, Lovinger A J. Morphological origin of high mobility in pentacene thin film transistors [J]. Chem. Mater., 1996, 8: 2542-2544.
    [20]Horowitz G, Garnier F, Yassar A, et al. Field effect transistor made with a sexithiophene single crystal [J]. Adv. Mater., 1996, 8: 52-54.
    [21]Lin Y-Y, Gundlach D J, Nelson S F, et al. Stacked pentacene layer organic thin film transistors with improved characteristics [J]. IEEE electron device lett., 1997, 18: 606-608.
    [22]Dimitrakopoulos C D, Purushothaman S, Kymissis J, et al. Transistors on plastic comprising high-dielectric constant gate insulators [J]. Science, 1999, 283: 822-824.
    [23]Rogers J A, Bao Z N, Dodabalapur A, et al. Organic smart pixels and complementary inverter circuits formed on plastic substrates by casting and rubber stamping [J]. IEEE electron device lett., 2000, 21: 100-103.
    [24]Meijer E J, Deleeuw D M, Setayesh S, et al. Solution-processed ambipolar organic field effect transistors and inverters [J]. Nature materials, 2003, 2: 678-682.
    [25]Sundar V C, Zaumseil J, Podzorov V, et al. Elastomeric transistor stamps: reversibleprobing of vharge transport in organic crystals [J]. Science, 2003, 303: 1644-1646.
    [26]Fukuda H, Yamagishi Y, Ise M, et al. Gas sensing properties of poly-3-hexylthiophene thin film transistors [J]. Sens. actuators B, 2005, 108: 414-417.
    [27]Lee S Y, Koo B, Shin J, et al. Effects of hyfroxyl groups in polymeric dielectrics on organic thin film transistor performance [J]. Appl. Phys. Lett., 2006, 88: 162109-1-162109-3.
    [28]Jurchescu O D, Baas J, Palstra T M, et al. Effect of impurities on the mobility of single crystal pentacene [J]. Appl.Phys. Lett., 2004, 84: 3061-3063.
    [29]Bao Z N, Lemieux M C, Sok S, et al Solution assembly of organized carbon nanotube networks for thin film transistors [J]. ACS nano, 2009, 3, 4089-4097.
    [30]Yan H, Chen Z H, Zheng Y, et al. A high mobility electron-transporting polymer for printed transistors [J]. Nature, 2009, 457: 679-687.
    [31]Klauk H, Gundlach D J, Bonse M, et al. A reduced complexity process for organic thin film transistors [J]. Appl. Phys. Lett., 2000, 76: 1692-1694.
    [32]Bonfiglio A, Mameli F, Sanna O. A completely flexible organic transistor obtained by a one-mask photolithographic process. Appl. Phys. Lett., 2003, 82: 3550-3552.
    [33]Fuchigami H, Tsumura A, Koezuka H. Polythienylenevinylene thin-film transistor with high carrier mobility [J]. Appl. Phys. Lett., 1993, 63: 1372-1374.
    [34]Assadi A, Svensson C, Willander M, et al, Field-effect mobility of poly(3-hexylthiophene) [J]. Appl. Phys. Lett., 1988, 53: 195-197.
    [35]Paloheimo J, Kuivalainen P, Stubb H, et al. Molecular field-effect transistors using conducting polymer Langmuir-Blodgett films [J]. Appl. Phys. Lett., 1990, 56: 1157-1159.
    [36]Ohmori Y, Takahashi H, Muro K, et al. Fabrication and characteristics of Schottky gated poly(3-alkylthiophene) field effect transistors [J]. Jpn. J. Appl. Phys., 1991, 30: L610-L611.
    [37]Koezuka H, Tsumura A, Fuchigami H, et al. Polythiophene field-effect transistor with polypyrrole worked as source and drain electrodes. Appl. Phys. Lett., 1993, 62:1794-1796.
    [38]Bao Z N, Dodabalapur A, Lovinger A J. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility [J]. Appl. Phys. Lett., 1996, 69: 4108-4110.
    [39]Austin M D, Chou S Y. Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography [J]. Appl. Phys. Lett., 2002, 81: 4431-4433.
    [40]Stutzmann N, Friend R H, Sirringhaus H. Self-aligned, vertical-channel, polymer field-effect transistors [J]. Science, 2003, 299: 1881-1884.
    [41]Katz H E. Organic molecular solids as thin film transistor semiconductors [J] J. Mater. Chem., 1997, 7: 369-376.
    [42]Halik M, Klauk H, Zschieschang U, et al. Relationship Between Molecular Structure and ElectricalPerformance of Oligothiophene Organic Thin Film Transistors [J]. Adv. Mater., 2003, 15: 917-922.
    [43]Konezny S J, Bussac M N, Zuppiroli L. Trap-limited transport in rubene transistors [J]. Appl. Phys. Lett., 2009, 95: 263311-1-263311-3.
    [44]Podzorov V, Pudalov V M, Gershenson M E. Field effect transistors on rubrene single crystals with parylene gate insulator [J]. Appl. Phys. Lett., 2003, 82: 1739-1741.
    [45]Goldmann C, Krellner C, Pernstich K F. Determination of the interface trap density of rubrene single-crystal field effect transistors and comparision to the bulk trap density [J]. J. Appl. Phys., 2006, 99: 034507-1-034507-3.
    [46]Stassen A F, de Boer R W I, Iosad N N, et al. Influence of the gate dielectric on the mobility of rubene single-crystal field effect transistors [J]. Appl. Phys. Lett., 2004, 85: 3899-3901.
    [47]Takahashi T, Takenobu T, Takeya J, et al. Ambipolar organic field effect transistors based on rubrene single crystals [J]. Appl. Phys. Lett., 2006, 88: 033505-1-033505-3.
    [48]So W Y, Wikberg J M, Lang D V. Mobility-independent doping in crystalline rubrene field effect transistors [J]. Solid State Commun., 2007, 142: 483-486.
    [49]Perk S W, Hwang J M, Choi J M, et al. Rubrene thin film transistors with crystalline and amorphous channels [J]. Appl. Phys. Lett., 2007, 90: 153512-1-153512-3.
    [50]Seo S, Park B N, Evans P G. Ambipolar rubrene thin film transistors [J]. Appl. Phys. Lett., 2006, 88: 232114-1-232114-3.
    [51]Choi J M, Jeong S H, Hwang D K. Rubrene thin film transistors with crystalline channels achieved on optimally modified dielectric surface [J]. Adv. Mater., 2009, 10: 199-204.
    [52]Choi J M, Im S. Optimum channel thinkness of rubrene thin-film transistors [J]. Appl. Phys. Lett., 2008, 93: 0443309-1-043309-3.
    [53]Inoue Y, Tokito S, Ito K. Organic thin film transistors based on anthracene oligomers [J]. J. Appl. Phys., 2004, 95: 5795-5799.
    [54]Meng H, Sun F P, Goldfinger M B. High-performance, stable organic thin film field effect transistors based on bis-5’-alkylthiophen-2’-yl-2, 6-anthracene semiconductors [J]. J. Am. Chem. Soc., 2005, 127: 2406-2407.
    [55]Chung D S, Park J W, Park J H, et al. High mobility organic single crystal transistors based on soluble triisoptopylsilyethnyl anthracene derivatives [J]. J. Mater. Chem., 2010, 20: 524-530.
    [56]Jiang L, Hu W P, Wei Z M. High-performance organic single-crystal transistors and digital inverters of an anthracene derivative [J]. Adv. Mater., 2009, 21: 3649-3650.
