Λ-型吡啶盐类光电功能材料的设计、合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机发光材料由于其在有机电致发光器件、有机激光器、太阳能电池及光学传感器等诸多领域的应用前景而一直是材料领域的一个研究热点。然而绝大多数的有机发光材料存在聚集态荧光淬灭(aggregation-caused quenching,ACQ)效应,即在稀溶液中有较强的荧光发射,但在薄膜或晶体等聚集态时由于形成了诸如π-π密堆积、H-聚集体或是激基复合物等,而表现出弱的荧光。这种“聚集态荧光淬灭效应”大大限制了光电器件的发展,因为这些应用绝大多数都要求有机发光材料的使用是在固态下。从这种意义上来说,研究和探索高效荧光材料,特别是在固态下的强荧光材料具有重要的理论和实践意义。
     近年来,一种非常规的聚集态荧光增强(aggregation-induced emission,AIE)现象受到了研究者的广泛关注。与传统的荧光材料的发光性质完全相反,它们在溶液状态下几乎没有荧光,但在聚集状态下却有很强的荧光,很好地解决了传统染料严重的固态荧光淬灭效应,在OLED等光电领域具有很好的应用前景。Tr(o|¨)ger'sBase(TB)具有特殊的刚性Λ-型扭转构型,理论上讲,其空间位阻作用在分子堆积时不利于形成π-π密堆积,可以有效地改善由于π-π密堆积所引起的有机发光材料常见的固态荧光淬灭现象。而有机吡啶盐由于其优良的化学和热学性能在光电领域备受瞩目。基于这两方面,本论文从分子设计的角度出发,选择Λ-型的TB骨架作为分子的基本框架,将具有多功能性质的吡啶盐引入其中,开发了一类新的具有聚集态荧光增强现象的Λ-型吡啶盐类发光材料,并详细地研究了它们的光物理性质和结构与性能之间的关系,初步探索了其在生物探针领域的应用。
     这些TB类化合物的合成路线比较简单,主要通过脑文格反应和离子交换反应,无需柱层析提纯,且产率较高。我们通过核磁共振谱、元素分析等手段对其进行了结构表征与鉴定。晶体是物质存在的最基本形态,了解晶体中分子结构和分子的堆积形态,对于研究物质结构与性能之间的关系具有重要的指导意义。本论文利用挥发法和扩散法成功生长了五个TB类化合物TB1、TB2、DMDPS、DMDPN与DMDP-Hg和一个平面型吡啶盐化合物DPPS的单晶,并通过单晶X射线衍射技术解析了它们的晶体结构,从晶体工程学的角度出发,讨论了它们在凝聚态下的分子形态、堆积方式以及分子间相互作用力等因素与光学性质之间的关系。晶体结构分析表明,我们合成的TB类化合物分子堆积时均未形成π-π密堆积,验证了我们分子设计理论的正确性。对于有机-无机复合的吡啶盐化合物DMDP-Hg,无机的阴离子通过S…S相互作用形成了一维链,贯穿于有机的阳离子通过C-H…π相互作用组成的二维网状结构中,形成了三维空间的网络互穿结构,显示了其在超分子化学领域的研究价值。
     为了探索这类化合物特殊AIE性质的起因,了解结构与性质之间的关系,我们合成了平面型的吡啶盐化合物DPPS,与Λ-型吡啶盐DMDPS截然相反,DPPS具有经典的固态荧光淬灭现象。通过比较研究DMDPS和平面型的吡啶盐DPPS的发光性质和晶体结构的不同,我们认为这类Λ-型吡啶盐类化合物特殊的聚集态荧光增强主要归因于其特殊的Λ-型的分子构型。在Λ-型DMDPS的晶体结构中,相邻两个分子间的距离为3.8(?),远远大于经典的π-π密堆积间距3.3(?),而平面型的DPPS分子间距离只有3.3(?)。溶液中TB类化合物的对映异构化以及分子的振动动态过程耗散了能量,打开了非辐射跃迁的通道,致使没有荧光发射。而固态下,贡献于特殊的Λ-型的较大的分子间距离导致的分子间相互作用的淬灭以及动态过程的抑制和较好的分子内电荷转移致使染料分子表现出了强的荧光。这类化合物是离子型化合物,具有较好的水溶性,我们可以使用喷墨打印的方式制膜,绿色环保,它们在有机电致发光器件领域有较好的应用前景。
     蛋白质荧光探针尤其是turn-on探针定性和定量分析蛋白质由于其高的灵敏度、低的背景噪音以及它们在化学、材料、生物和医药领域潜在的应用前景而备受关注。我们设计合成的这一类水溶性Λ-型吡啶盐类化合物DMDPS、DMDPI和DMDPN具有优良的光物理性质(吸收在390-400 nm,发射峰在545 nm,较大的斯托克位移150 nm左右,可以避开蛋白质分子自身的吸收和内源荧光的影响)和特殊的聚集态荧光增强性质。基于此,本文详细研究了它们与蛋白质的相互作用,建立了以DMDPS、DMDPI和DMDPN为探针,荧光光谱法实现对蛋白质的定性和定量分析。它们在溶液状态下没有荧光,但在含0.05 w/v SDS的PBS缓冲溶液中,它们通过疏水作用、静电作用等非共价键作用结合到蛋白质分子上,形成聚集体,发射出较强的荧光,因此它们可以作为蛋白质荧光turn-on探针。更重要的是,在低的蛋白质BSA浓度范围(0-70μg/mL),它们的荧光峰值与BSA的浓度成非常好的线性关系,因此它们还可以用于蛋白质的定量检测。另外,特殊的AIE发光性质使我们可以用高的染料浓度进行痕量蛋白质的检测。
     总之,在探索高效荧光材料的过程中,本论文提出了一种新的固态强荧光材料的设计思路,开发了一个新体系的聚集态荧光增强材料,并通过研究化合物的晶体结构和对比实验,对此特殊的发光性质做出了合理的理论分析与解释。另外,我们将这类水溶性的化合物应用到生物探针领域,用于蛋白质的识别与定量检测,取得了令人满意的结果。鉴于它们独特的结构特征和优异的发光性能,具有较高的理论研究价值和潜在的应用前景。