    [57]Klauk H, Zschieschang U, Weitz R T, et al. Organic transistors ased on di(phenylvinyl)anthracene performance and stability [J]. Adv. Mater., 2007, 19: 3882-3883.
    [58]Jiang L, Gao J H, Wang E J, et al. Organic single-crystalline ribbons of a rigid“H”-type anthracene derivative and high performance, short-channel field effect transistors of individual micro/nanometer-sized ribbons fabricated by an“organic ribbon mask”technique [J]. Adv. Mater., 2008, 20: 2735-2736.
    [59]Horowitz G, Peng X, Fichou D, et al. Role of the semiconductor/insulator interface in the characteristics ofπ-conjugated-oligomer-based thin film transistors [J]. Synth.Met., 1992, 51: 419-424.
    [60]Dimitrakopoulos C D, Brown A R, Pomp A. Molecular bean deposited thin film pentacene for organic field effect transistor applications [J]. J. Appl.Phys., 1996, 80: 2051-2058.
    [61]Kelly T W, Muyres D V, Baude P F, et al. High performance organic thin film transistors [J]. Mater. Res. Soc. Symp. Proc., 2003, (L6.5): 771-774.
    [62]Klauk H, Halik M, Zschieschang U, et al. High-mobility polymer gate dielectric pentacene thin film transistors [J]. J. Appl. Phys. 2002, 92: 5259-5263.
    [63] Klauk H, Gundlach D J, Bonse M, et al. A reduced complexity process for organic thin film transistors [J]. Appl. Phys. Lett. 2000, 76: 1692-1694.
    [64] Wang G, Luo Y, Beton P H. High mobility organic transistors fabricated from single pentacene microcrystals grown on a polymer film [J]. Appl. Phys. Lett. 2003, 83: 3108-3110.
    [65]Kim C, Quinn J R, Facchetti A, et al. Pentacene transistors fabricated on photocurable polymer gate dielectrics: tuning surface viscoelasticity and device response [J]. Adv. Mater., 2010, 22: 342-343.
    [66]Nado K, Tanida S, Kawabara H, et al. N-channel operation of pentancene thin film transistors with ultrathin polymer gate buffer layer [J]. Synth. Met., 2010, 160: 83-87.
    [67]Di C A, Yu G, Liu Y Q. Effect of dielectric layers on devices stability of pentacene based field effect transistors [J].Phys. Chem. Chem. Phys., 2009, 11: 7268-7273.
    [68]Saudari S R, Frail P R, Kagan C R. Ambipolar transport in solution deposited pentacene transistors enhanced by molecular engineering of device contacts [J]. Appl. Phys. Lett., 2009, 95: 023301-1-023301-3.
    [69]Hong M P, Kim B S, Lee Y U. 3.5: invited paper: recent progress in large sized & high performance organic TFT array, SID Symp. Dig. Tech. Papers. 2005, 36: 23-25.
    [70]Clarisse C, Riou M T, Gauneau M, et al. Field-effect transistor with diphthalocyanine thin film [J]. Electron. lett., 1988, 24: 674-675.
    [71]Guillaud G, Sadound M A, Maitrot M, et al. Field-effect transistor based on intrinsicmolecular semiconductors [J]. Chem. Phys. Lett., 1990, 167: 503-506.
    [72]Bao Z N, Lovinger A J, Dodabalapure A, et al. Organic and polymeric materials for the fabrications of thin film field-effect transistors [J]. Polym. Prepr., 1998, 39: 90-91.
    [73]Schauer F, Zhivkov I, Nespurek S. Organic phthalocyanine films with high mobilities for effeicent field-effect transistor switches [J]. J. Non-Crystal. Sol. 2000, 266-269: 999-1003
    [74]Yuan J-F, Zhang J, Wang J, et al. Bottom-contact organic field-effect transistors having Low-dielectric layer under source and drain electrodes. [J]. Appl. Phys. Lett., 2003, 82: 3967-3969.
    [75]Chaure N B, Sosa-Sanchez J L, Cammidge A N, et al. Solution processable lutetium phthalocynine organic field effect transistors [J]. Org. Electron., 2010, 11: 434-438.
    [76]Tian X Y, Xu Z, Zhang F J, et al. Influence of thermal treatment on the performance of copper phthalocynine thin film transistors [J]. Curr. Appl. Phys., 2010, 10: 129-132.
    [77]Xiao K, Li R J, Tao J, et al. Metastable copper phthalocynine single crystal nanowire and their use in fabricating high performance field effect transistors [J]. Adv. Func. Mater., 2009, 19: 3776-3780.
    [78]Wei Z M, Cao Y, Ma W Z, et al. Langmuir-Blogett monomLayer transistors of copper phthalocynine [J]. Appl. Phys. Lett., 2009, 95: 033304-1-033304-3.
    [79]Wang L J, Liu G J, Zhu F, et al. Electrical instablility in vanadyl- phthalocynine thin film transistors [J]. Appl. Phys. Lett., 173303, 93: 173303-1-173303-3.
    [80]Yu S, Yi M, Ma D. Influence of gate dielectrics on charge transport in copper phthalocynine thin film transstors [J]. Thin Solid Films, 2008, 516: 3346-3349.
    [81]Aoki N, Sudou K, Okamoto K, et al. Scanning gate microscopy of copper phthalocynine field effect transistors [J]. Appl. Phys. Lett., 2007, 91: 192113-1-192113-3.
    [82]Wang L J, Liu Q J, Wang H B, et al. Switch-on transent behavior of vanadium phthalocynine based organic transistors [J]. Appl. Phys. Lett., 2007, 91: 063511-1-063511-3.
    [83]Chen F C, Kung L J, Chen T H, et al. Copper phthalocynine buffer layer to enhance the charge injection in organic thin film transistors [J]. 2007, 90: 073504-1-073504-3.
    [84]Yan X J, Wang H, Yan D H. An investigation on air stability of copper phthalocynine baesd organic thin film transistors and device encapsulation [J]. Thin Solid Film, 2006, 515: 2655-2658.
    [85]Oprea A, Weimar U, Simon E, et al. Copper phthalocynine organic thin film transistors with calcium fluoride gate insulator [J]. Semicon. Sci. Tech., 2006, 21: 1452-1454.
    [86]Yasuda T, Tsutsui T. Ambipolar charge transport in organic field effect transistors based on lead phthalocynine with low band gap energy [J]. Jpn. J. Appl. Phys. Part 2, 2006, 45: L595-L597.
    [87]Pulgdollers J, Voz C, Fonrodona M, et al. Copper phthalocynine thin film transistors with polymeric gate dielectric [J]. J. Non-cryst. Solid., 2006, 352: 1778-1782.
    [88]Yamada K, Takeya J, Shigeto K, et al. Charge transport of copper phthalocynine single-crystal field effect transistors stable above 100 degrees C [J]. Appl. Phys. Lett., 2006, 88: 122110-1-122110-3.
    [89]Tang Q X, Li H X , He M, et al. Low threshold voltage transistors based on individual single crystalling submicrometer-sized ribbons of copper phthalocyanine [J]. Adv. Mater., 2006, 18: 65-68.
    [90]de Boer R W I, Stassen A F, Craciun M F, et al. Ambipolar Cu- and Fe- phthalocynine single-crystal field effect transistors [J]. Appl. Phys. Lett., 2005, 86: 262109-1-262109-3.
    [91]Yasuda T, Tsutsui T. Organic field effect transistor based on high electron and ambipolar carrier transport properties of copper phthalocynine [J]. Chem. Phys. Lett., 2005, 402: 395-398.
    [92]Bao Z, Lovinger A J, Dodabalapur A, Organic field-effect transistors with high mobility based on copper phthalocyanine [J]. Appl. Phys. Lett., 1996, 69: 3066-3068.
    [93]Zhang J, Wang J, Wang H, et al. Organic thin-film transistors in sandwichconfiguration [J]. Appl. Phys. Lett., 2004, 84: 142-144.
    [94]Zeis R, Siegrist T, Kloc C. Single-crystal field-effect transistors based on copper phthalocyanine [J]. Appl. Phys. Lett., 2005, 86: 022103-1-022103-3.
    [95]Yang J L, Yan D H. Weak epitaxy growth of organic semiconductor thin films [J]. Chem. Soc. Rev., 2009, 28: 2634-2645.
    [96]Wang H B, Zhu F, Yang J L, et al. Weak epitaxy growth affording high-mobility thin films of disk-like organic semiconductors [J]. Adv. Mater., 2007, 19: 2168-2171.
    [97]Wang H, Song D, Yang J, et al. High mobility vanadyl-phthalocyanine polycrystalline films for organic field-effect transistors [J]. Appl. Phys. Lett., 2007, 90: 253510-1-253510-3
    [98]Wang L, Liu G, Wang H. Electrical properties in vanadyl-phthalocyanine based metal insulator semiconductor devices [J]. Appl. Phys. Lett., 2007, 91: 153508-3.
    [99]Wang L, Liu G., Zhu F., et al. Electrical instability in vanadyl-phthalocyanine thin-film transistors [J]. APpl. Phys. Lett., 2008, 93: 173303-1-173303-3.
    [100]Yoshida M, Uemura S, Kodzasa T, et al. Surface potential control of an insulator layer for the high performance organic film effect transistors [J]. Synth. Met., 2003, 137: 967-968.
    [101]Yang S Y, Shin K, Park C E. The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics [J]. Adv. Funct. Mater., 2005, 15: 1806-1814.
    [102]Suemori K, Uemura S, Yoshida M, et al. In?uence of fine roughness of insulator surface on threshold voltage stability of organic field-effect transistors [J]. Appl. Phys. Lett., 2008, 93: 033308-1-033308-3.
    [103]Umeda T, Kumaki D, Tokito S. Surface-energy-dependent field-effect mobilities up to 1 cm2 /V s for polymer thin-film transistor [J]. J. Appl. Phys., 2009, 105: 024516-1-024516-3.
    [104]Han S J, Kim J H, Kim J W,et al. Effects of UV/ozone treatment of a polymer dielectric surface on the properties of pentacene thin films for organic transistors [J]. J.Appl. Phys., 2008, 104: 013715-1-013715-3.
    [105]Effertz C, Beigmohamadi M, Niyamakom P. Influence of dielectric surface modification on growth, structure and transport properties of perylene films [J]. Phys. Stat. Sol. (b), 2008, 245: 782-787.
    [106]Müller K, Burkov Y, Mandal D, et al. Microscopic and spectroscopic characterization of interfaces and dielectric layers for OFET devices [J]. Phys. Stat. Sol. (a), 2008, 205: 600-611.
    [107]Benson N, Melzer C, Schmechel R. Electronic states at the dielectric/semiconductor interface in organic field effect transistors [J]. Phys. Stat. Sol. (a), 2008, 205: 475-487.
    [108]Mühlenen A, Castellani M, Schaer M, et al. Controlling charge-transfer at the gate interface of organic field-effect transistors [J]. Phys. Stat. Sol. (b), 2008, 245: 1170-1174.
    [109]Yildirim F A , Schliewe R R, Bauhofer W, et al. Gate insulators and interface e?ects in organic thin-film transistors [J]. Org. Electron., 2008, 9: 70-76.
    [110]Mao L F. Investigating the effects of the interface defects on the gate leakage current in MOSFETs [J]. Appl. Sur. Sci., 2008, 254: 6628-6632.
    [111]Brandon E J, West W, Wesseling E. Carbon-based printed contacts for organic thin-film transistors [J]. Appl. Phys. Lett., 2003, 83: 3945-3947.
    [112] Blanchet G B, Fincher C R, Lefenfeld M. Contact resistance in organic thin film Transistors [J]. Appl. Phys. Lett., 2004, 84: 296-298.
    [113]Chabinyc M L, Salleo A. Materials requirements and fabrication of active matrix arrays of organic thin-film transistors fordisplays [J]. Chem. Mater., 2004, 16: 4509-4521.
    [114]Klauk H, Organic electronics: materials, manufacturing and applications [M]. Weinheim: Wiley, 2006.
    [115]Ortiz R P, Facchetti A, Marks T J. High-k organic, inorganic, and hybrid dielectricsfor low-voltage organic field-effect transistors [J]. Chem. Rev., 2010, 110: 205–239.
    [116]Veres J, Ogier S, Lloyd G.. Gate insulators in organic field-effect transistors [J].Chem. Mater., 2004, 16: 4543 4555.
    [117]Peng X Z, Horowitz G, Fichou D, et al. All-organic thin film transistors made of alpha-sexithienyl semiconducting and various polymeric insulating layers [J]. Appl. Phys. Lett., 1990, 57: 2013-2015.
    [118]Parashkov R, Becker E, Ginev G, et al. All-organic thin-film transistors made of poly(3-butylthiophene)semiconducting and various polymeric insulating layers [J]. J. Appl. Phys., 2004, 95: 1594-1596.
    [119]Onoue T, Nakamura I, Sakabe Y, et al. Low-operating-voltage organic field-effect transistors with poly-p-xylylene/high-k polymer bilayer gate dielectric [J]. Jpn. J. Appl. Phys. Part 2 2006, 45: L770-L772.
    [120]Schroeder R, Majewski L A, Grell M. A study of the threshold voltage in pentacene organic field-effect transistors [J]. Appl. Phys. Lett., 2003, 83: 3201-3203.
    [121]Singh T B, Meghdadi F, Sariciftci N S., et al. High-performance ambipolar pentacene organic field effect transistors on poly(vinyl alcohol) organic gate dielectric [J]. Adv. Mater., 2005, 17: 2315-2320.
    [122]Jang Y, Kim D H, Park Y D, et al. Low-voltage and high-field-effect mobility organic transistor with a polymer insulator [J]. Appl. Phys. Lett., 2006, 88: 072101-1-072101-3.
    [123]Singh T B, Marjanovic N, Stadler P, et al. Fabrication and characterization of solution-processed methanofullerene-based organic field-effect transistors [J]. J. Appl. Phys., 2005, 97: 083714-1-083714-3.
    [124]Egginger M, Vladu M I, Sariciftci N S, et al. Mobile ionic impurities in Poly(vinyl alcohol) gate dielectric:possible source of the hysteresis in organic field-effect transistors [J]. Adv. Mater., 2008, 20: 1018–1022.
    [125]Lee C A, Park D W, Jin S H, et al. Hysteresis mechanism and reduction method in the bottom-contact pentacene thin-film transistors with cross-linked poly(vinyl- alcohol)gate insulator [J]. Appl. Phys. Lett., 2006, 88: 252102-1-252102-3.
    [126]Schroeder R, Majewski L A, Grell M. Improving organic transistor performance with Schottky contacts [J]. Appl. Phys. Lett., 2004, 84: 1004-1006.
    [127]Gelinck G H, Huitema H E, Veenenaal E V, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors [J]. Nat. Mater., 2004, 3: 106-111.
    [128]Zhen L J, Guan W H, Shan L W. Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric [J]. J. Phys. D: Appl. Phys., 2008, 41: 135111-135116.