Organic optoelectronic materials have been studied extensively for their important applications in organic light-emiting diodes(OLEDs),organic laser diode,organic solar cells,chemical sensors,and so on.However,most organic chromophores are highly emissive in solution but become weakly luminescent in the solid state,which was called aggregation-caused quenching(ACQ).It is mainly attributed to the formation of theπ-πclose stacking,excimer,and H-aggregation.Aggregation quenching has been the thomiest problem in the development of optoelectronic devices because the luminescent materials are predominately used as thin solid films.In this sense,studying and searching of excellent optical materials,especially those strongly emissive in the solid state,would be of great importance in both theory and practice.
     Rencently,an unusual optical phenomenon,namely aggregation-induced emission (ALE),has attracted much attention.Opposite to traditional ACQ materials,they are nonemissive in solution but highly luminescent in the solid state.The discovery of AIE-active materials resolves primarily the problem of fluorescence quenching resulted from the aggregation.And they have shown potential applications in optoelectronic fields such as OLEDs.A-shaped geometry configuration of Tr(o|¨)ger's base is theoretically disadvantageous to formπ-πclose stacking,which commonly results in fluorescence quenching in the solid state.Organic pyridinium salts are historically of special interest in photoelectric field due to their good chemical and thermal properties. Considering these two aspects,we developed a number of A-shaped pyridinium salts based on Tr(o|¨)ger's Base which exhibit a typical AIE behavior.In this paper,we studied their photophysical properties and the relationship between structure and properties in detail.Meanwhile,we also explored their application in bioprobes field.
     The synthetic routes and purification of these TB analogues are simple,mainly according to the Knoevenagel E and ion-exchange reaction and without column chromatography.These compounds were characterized and confirmed by ~1H NMR,~(13)C NMR,and elemental analysis methods.Crystal structure is very important for the study of the relationship between the structure and properties.Five new TB analogues(TB1, TB2,DMDPS,DMDPN,and DMDP-Hg) crystals and one planar pyridinium salt DPPS crystal were obtained by evaporation and diffusion methods,and these crystal structures were investigated by X-ray diffraction.The molecular conformation, molecule stacking and intermolecular interactions in the aggregation state were investigated in detail.It is found that all of these five TB analogues doesn't formπ-πclose stacking,which proved our molecular design theory.For organic-inorganic hybrids DMDP-Hg,it comprises a three-dimensional supramolecular network constructed from one-dimensional Hg(SCN)~4 anionic chains,which only constructed by the building block Hg(SCN)~(4-) linked via S…S interaction and two-dimensional cationic layers.