    [129]Ahn T, Choi Y J, Jung H M, et al. Fully aromatic polyimide gate insulators with low temperature processability for pentacene organic thin-film transistors [J]. Org. Electron., 2009, 10: 12-17.
    [130]Kato Y, Iba S, Teramoto R, et al. High mobility of pentacene field-effect transistors with polyimide gate dielectric layers [J]. Appl. Phys. Lett., 2004, 84: 3789-3792.
    [131]Pyo S M, Son H, Choi K Y, et al. Low-temperature processable inherently photosensitive polyimide as a gate insulator for organic thin-film transistors [J]. Appl. Phys. Lett., 2005, 86: 133508-1-133508-3.
    [132]Chua L L, Ho P K H, Sirringhaus H, et al. High-stability ultrathin spin-on benzocyclobutene gate dielectric for polymer field-effect transistors [J]. Appl. Phys. Lett., 2004, 84: 3400-3402.
    [133]Yan H, Chen Z H, Zheng Y, et al. A high mobility electron transporting polymer for printed transistors [J]. Nature, 457: 679-687.
    [134]Sirringhaus H, Kawase T, Friend R H, et al. High resolution inkjet printing of all-polymer transistor circuit [J]. Science, 290: 2123-2126.
    [135]Halik M, Klauk H , Zschieschang U, et al. Fully patterned all-organic thin film transistors [J]. Appl. Phys. Lett., 2002, 81: 289-291.
    [136]Klauk H, Halik M, Zschieschang U, et al. High-mobility polymer gate dielectric pentacene thin film transistors [J]. J. Appl. Phys., 2002, 92: 5259-5262.
    [137]Lim S C, Kim S H, Lee J H, et al. Organic thin-film transistors on plastic substrates [J]. Mater. Sci. Eng. B, 2005, 121: 211-215.
    [138]Lee S H, Choo D J. High performance organic thin-film transistors with photopatterned gate dielectric [J]. Appl. Phys. Lett., 2007, 90: 033502-1-033502-3.
    [139]Sethuraman K, Ochiai S, Kojima K, et al. Performance of poly(3-hexylthiophene) organic field effect transistors on cross-linked poly(4-vinyl phenol) dielectric layer and solvent effects [J]. Appl. Phys. Lett., 2008, 92: 183302-1-183302-3.
    [140]Kim J, Jeong J, Cho H D, et al. All-solution-processed bottom-gate organic thin-film transistor with improved subthreshold behaviour using functionalized pentacene active layer [J]. J. Phys. D: Appl. Phys., 2009, 42: 115107-115113.
    [141]Drury C J, Mutsears M J, Hart C M, et al. Low-cost all-polymer integrated circuits [J]. Appl. Phys. Lett., 1998, 73: 108-111.
    [142]Han S H, Kim J H, Jang J, et al. Lifetime of organic thin-film transistors with organic passivation layers [J]. Appl. Phys. Lett., 2006, 88: 073519-1-073519-3.
    [143]Ng T N, Daniel J H, Sabandan S, et al. Gate bias stress effects due to polymer gate dielectrics in organic thin-film transistors [J]. J. Phys. D: Appl. Phys., 2008, 103: 044506-1-044506-3.
    [144]Shin S, Kwon J H, Kangnd H, et al. Solution-processed 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene thin-film transistors with a polymer dielectric on a ?exible substrate [J]. Semicond. Sci. Technol., 2008, 23: 085009-085013.
    [145]Choi Y, Kim H J, Sim K, et al. Flexible complementary inverter with low-temperature processable polymeric gate dielectric on a plastic substrate [J]. Org. Electron., 2009, 10: 1209-1216. 10 (2009) 1209–1216.
    [146]Rogers J A, Bao Z N, Makhija A, et al. Printing process suitable for reel-to-reel production of high-performance organic transistors and circuits [J]. Adv. Mater., 1999, 11: 741-745.
    [147]Huang T S, Su Y K, Wang P C. Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer [J]. Appl. Phys. Lett., 2007, 91:092116-1-092116-3.
    [148]Benson N, Schidleja M, Melzer C, et al. Complementary organic field effect transistors by ultraviolet dielectric interface modification [J]. Appl. Phys. Lett., 2006, 89: 182105-1-182105-3.
    [149]Takeya J, Iwasa Y. Ambipolar organic field effect transistors based on rubrene single crystals [J]. Appl. Phys. Lett., 2006, 88: 033505-1-033505-3.
    [150]Estrada M, Mejia I, Cerdeir A. MIS polymeric structures and OTFTs using PMMA on P3HT layers [J]. Solid Stat. Electron., 2008, 52: 53-59.
    [151]Naber R C G, Tanase C, Blom P W M, et al. High-performance solution processed polymer ferroelectric field effect transistors [J]. Nat. Mater., 2005, 4: 243-247.
    [152]Stadlober B, Zirkl M, Bauer S. High mobility pentacene organic field effect transistors with a high dielectric constant fluorinated polymer film gate dielectric [J]. Appl. Phys. Lett., 2005, 86: 242902-1-242902-3.
    [153]Muller K, Paloumpa I, Henkel K, et al. A polymer high-k dielectric insulator for organic field-effect transistors [J]. J. Appl. Phys., 2005, 98: 056104-1-056104-3.
    [154]Wang W, Shi J W, Guo S X, et al. Improved performance by a double-insulator layer in organic thin-flim transistors [J]. Chin. Phys. Lett., 2006, 23: 3108-3110.
    [155]Lee K E, Oh M S, Choi J M, et al. Flexible high mobility pentacene transistor with high-k/low-k double polymer dielectric layer operating at -5 V [J]. Org. Electron., 2009, 10: 194-198.
    [156]Tate J, Rogers J A, Jones C D W, et al. Anodization and microcontact printing on electroless silver: solution-based fabrication procedures for low-voltage electronic systems with organic active components [J]. Langmuir, 2000, 16: 6054-6060.
    [157]Bartic C, Jansen H, Campitelli A, et al. Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors [J]. Org. Electron., 2002, 3: 65-72.
    [158]Lino Y, Inoue Y, Fujisaki Y, et al. Organic thin film transistors on a plastic substrate with anodically oxidized high-dielectric-constant insulators [J]. Jpn. J. Appl. Phys., Part 1, 2003, 42: 299-304.
    [159]Yuan J F, Zhang J, Wang J, et al. Bottom-contact organic field-effect transistors having low-dielectric layer under source and drain electrodes [J]. Appl. Phys. Lett., 2003, 82: 3967-3970.
    [160]Ohta S, Chuman T, Miyaguchi S, et al. Active matrix driving organic light-emitting diode panel using organic thin-film transistors [J]. Jpn. J. Appl. Phys., 2005, 44: 3678-3681.
    [161]Jeong Y T, Dodabalapur A. Pentacene-based low voltage organic field-effect transistors with anodized Ta2O5 gate dielectric [J]. Appl. Phys. Lett., 2007, 91: 193509-1-193509-3.
    [162]Yu X J, Xu J B, Cheung W Y, et al. Optimizing the growth of vanadyl-phthalocyanine thin films for high-mobility organic thin-film transistors [J]. J Appl. Phys., 2007, 102: 103711-1-103711-3.
    [163]Deman A L, Erouel M, Lallemand D, et al. Growth related properties of pentacene thin film transistors with di?erent gate dielectrics [J]. J. Non-cryst. Solids., 2008, 354: 1598-1607.
    [164]Lee J, Kim J H, Im S. Pentacene thin-film transistors with Al2O3+x gate dielectric films deposited on indium-tin-oxide glass [J]. Appl. Phys. Lett., 2003, 83: 2689-2692.