     To explore the reason of AIE phenomenon of DMDPS and study the relationship between structure and properties,a planar pyridinium salt DPPS was designed and synthesized as a contrast.Different from DMDPS,DPPS has a planar conformation and shows normal optical properties.It exhibits efficient fluorescence in solution and weak emission in the solid state.Compared the optical properties and structures of DMDPS and DPPS,we speculate that the enhanced emission of DMDPS may mainly be attributed to the twisted geometry configuration which sterically disturbs close packing by increasing intermolecular distances.The distances between two neighboring molecules of DMDPS and DPPS are found to be approximately 3.8(?) and 3.3(?), respectively.The enantiomerization and/or intramolecular vibrational motion which induced the nonradiative deactivation process caused fluorescence quenching in solution while loose stacking resulted from twisted molecular geometry configuration possibly reduced the distance-dependent intermolecular quenching effect,restrict of dynamic processes,and effective intramolecular charge-transporting to produce intense fluorescence in the aggregation state.
     Fluorescence(FL) bioprobes especially the turn-on bioprobes for protein detection and quantification have received great attention due to their high sensitivity,low background noises,and accordingly,they show potential applications in chemistry, materials science,biology and medicine.Water-soluble A-shaped pyridinium salts DMDPS,DMDPI,and DMDPN,which possess AIE phenomenon and excellent photophysical properties,such as the absorption in the near-UV region(λ_(max)≈400 nm) and the large Stokes' shift(△λ≈147 nm),can be used as fluorescence turn-on bioprobes for protein detection.Further more,the plots of photoluminescence intensity versus BSA concentration(0-70μg/mL) display a good linear relationship,indicating quantitative detection can be achieved.Moreover,the AIE nature allows the use of large fluorophore/protein ratios,enabling the detection of trace amounts of proteins.
     In summary,in the process of the exploration of highly emissive organic solids,we presented a new design strategy and established a new system of AIE materials. Meanwhile,we gave reasonable explanation of the AIE phenomenon of the A-shaped pyridinium salts by analyzing the crystal structures and through comparative experiments.In addition,the water-soluble A-shaped pyridinium salts were used in bioprobes field and the results are satisfactory.In view of their special structural feature and excellent optical properties,A-shaped pyfidinium salts are good candidates for theoretical research and with potential applications.
引文
[1]A.Bernanose,M.Comte,P.Vouaux,Sur un nuveau mode demission lumineuse chez certains composes organiques,J.Chim.Phys.Chim.Biol.,1953,50,64-68.
    [2]M.Pope,H.Kallmann,P.Magnante,Electroluminescence in organic crystals,J.Chem.Phys.,1963,38,2042-2043.
    [3]P.S.Vincett,W.A.Barlow,R.A.Hann,G.G.Roberts,Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films,Thin Sold Films 1982,94,171-183.
    [4]C.W.Tang,S.A.Van Slyke,Organic electroluminescent diodes,Appl.Phys.Lett.,1987,51,913-915.
    [5]C.W.Tang,S.A.Vanslyke,C.H.Chen,Electroluminescence of doped organic thin films,J.Appl.Phys.,1989,65,3610-3616.
    [6]C.Adachi,T.Tsutsui,S.Saito,Blue light-emitting organic electroluminescent devices,Appl.Phys.Lett.,1990,56,799-780.
    [7]J.H.Burroughes,D.D.Bradley,A.R.Brown,et al.,Light-emitting diodes based on conjugated polymer,Nature 1990,347,539-542.
    [8]徐清,王丽,余兴莲,陆炳华,徐伟民,有机电致磷光材料的研究新进展,光谱实验室,2006,23,772-777.
    [9]Y.Fukuda,T.Watanabe,T.Wakimoto,S.Miyaguchi,M.Tsuchida,An organic LED display exhibiting pure RGB colors,Syn.Met.,2000,111-112,1-6.
    [10]邱勇,胡晓明,清华大学材料科学论坛,1999,13,56-59.
    [11]M.Thelakkat,Star-Shaped,dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications,Macromolecular Materials and Engineering 2002,287,442-461.
    [12]P.Strohriegl,J.V.Grazulevicius,Charge-transporting molecular glasses,Adv.Mater.,2002,14,1439-1452.
    [13]E.B.Koene,D.E.Loy,M.E.Thompson,Asymmetric Triaryldiamines as Thermally Stable Hole Transporting Layers for Organic Light-Emitting Devices,Chem.Mater.,1998,10,2235-2250.
    [14]Y.Shirota,Y.Kuwabara,H.Inada,Multilayered organic electroluminescent device using a novel starburst molecule,4,4'4"-tris(3-methylphenylphenylamino)triphenylamine,as a hole transport material.Appl.Phys.Lett.,1994,65,807-809.
    [15]C.Adachi,S.Tokito,T.Tsutsui,Electroluminescence in organic films with three-layer structure,Jpn.J.Appl.Phy.,1988,27,L269-271.
    [16]C.W.Ko,Y.T.Tao,9,9-Bis{4-[di-(p-biphenyl)aminophenyl]}fluorene:a high Tg and efficient hole-transporting material for electroluminescent devices,Synth.Met.,2002,126,37-41.
    [17]J.Kido,Y.Iizumi,Fabrication of highly efficient organic electroluminescent devices,Appl.Phys.Lett.,1998,73,2721-2723.
    [18]S.Tokito,H.Tanaka,A.Okada,Y.Taga High-temperature operation of an electroluminescent device fabricated using a novel triphenylamine derivative,Appl. Phys.Lett.,1996,69,878-880.
    [19]Y.Shirota,Y.Kuwabaraa,D.Okuda,R.Okuda,H.Ogawaa,H.Inada,T.Wakimoto,H.Nakadab,Y.Yonemotob,S.Kawamib,K.Imaib,Starburst molecules based on x-electron systems as materials for organic electroluminescent devices,J.Lumin.,1997,72-74,985-991.
    [20]M.Brinkmann,G.Gadret,M.Muccini,C.Taliani,Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-Tris(8-hydroxyquinoline)aluminum(Ⅲ),J.Am.Chem.Soc.,2000,122,5147-5157.
    [21]A.P.Kulkarni,C.J.Tonzola,A.Babel,S.A.Jenenkhe,Electron transport materials for organic light-emitting diodes,Chem.Mater.,2004,16,4556-4573.
    [22]G.Hughes,M.R.Bryce,Electron-transporting materials for organic electroluminescent and electrophosphorescent devices,J.Mater.Chem.,2005,15,94-107.
    [23]S.-Y.Songa,T.Ahna,H.-K.Shima,I.-S.Song,W.-H.Kimb,Synthesis and electroluminescence properties of ortho-,meta- and para-linked polymers containing oxadiazole unit Polymer 2001,42,4803-4811.
    [24]D.Y.Kim,H.N.Cho,C.Y.Kim,Blue light-emitting polymers,Prog.Polym.Sci.,2000,25,1089-1139.
    [25]Y.H.Kim,D.C.Shin,S.-H.Kim,C.-H.Ko,H.-S.Yu,Y.-S.Chae,S.K.Kwon,Novel blue emitting material with high color purity,Adv.Mater.,2001,12,1690-1693.
    [26]J.M.Shi,C.W.Tang,Anthracene derivatives for stable blue-emitting organic electroluminescence devices,Appl.Phys.Lett.,2002,80,3201-3203.
    [27]T.Noda,Y.Shirota,5,5'-Bis(dimesitylboryl)-2,2'-bithiophene and 5,5"-Bis (dimesitylboryl)-2,2':5',2"-terthiophene as a novel family of electron-transporting amorphous molecular materials,J.Am.Chem.Soc.,1998,120,9714-9715.
    [28]J.J.Brouwer,V.V.Krasnikov,A.Hilberer,G.Hadziioannou,Blue superradiance from neat semiconducting alternating copolymer films,Adv.Mater,1996,8,135-137.
    [29]F.Garten,H.F.Cacialli,E.Esselink,Y.van Dam,B.Schlatmann,R.H.Friend,T.M.Klapwijk,G.Hadziioannou,Efficient blue LEDs from a partially conjugated Si-containing PPV copolymer in a double-layer configuration,Adv.Mater.,1997,9,127-131.
    [30]C.H.Chen,J.M.Shi,Metal chelates as emitting materials for organic electroluminescence,Coord.Chem.Rev.,1998,171,161-174.