    [165]Majewski L A, Schroeder R, Grell M. High capacitance organic field-effect transistors with modified gate insulator surface [J]. J Appl. Phys., 2004, 96: 5781-5783.
    [166] Lee J, Kim J H, Im S. Effects of substrate temperature on the device properties of pentacene-based thin film transistors using Al2O3+x gate dielectric [J]. J Appl. Phys., 2004, 95: 3733-3735.
    [167]Koo J B, Ku C H K, Lim S C, et al. Hysteresis and threshold voltage shift of pentacene thin-film transistors and inverters with Al2O3 gate dielectric [J]. Appl. Phys. Lett., 2007, 90: 133503-1-133503-3.
    [168]Goettling S, Diehm B, Fruehauf N J. Dispersion Technol., 2008, 4: 1551-319.
    [169]Lim J W, Koo J B, Yum S J, et al. Chracteristics of pentacene thin film transistorwith Al2O3 gate dielectrics on plastic substrate [J]. Electrochem. Solid State Lett., 2007, 10: J136.
    [170]Wang G M, Moses D, Heeger A J. Poly(3-hexylthiophene) field effect transistors with high dielectric constant gate insulator [J]. J. Appl. Phys., 2004, 95: 316-318 .
    [171]Majewski L A, Schroeder R, Grell M. One volt organic transistors [J]. Adv. Mater., 2005, 17: 192-196.
    [172]Ramajothi J, Ochiai S, Kojima K, et al. Performance of organic field-e?ect transistor based on poly(3-hexylthiophene) as a semiconductor and titanium dioxide gate dielectrics by the solution process [J]. Jpn. J. Appl. Phys., 2008, 47: 8279-8283.
    [173]Cai Q J, Gan Y, Dong Z L, et al. Solution-processable organic-capped titanium oxide nanoparticle dielectrics for organic thin-film transistors [J]. Appl. Phys. Lett., 2008, 93: 113304-1-113304-3.
    [174]Tardy J, Erouel M, Deman A L, et al. Organic thin film transistors with HfO2 high-k gate dielectric grown by anodic oxidation or deposited by sol–gel [J]. Microelectron. Eng., 2003, 69: 372-377.
    [175]Wu Y L, Lin J J, Ma C M. Fabrication of an organic thin film transistor by direct deposit of a pentacene layer onto a silicon substrate [J]. J. Phys. Chem. Solids., 2008, 69: 730-733.
    [176]Cho S W, Jeong J Q, Park S H, et al. The characteristics and interfacial electronic structures of organic thin filmtransistor devices with ultrathin (HfO2)x(SiO2)1?x gate dielectrics [J]. Appl. Phys. Lett., 2008, 92: 213302-1-213302-3.
    [177]Kim J M, Lee J W, Kim J K, et al. An organic thin-film transistor of high mobility by dielectric surface modification with organic molecule [J]. Appl. Phys. Lett., 2004, 85: 6368-6370.
    [178]Jeong S, Lee S H, Kim D, et al. Photopatternable organosiloxane based inorganic organic SiO2-ZrO2 hybrid dielectrics for organic thin film transistors [J]. J. Phys. Chem. C, 2007, 111: 16083-16087.
    [179]Boer R W I, Iosad N N, Stassen A F, et al. In?uence of the gate leakage current on the stability of organic single-crystal field-effect transistors [J]. Appl. Phys. Lett., 2005, 86: 032103-1-032103-3.
    [180]Kang S J, Chung K B, Park D S. Fabrication and characterization of the pentacene thin film transistor with a Gd2O3 gate insulator [J]. Synth. Met., 2004, 146: 351-354.
    [181]Nichois J A, Gundlach D J, Jackson T N. Potential imaging of pentacene organic thin film transistors [J]. Appl. Phys. Lett., 2003, 83: 2366-2368.
    [182]Newman C R, Frisbie C D, Mann K R, et al. Introduction to organic thin film transistors and design of n-channel organic semiconductors [J]. Chem. Mater., 2004, 16: 4436-4451.
    [183]Dodabalapur A, Bao Z, Makhija A, et al. Organic smart pixels [J]. Appl. Phys. Lett., 1998, 73: 142-144.
    [184]Inoue Y, Fujisaki Y, Iino Y, et al. Low-voltage organic thin film transistors on flexible plastic substrates with anodized Ta2O5 gate insulators [J]. Mat. Res. Soc. Symp. Proc., 2002, 736: 153-158.
    [185]Zhou L S, Wanga A, Wu S C, et al. All-organic active matrix flexible display [J]. Appl. Phys. Lett., 2006, 88: 083502-1-083502-3.
    [186]Iwao Y, Nobukazu H, Makoto N, et al. Distinguished paper: a full-color, top emission AM-OLED display driven by OTFT [C]. 2007, 38: 1753-1756.
    [187]Huitema H E A, Gelinck G H, Herwig P T, et al. Plastic transistors in active-matrix displays [J]. Nature, 2001, 414: 599-599.
    [188]Mach P, Rodriguez S J, Nortrup R, et al. Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors [J]. Appl. Phys. Lett., 2001, 78: 3592-3594.
    [189]Andersson P, Forchheimer R, Tehrani P, et al. Printable all organic Eelectrochromic active-matrix displays [J]. Adv. Funct. Mater., 2007, 17: 3074–3082.
    [190]Peng N, Zhang Q, Marzari N, et al. Gate modulation in carbon nanotube field effect transistors-based NH3 gas sensors [J]. Sens. Actuators B, 2008, 132: 191-195.
    [191]Bouvet M. Phthalocyanine-based field-effect transistors as gas sensors [J]. Anal Bioanal Chem., 2006, 384: 366–373.
    [192]Fukuda H, Ise M, Kogure T, et al. Gas sensors based on poly-3-hexylthiophene thin-film transistors [J]. Thin Solid Films, 2004, 464-465: 441– 444.
    [193]Torsi L, Tanese M C, Cioffi N, et al. Alkoxy-substituted polyterthiophene thin-film-transistors as alcohol sensors [J]. Sens. Actuators B, 2004, 98: 204-207.
    [194]Someya T, Small J, Kim J, et al. Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors [J]. Nano. Lett., 2003, 3: 877-881.
    [195]Torsi L, Tafuri A, Cioffi N, et al. Regioregular polythiophene field-effect transistors employed as chemical sensors [J]. Sens. Actuators B, 2003, 93: 257-262.
    [196]Bondavalli P, Leganeux P, Pribat D. Carbon nanotubes based transistors as gas sensors: State of the art and critical review [J]. Sens. Actuators B, 2009, 140: 304-318.
    [197]Laurs H, Heiland H. Electrical and optical properties of phthalocyanine films [J]. Thin Solid Films, 1987, 149: 129-142.
    [198]Hu W P, Liu Y Q, Xu Y. The gas sensitivity of a metal insulator semiconductor field effect transistor based on Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine [J]. Thin Solid Films, 2000, 360: 236-260.
    [199]Bouvet M, Leroy A, Simon J. Detection and titration of ozone using metal phthalocyanie based field effect transistors [J]. Sens. Actuators B, 2001, 72: 86-93.
    [200]Bouvet M, Guillaud G, Leroy A. Phthalocyanine based field effect transistor as ozone sensor [J]. Sens. Actuators B, 2001, 73: 63-70.
    [201]Torsi L, Dodabalapur A, Sabbatini L, et al. Multi-parameter gas sensors based on organic thin film transistors [J]. Sens. Actuators B, 2000, 67: 312-316.