    [31]C.W.Tang,S.A.Vanslyke,C.H.Chen,Electroluminescence of doped organic thin films,J.Appl.Phys.,1989,65,3610-3616.
    [32]T.Wakimoto,Y.Funaki,J.Funaki,Stability Characteristics of Quinacridone and Coumarin Molecules as Guest Dopants in the Organic LEDs,Synth.Met.,1997,91,15-19.
    [33]C.H.Chen,C.W.Tang,Recent developments in the synthesis of red dopants for Alq_3 hosted electroluminescence,Thin Solid Films 2000,363,327-331.
    [34]X.H.Zhang,B.J.Chen,New family of red dopants based on chromene-containing compounds for organic electroluminescent devices,Chem.Mater.,2001,13,1565-1569.
    [35]X.T.Tao,S.Miyata,Efficient organic red electroluminescent device with narrow emission peak,Appl.Phys.Lett.,2001,78,279-281.
    [36]S.T.Lin,M.H.Chun,Organic light emitting diodes with red emission using (2,6-dimethyl-4H-pyran-4-ylidene)malononitrile moiety,Optical Mater.,2002,21,217-220.
    [37]C.Q.Ma,W.B.Zhang,A novel n-type red luminescent material for organic light-emitting diodes,J.Mater.Chem.,2002,12,1671-1675.
    [38]J.F.Morin,M.Leclerc,7-Carbazole-based conjugated polymers for blue,green, and red light emission,Macromolecules 2002,35,8413-8417.
    [39]E.Christophe,M.Dirk,B.Stefan,Attaching perylene dyes to polyfluorene:three simple,efficient methods for facile color tuning of light-emitting polymers,J.Am.Chem.Soc.,2003,125,437-443.
    [40]N.C.Greenham,S.C.Moratti,R.H.Friend,Efficient light-emitting diodes based on polymers with high electron affinities,Nature 1993,365,628-630.
    [41]J.Qiao,L.D.Wang,L.Duan,Synthesis,Crystal structure,and luminescent properties of a binuclear Gallium complex with mixed ligands,Inorg.Chem.,2004,43,5096-5102.
    [42]Y.H.Song,S.J.Yeh,C.T.Chen,Bright and efficient,none-doped,phosphorescent organci red-light-emitting diodes,Adv.Funct.Mater.,2004,14,1221-1226.
    [43]A.J.Middleton,W.J.Marshall,N.S.Radu,Elucidation of the structure of a highly efficient blue electroluminescent material,J.Am.Chem.Soc.,2003,125,880-881.
    [44]G.Yu,S.Yin,Y.Liu,Structures,electronic states,and electroluminescent properties of a Zinc(Ⅱ) 2-(2-hydroxyphenyl)benzothiazolate complex,J.Am.Chem.Soc.,2003,125,14816-14824.
    [45]D.Schneider,T.Rabe,T.Riedl,T.Dobbertin,M.Kr(o|¨)ger,E.Becker,H.-H.Johannes,W.Kowalsky,T.Weimann,J.Wang,P.Hinze,A.Gerhard,P.St(o|¨)ssel,H.Vestweber,An ultraviolet organic thin-film solid-state laser for biomarker applications,Adv.Mater.,2005,17,31-34.
    [46]C.W.Tang,Two-layer organic photovoltaic cell,Appl.Phys.Lett.,1986,48,183-185.
    [47]L.Zeng,E.W.Miller,A.Pralle,E.Y.Isacoff,C.J.Chang,A selective turn-on fluorescent sensor for imaging copper in living cells,J.Am.Chem.Soc.,2006,128,10-11.
    [48]R.H.Friend,R.W.Gymer,A.B.Holms,J.H.Burroughes,R.N.Marks,C.Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck,Electroluminescence in conjugated polymers, Nature 1999, 397, 121-128.
    
    [49] C.-T. Chen, Evolution of Red Organic Light-Emitting Diodes: Materials and Devices, Chem. Mater., 2004,16,4389-4400.
    
    [50] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun., 2001,1740-1741.
    
    [51] J. Chen, Z. Xie, J. W. Y. Lam, C. C. W. Law, B. Z. Tang, Silole-Containing Polyacetylenes. Synthesis, Thermal Stability, Light Emission, Nanodimensional Aggregation, and Restricted Intramolecular Rotation, Macromolecules 2003, 36, 1108-1117.
    
    [52] J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu, B. Z. Tang, Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chem. Mater., 2003,75,1535-1546.
    
    [53] G. Yu, S. Yin, Y. Liu, J. Chen, X. Xu, X. Sun, D. Ma, X. Zhan, Q. Peng, Z. Shuai, B. Z. Tang, D. Zhu, W. Fang, Y. Luo, Structures, Electronic States, Photoluminescence, and Carrier Transport Properties of 1,1-Disubstituted 2,3,4,5-Tetraphenylsiloles, J. Am. Chem. Soc, 2005,127, 6335-6346.
    
    [54] B. Mi, Y. Dong, Z. Li, J. W. Y. Lam, M. H(a|¨)ussler, H. H. Y. Sung, H. S. Kwok, Y. Dong, I. D. Williams, Y. Liu, Y. Luo, Z. Shuai, D. Zhu, B. Z. Tang, Making silole photovoltaically active by attaching carbazolyl donor groups to the silolyl acceptor core, Chem. Commun., 2005, 3583-3585.
    
    [55] Z. Li, Y. Dong, B. Mi, Y. Tang, M. Haussler, H. Tong, Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, I. D. Williams, H. S. Kwok, B. Z. Tang, Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials,J..Phys.Chem.B 2005,109,10061-10066.
    [56]C.Belton,D.F.O'Brien,and W.J.Blau,A.J.Cadby,P.A.Lane,D.D.C.Bradley,H.J.Byrne,R.Stockmann,H-H.H(o|¨)rhold.Excited-state quenching of a highly luminescent conjugated polymer,Appl.Phys.Lett.,2001,78,1059-1061.
    [57]W.Holzer,A.Penzkofer,R.Stockmann,H.Meysel,H.Liebegott,H.H.Horhold,Photophysical characterization of diphenyl-substituted phenylenevinylene and diphenylenevinylene polymers,Polymer 2001,42,3183-3194.
    [58]B.-K.An,S.-K.Kwon,S.-D.Jung,S.Y.Park,Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles,J.Am.Chem.Soc.,2002,124,14410-14415.
    [59]S.-J.Lim,B.-K.An,S.-D.Jung,M.-A.Chung,S.Y.Park,Photoswitchable Organic Nanoparticles and a Polymer Film Employing Multifunctional Molecules with Enhanced Fluorescence Emission and Bistable Photochromism,Angew.Chem.,Int.Ed.,2004,43,6346-6350.
    [60]X.Tong,Y.Zhao,B.-K.An,S.Y.Park,Fluorescent Liquid-Crystal Gels with Electrically Switchable Photoluminescence,Adv.Funct.Mater.,2006,16,1799-1804.
    [61]Z.Xie,B.Yang,G.Cheng,L.Liu,F.He,F.Shen,Y.Ma,S.Liu,Supramolecular Interactions Induced Fluorescencein Crystal:Anomalous Emission of 2,5-Diphenyl-1,4-distyrylbenzene with All cis Double Bonds Chem.Mater.,2005,17,1287-1289.
    [62]Z.Xie,B.Yang,W.Xie,L.Liu,F.Shen,H.Wang,X.Yang,Z.Wang,Y.Li,M.Hanif,G.Yang,L.Ye,Y.Ma,A Class of Nonplanar Conjugated Compounds with Aggregation-Induced Emission:Structural and Optical Properties of2,5-Diphenyl -1,4-distyrylbenzene Derivatives with All Cis Double Bonds,J.Phys.Chem.B 2006,110,20993-21000.
    [63]Y.Li,F.Li,H.Zhang,Z.Xie,W.Xie,H.Xu,B.Li,F.Shen,L.Ye,M.Hanif,D.Ma,Y.Ma,Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene):a key factor for aggregation-induced emission,Chem.Commun.,2007,231-233.
    [64]H.Tong,Y.Dong,M.H(a|¨)ussler,Y.Hong,J.W.Y.Lam,H.H-Y.Sung,I.D.Williams,H.S.Kwok,B.Z.Tang,Molecular packing and aggregation-induced emission of 4-dicyanomethylene-2,6-distyryl-4H-pyran derivatives,Chem.Phys.Lett.,2006,428,326-330.