    [202]Torsi L, Dodabalapur A, Sabbatini L, et al. NTCDA organic thin film transistor as humidity sensor: weaknesses and strengths [J]. Sens. Actuators B, 2001, 77: 7-11.
    [203]Zhu Z T, Mason J T, Diechmann R, et al. Humidity sensors based on pentacene thin film transistors [J]. Appl. Phys. Lett., 2002, 81: 4643-4645.
    [204]Crone B, Dodabalapor A, Gelperin A, et al. Electronic sensing of vapors withorganic transistors [J]. Appl. Phys. Lett., 2001, 78: 2229-2232.
    [205]Torsi L, Tanese M C, Gallazzi M C, et al. Side-chain role in chemically sensing conducting polymer field effect transistors [J]. J. Phys. Chem. B, 2003, 107: 7589-7594.
    [206]Torsi L, Tafuri A, Cioffi N, et al. Regioregular polythiophene field effect transistors employed as chemical sensors [J]. Sens. Actuators B, 2003, 93: 257-262.
    [207]Wang L, Fine D, Dodabalapur A, et al. Nanoscale chemical sensor based on organic thin film transistors [J]. Appl. Phys. Lett., 2004, 85: 6386-8388.
    [208]Bartic C, Campitelli A, Borghs S. Field effect detection of chemical species with hybrid organic/inorganic transistors [J]. Appl. Phys. Lett., 2003, 82: 475-477.
    [209]Loi A, Manunza I, Bonfiglio A, et al. Flexible, organic, ion-sensitive field effect transistors [J]. Appl. Phys. Lett., 2005, 86: 103512-1-103512-3.
    [210]Drury C J, Mutsears M J, Hart C M, et al. Low-cost all-polymer integrated circuits [J]. Appl. Phys. Lett., 1998, 73: 108-111.
    [211]Bochicchio R C, Alcoba D R. On equilibrium intensive thermodynamic property of composed p-particles in many body systems [J]. Inter. J. Quan. Chem., 2001, 85: 63-71.
    [212]Kawatsuki N, Matsuyoshi K, Hayashi M, et al. Photoreation of photo-cross linkeble methacrylate polymer film comprising 2-cinnamoyloxyethoxybiphenyl side group by linearly polarized ultraviolet light and liquid crystal alignment on the resultant films [J]. Chem. Mater., 2000, 12: 1549-1555.
    [213]Kawatsuki N, Kato K, Shiraku T, et al. Photoinduced reorientation and multiple optical data storage in photo-cross- linkable liquid crystalline copolymer films using 405 nm light [J]. Macromolecurles, 2006, 39: 3245-3251.
    [214]Subramanian K, Krishnasamy V, Nanjundan S, et al. Photosensitive polymer: synthesis, characterization and properties of a polymer having pendant photocrosslinkable group [J]. Euro. Poly. J., 2000, 36: 2343-2350.
    [215]Rehab A, Salahuddin N. Photocrosslinked polymers based on pendant extended chalcone as photoreactive moieties [J]. Polymer, 1999, 40: 2197-2107.
    [216]Min S M, Cho Y J, Hwang S. Atomic layer deposition of Al2O3 thin film from a 1-methoxy-2-methyl-2-propoxide complex of aluminum and water [J]. Chem. Mater., 2005, 17: 626-631.
    [217]Groner M D, Elam J W, Fabreguette F H, et al. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates [J]. Thin Solid Films, 2002, 413: 186-197.
    [218]Kim J H, Kim K H, Cho M J, et al. Synthesis and dielectric properties of photoreactive polystyrene containing [1-(3-isopropenyl-phenyl)-1-methyl-ethyl] carbamate in the side chain [J]. J. Poly. Sci: Part A: Poly. Chem. [J]. 2008, 48: 1710-1718.
    [219]Kang G W, Park K M, Song J H, et al. The electrical characteristics of pentacene based organic field effect transistors with polymer gate insulator [J]. Curr. Appl. Phys., 2005, 5: 297-301.
    [220]Sung J H, Park S J, Park J H, et al. Characteristics of poly(vinyl acetate) as a gate insulating material in organic thin film transistors [J]. Synth. Met., 2006, 156: 861-864.
    [221]Liu X Q, Zhang T, Wang L J, et al. Performance improvement of organic thin film transistors based on gate insulator polymethyl methacrylate co-glyciclyl-methacrylate [J]. Chin. Phys. Lett., 2008, 25: 758-761.
    [222]Estrada M, Mejia I, Cerdeira A, et al. MIS polymeric structures and OTFTs using PMMA on P3HT layers [J]. Solid-State Electron., 2008, 52: 53-59.
    [223]Narayanan Unni K N, Pandey A K, Zunzi J M, et al. Influence of the polymer dielectric characteristics on the performance of pentacene organic field effect transistors [J]. Solid-State Electron., 2008, 52: 179-181.
    [224]Noh Y Y, Sirringhaus H. Ultra-thin polymer gate dielectrics for top-gate polymer field effect transistors [J]. Org. Electron., 2009, 10: 174-180.
    [225]李绍雄,刘益军,聚氨酯树脂及其应用[M].北京:化学工业出版社,2002.
    [226]李绍雄,聚氨酯树脂[M].江苏:江苏科学技术出版社,1992.
    [227]Kim C S, Jo S J, Lee S W, et al. Low-voltage organic transistors: the effect of aspin-coated smoothing layer device performance [J]. Semicond. Sci. Technol., 2006, 2: 1022-1025.
    [228]Kim P K, Jones S C, Hotchkiss P J., Phosphonic acid modified barium titanate polymer nanocomposites with high permittivity and dielectrics strength [J]. Adv. Mater., 2007, 19: 1001-1003.
    [229]Yoon M H, Yan H, Marks T J, et al. Low-voltage organic field effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics [J]. J. Am. Chem. Soc., 2005, 127: 103388-10395.
    [230]Lee T W, Shin J H, Lee S Y, et al. Photocurable organic gate insulator for the fabrication of high field effect mobility organic transistors by low temperature and solution processing [J]. Adv. Mater., 2007, 19: 2702-2706.
    [231]Hu Q, Marand E. In situ formation of nanosized TiO2 poly(amide-amide) by a sol-gel process [J]. Polymer, 1999, 40: 4833 4843.
    [232]Li C H, Pan F, Yan D H, et al. Effect of the work function of gate electrode on hysteresis characteristics of organic thin-film transistors with Ta2O5/polymer as gate insulator [J]. Org. Electron., 2009, 10: 948-953.
    [233]Hwang D K, Oh M S, Hwang J M, et al. Hysteresis mechanisms of pentacene thin film transistors with polymer/oxide bilayer gate dielectrics [J]. Appl. Phys. Lett., 2008, 92: 013304-1-013304-3.
    [234]Yang F Y, Chang K J, Hsu M Y, et al. Low-operating-voltage polymeric transistor with solution-processed low-k polymer/high-k metal-oxide bilayer insulators [J]. Org. Electron., 2008, 9: 925-929.
    [235]Fian A, Haase A, Stadlober B, et al. AFM, ellipsometry, XPS and TEM on ultra-thin oxide/polymer nanocomposite layers in organic thin film transistors [J]. Anal. Bioanal. Chem., 2008, 390: 1455-1461.
    [236]Wang J, Yan X J, Yan D Y, et al. Organic thin film transistors having inorganic/organic double gate insulators [J]. Appl. Phys. Lett., 2004, 85: 5424-5426.
    [237]Kim C S, Jo S J, Lee S W, et al. Low-voltage organic transistors: the effect of aspin coated smoothing layer on device performance [J]. Semicond. Sci. Technol., 2006, 21: 1022-1025.
    [238]Lu Y X, Lee W H, Lee H S, et al. Low-voltage organic transistors with titanium oxide/polystyrene bilayer dielectrics [J]. Appl. Phys. Lett., 2009, 94: 113303-1-113303-3.
    [239]Cao Q, Xia M G, Rogers J A. Bilayer organic-inorganic gate dielectric for high-performance, low-voltage, single-walled carbon nanotube thin film transistors, complementary logic gates, and p-n diodes on plastic substrate [J]. Adv. Func. Mater., 2006, 16: 2355-2362.
    [240]Kim C S, Jo J S, Baik H K, et al. Surface-modified high-k oxide gate dielectrics for low-voltage high-performance pentacene thin film transistor [J]. Adv. Func. Mater., 2007, 17: 958-962.
    [241] Kim C S, Jo J S, Baik H K, et al. Organic/Inorganic hybrid passivation layers for organic thin film transistors [J]. Semicond. Sci. Technol., 2008, 23: 075034-1-075034-4.
    [242]Seol Y G, Noh H Y, Lee S S, et al. Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistors [J]. Appl. Phys. Lett., 2008, 93: 013305-1-013305-3.
    [243]Maddalena F, Spijkman M, Brondijk J J, et al. Device characteristics of polymer dual-gate field-effect transistors [J]. Org. Electro., 2008, 9: 839-846.
    [244]Lemme M C, Echtermeyer T J, Baus M, et al. Mobility in grapheme double gate field effect transistors [J]. Sol. Sta. Electron., 2008, 52: 514-518.
    [245]Zhang J, Wang J, Wang H, et al. Organic thin-film transistors in sandwich configuration [J]. Appl. Phys. Lett., 2004, 84: 142-144.
    [246]Yuan J F, Zhang J, Yan D H, et al. Bottom-contact organic field-effect transistors having low-dielectric layer under source and drain electrodes [J]. Appl. Phys. Lett., 2003, 82: 3967-3969.
    [247]Kelley T W, Boardman L D, Dunbar T D, et al. High-performance OTFTs using surface-modified alumina dielectrics [J]. J. Phys. Chem. B, 2003, 107: 5877-5881.
    [248]Lee W H, Wang C C, Ho J C. Influence of nano-composite gate dielectrics on OTFT characteristics [J]. Thin solid film, 2009, 517: 5305-5310.
    [249]Lee W H, Wang C C. Effect of nanocomposite gate dielectric roughness on pentacene field-effect transistor [J]. J. Vac. Sci. Technol. B, 2009, 27: 1116-1121.
    [250]Lee S H, Jeong S, Moon J. Nanoparticle-dispersed high-k organic–inorganic hybrid dielectrics for organic thin-film transistors [J]. Org. Electron., 2009, 10: 982-989.
    [251]Lee B H, Ima K K, Lee K H, et al. Molecular layer deposition of ZrO2-based organic–inorganic nanohybrid thin films for organic thin film transistors [J]. Thin solid film, 2009, 517: 4056-4060.
    [252]Murugaraj P, Mainwaring D, Huertas N M. Dielectric enhancement in polymer-nanopartical composites through interphase polarizability [J].J. Appl. Phys., 2005, 98: 054304-1-054304-3.
    [253]Mok S M, Yan F, Chan H L W. Organic phototransistor based on poly(3-hexylthiophene)/TiO2 nanopartical composite [J]. Appl. Phys. Lett., 2008, 93: 023310-1-023310-3.
    [254]Kim P, Zhang X H, Perry J W, et al. Solution-processible high-permittivity nanocomposite gate insulators for organic thin film transistors [J]. Appl. Phys. Lett., 2008, 93: 013302-1-013302-3.
    [255]Schroeder R, Majewshi L A, Crell M. High-performance organic transistor using solution-processed nanoparticle-filled high-k polymer gate insulators [J]. Adv. Mater., 2005, 17: 1535-1539.
    [256]Chen F C, Chu C W, He J, et al. Organic thin film transistor with nanocomposite dielectric gate insulator [J]. Appl. Phys. Lett., 2004, 85: 3295-3297.
    [257]Kim C S, Jo S J, Lee S W, et al. High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors [J]. Appl. Phys. Lett., 2006, 88: 243515-1-243515-3.
    [258]Maliakal A, Katz H, Cotts P M, et al. Inorganic oxide core, polymer shell nanocomposite as a high-k gate dielectric for flexible electronics applications [J]. J. Am.Chem. Soc., 2005, 127: 14655-14662.
    [259]Cai Q J, Gan Y, Yang H B, et al. solution-processable organic-capped titanium oxide nanoparticle dielectrics for organic thin film transistors [J]. Appl. Phys. Lett., 2008, 93: 113304-1-113304-3.
    [260]Jung C, Maliakal A, Siegrist T, et al. Pentacene-based organic thin film transistors with titanium oxide-polystyrene/polystyrene insulator blends: high mobility on high-k dielectric films [J]. Appl. Phys. Lett., 2007, 90: 062111-1-062111-3.
    [261] Fasce D P; Williams R J J, Mechin F, et al. Synthesis and characterization of polyhedral silsesquioxanes bearing bulky functionalized substituents [J] Macromolecules 1999, 32: 4754763.
    [262]Burleigh M C, Markowitz M A, Spector M S, et al. Direct synthesis of periodic mesoporous organosilicas: functional incorporation by co-condensation with orgaosilanes [J]. J. Phys. Chem. B 2001, 105: 9935-9942.
    [263]Hench L L, West J K. The sol-gel process [J] Chem. Mater., 1990, 90: 33-72.
    [264]Hsiue G.-H; Kuo, W.-J, Huang Y.-P, et al. Microstructural and morphological characteristics of PS-SiO2 nanocomposites [J]. Polymer, 2000, 41: 2813-2825.
    [265]Levy D. Photochromic sol-gel materials [J]. Chem. Mater., 1997, 9: 2666-2670.
    [266]Joseph R, Zhang S M, Ford W T. Structure and dynamics of a colloidal silica-poly(methyl methacrylate) composite by 13C and 29Si MAS NMR spectroscopy [J]. Macromolecules, 1996, 29: 1305-1312.
    [267]Bunn B, Zink J I. Sol-gel chemistry and materials [J]. Acc. Chem. Res., 2007, 40: 729.
    [268]Matejka L, Strachota A, Plestil J, et al. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes. Structure and morphology [J]. Macromolecules, 2004, 37: 9449-9456.
    [269]Templin M, Wiesner U, Spiess H W. Multinuclear solid-state-NMR studies of hybrid organic-inorganic materials [J]. Adv. Mater., 1997, 9: 814-817.
    [270]Sibu C P, Kumar S R, Mukundan P, et al. Structural modifications and associatedproperties of lanthanum oxide dope sol-gel nanosized titanium oxide [J]. Chem. Mater., 2002, 14: 2876-2881.
    [271]Jeong S, Kim D, Moon J. Ink-jet-printed organic-inorganic hybrid dielectrics for organic thin film transistors [J]. J. Phys. Chem. C, 2008, 112: 5245-5249.
    [272]Lee B H, Lee K H, Imb S, et al. Monolayer-precision fabrication of mixed-organic–inorganic nanohybrid superlattices for ?exible electronic devices [J]. Org. Electron., 2008, 9: 1146-1153.
    [273]Meruria M S, Hummelgen A. Hybrid molecular/inorganic semiconductor transistors in vertical architectures [J]. Adv. Func. Mater., 2006, 16: 459-467.
    [274]Lee B H, Ryu M K, Choi S Y, et al. Rapid vapor-phase fabrication of organic-inorganic hybrid superlattices with monolayer precision [J]. J. Am. Chem. Soc., 2007, 129: 16034-16041.
    [275]Zha J W, Song H T, Dang Z M. Mechanism analysis of improved corona-resistant characteristic in polyimide/TiO2 nanohybrid films [J]. Appl. Phys. Lett., 2008, 93: 192911-1-192911-3.
    [276]Kagan C R, Mitzi D B, Dimitrakopoulos C D. Organic-inorganic hybrid materials as semiconducting channels in thin film field effect transistors [J]. Science, 1999, 286: 945-947.
    [277]Cahyadi T, Tan H S, Namdas E B, et al. Improved pentacene device characteristics with sol-gel SiO2 dielectric films [J]. Org. Electron., 2007, 8: 455-459.
    [278]Lee J, Kim J H, Im S. Threshold voltage change due to organic-inorganic interface in pentacene thin film transistors [J]. J. Appl. Phys., 2004, 96: 2301-2304.
    [279]Aoki Y, Kunitake T. Solution-based fabrication of high-k gate dielectrics for next-generation metal-oxide semiconductor transistors [J]. Adv. Mater., 2004, 16: 118-122.
    [280]Choi S J, Lee S, Han K K. Photodefinable organofunctionalized inorganic dielectric for organic thin film transistors [J]. Appl. Phys. Lett., 2007, 90: 063507-1-063507-3.
    [281]Haas U, Haase A, Satzinger V, et al. Hybrid polymers as tunable and directly-patternable gate dielectrics in organic thin film transistors [J]. Phys. Rev. B, 2006, 73: 235339-1-235339-7.
    [282]Yang B, LüC L, Cui Z C, et al. Research on preparation, structure and properties of TiO2/polythiourethane hybrid optical films with high refractive index [J]. Macro. Mater. Eng., 2003, 288: 717-723.
    [283]Wilson D, Stenzenberger H D, Hergenrother P M, et al. Polyimides[M]. London: Blackie, 1990.
    [284]Feager C, McGrath J E. Polyimide: Materials, Chemistry and Characterization [M]. Amsterdam: Elseveier Science, 1989.
    [285]Mittal K L. Polyimide: Synthesis, Characterization, and Application [M]. New York: Plenum, 1984.
    [286]Fukukawa K, Ueda M. Recent progress of photosensitive polyimide [J]. The. Soc. Poly. Sci., 2008, 40: 281-296.
    [287]Yan L, Dong G F, Hu Y C, et al. Fabrication of pentacene thin-film transistors with patterned polyimide photoresist as gate dielectrics and research of their degradation [J]. Chin. Phys.Lett., 2004, 21: 2278-2280.
    [288]Pyo S N, Son H, Yi M H. Low-temperature processable inherently photosensitive polyimide gate dielectric for organic thin film transistors: synthesis, characterization and application to transistors [J]. J. Mater. Res., 2005, 20: 931-939.
    [289]Chou W Y, Cheng H L. An orientation-controlled pentacene film alignment by photoaligned polyimide for organic thin film transistor applications [J]. Adv. Func. Mater., 2004, 14: 811-815.
    [290]Pyo S, Lee M, Jeon J, et al. An organic thin film transistor with a photoinitiator-free photosensitive polyimide as gate insulator [J]. Adv. Func. Mater., 2005, 15: 619-625.
    [291]Collet J, Tharaud O, Chapoton A, et al. Low-voltage, 30 nm channel length, organic thransistors with a self-assembled monolayer as gate insulating films [J]. Appl.Phys. Lett., 2000, 76: 1941-1943.
    [292]Halik M, Klauk H, Zschieschang U, et al. Low-voltage organic transistors with an amorphous molecular gate dielecteic [J]. Nature, 2004, 431: 963-966.
    [293]Scheinert S. Determination of trap distributions from current characteristics of pentacene field-effect transistors with surface modified gate oxide [J]. J. Appl. Phys., 2007, 102: 104503-1-104503-8.
    [294]Sirringhaus H, Cheng X Y, Noh Y Y, et al. Controlling electron and hole charge injection in ambipolar organic field effect transistors by self-assembled monolayers [J] Adv. Funct. Mater., 2009, 19: 2407-2415.
    [295]Schwartz J, McDermott J E, McDowell M, et al. Organophosphonate self-assemble monolayers for gate dielectric surface modification of pentacene based organic thin film transistors: A Comparative Study [J]. J. Phys. Chem. A, 2007, 111: 12333-12338.
    [296]Huang C, Katz H E, West J E. Solution-processed organic field-effect transistors and unipolar inverters using self-assembled interface dipoles on gate dielectrics [J]. Langmuir, 2007, 23: 13223-13231.
    [297]Zschieschang U, Klauk H, Halik M. Microcontact-printed self-assembled monolayers as ultrathin gate dielectrics in organic thin-film transistors and complementary circuits [J]. Langmuir, 2008, 24: 1665-1669.
    [298]Ball J, Kooistra F B, Hummelen J C, et al. Low-voltage organic transistors based on solution processed semiconductors and self-assembled monolayer gate dielectrics [J] Appl. Phys. Lett., 2008, 93: 013303-1-013303-3.
    [299]Cho K, Lee H S, Kim D H, et al. Effect of the phase states of self-assembled monolayers on pentacene growth and thin-film transistor characteristics [J]. J. Am. Chem. Soc., 2008, 130: 10556–10564.
    [300]Hamers R, Gopalan P, Evans P G, et al. Functional self-assembled monolayers for optimized photoinduced charge transfer in organic field effect transistors [J]. Adv. Mater., 2007, 19: 4353–4357.
    [301]Iwasa Y, Kobayashi S, Nishikawa T. Control of carrier density by self-assembled monolayers in organic field-effect transistors [J]. Nat. Mater., 2004, 3: 317-322.
    [302]Li L Q, Hu W P, Li H X, Molecular orientation and interface compatibility for high performance organic thin film transistor based on vanadylphthalocyanine [J]. J. Phys. Chem.B, 2008, 112: 10405–10410.
    [303] Ahn T, Kim J W, Yi M H, A new approach to the surface modification of polymeric gate insulators for organic thin film transistor applications [J]. Appl. Surf. Sci., 2008, 255: 2185-2191.
    [304]Pyo S, Yi M H, Effect of surface modified polyimide gate insulator through hybridization on the performance of organic thin film transistors [J]. Appl. Phys. Lett., 2006, 88: 173501-1-173501-3.
    [305]Pyo S, Yi M H, Effect of a gate insulator with a long alkyl side chain on the performance of organic thin film transistors [J]. J. Appl. Phys., 2006, 99: 073711-1-073711-7.
    [306]Ahn T, Kim J W, Yi M H, Surface modified polymeric gate insulators for pentancene organic thin film transistors [J]. Curr. Appl. Phys., 2009, 9: 913-918.
    [307] Ahn T, Kim J W, Yi M H, Hybridization of a low-temperature processable polyimide gate insulator for high performance pentacene thin film transistors [J]. Org. Electron., 2008, 9: 711-720.
    [308]Yu C J, Choi Y, Pyo S, et al. Effect of surface property of polyimide substrate on the formation of pentacene thin-film [J]. Appl. Surf. Sci., 2009, 255: 6092-6096.
    [309]Wang H B, Song D, Yan D H, et al. High mobility vanadyl-phthalocyanine polycrystalline films for organic field-effect transistors [J]. Appl. Phys. Lett., 2007, 90: 253510-1-2535-3.