    [65]H.Tong,Y.Hong,Y.Dong,Y.Ren,M.H(a|¨)ussler,J.W.Y.Lam,K.S.Wong,B.Z.Tang,Color-Tunable,Aggregation-Induced Emission of a Butterfly-Shaped Molecule Comprising a Pyran Skeleton and Two Cholesteryl Wings,J.Phys.Chem.B 2007,111,2000-2007.
    [66]Y.Liu,X.Tao,F.Wang,J.Shi,J.Sun,W.Yu,Y.Ren,D.Zou,M.Jiang,Intermolecular hydrogen bonds induce highly emissive excimers:Enhancement of solid-state luminescence,J.Phys.Chem.C 2007,111,6544-6549.
    [67]Y.Liu,X.Tao,F.Wang,X.Dang,D.Zou,Y.Ren,and M.Jiang,Aggregation-Induced Emissions of Fluorenonearylamine Derivatives:A New Kind of Materials for Nondoped Red Organic Light-Emitting Diodes,J.Phys.Chem.C 2008,112,3975-3981.
    [68]S.Y.Ryu,S.Kim,J.Seo,Y-W.Kim,O-H.Kwon,D-J.Jang,S.Y.Park,Strong fluorescence emission induced by supramolecular assembly and gelation:luminescent organogel from nonemissive oxadiazole-based benzene-1,3,5-tricarboxamide gelator,Chem.Commun.,2004,70-71.
    [69]Z.Wang,H.Shao,J.Ye,L.Tang,P.Lu,Dibenzosuberenylidene-Ended Fluorophores:Rapid and Efficient Synthesis,Characterization,and Aggregation-Induced Emissions,J.Phys.Chem.B 2005,109,19627-19633.
    [70]S.Kim,Q.Zheng,G.S.He,D.J.Bharali,H.E.Pudavar,A.Baev,P.N.Prasad,Aggregation-Enhanced Fluorescence and Two-Photon Absorption in Nanoaggregates of a 9,10-Bis[4'-(4"-aminostyryl)styryl]anthracene Derivative,Adv.Funct.Mater.,2006,16,2317-2323.
    [71]J.Chen,B.Xu,X.Ouyang,B.Z.Tang,Y.Cao,Aggregation-induced emission of cis,cis-1,2,3,4-tetraphenylbutadiene from restricted intramolecular rotation,J.Phys.Chem.A 2004,108,7522-7526.
    [72]Y.Dong,J.W.Y.Lam,A.Qin,Z.Li,J.Sun,H.H.-Y.Sung,I.D.Williams,B.Z.Tang,Switching the light emission of(4-biphenylyl)phenyldibenzofulvene by morphological modulation:crystallization-induced emission enhancement,Chem.Commun.,2007,40-42.
    [73]王镜岩,朱圣庚,徐长法,生物化学(第三版),北京高等教育山版社,2002,158.
    [74]D.P.Hong,R.Kuboi,Evaluation of the alcohol-mediated interaction between micelles using percolation processes of reverse micellar system,Biochem.,1999,4,23-29.
    [75]N.M.Correa,M.A.Biasutti,J.J.Silber,Micropolarity of reverse micelles of aerosol-OT in n-hexane,J.Colloid Interface Sci.,1995,172,71-74.
    [76]M.S.Altamiano,C.D.Borsareli,J.J.Cosa,C.M.Previtali,Influence of Polarity and Viscosity of the Micellar Interface on the Fluorescence Quenching of Pyrenic Compounds by Indole Derivatives in AOT Reverse Micelles Solutions,J.Colloid Interface Sci.,1998,205,390-395.
    [77]N.Wittouck,R.N.Negri,M.Ameloot,F.C.D.Schryver,AOT reversed micelles investigated by fluorescence anisotropy of cresyl violet,Am.Chem.Soc.,1994,121,10601-10613.
    [78]M.P.Brun,L.Bidchoff,C.Garbay,A Very Short Route to Enantiomerically Pure Coumarin-Bearing Fluorescent Amino Acids,Angew.Chem.,Int.Ed.,2004,43,3432-3436.
    [79]S.Yegneswaran,J.A.Femandez,J.H.Griffin,P.E.Dawson,Factor Va Increases the Affinity of Factor Xa for Prothrombin:A Binding Study Using a Novel Photoactivable Thiol-Specific Fluorescent Probe,Chem.Biol.,2002,9,485-494.
    [80] S. K. Grant, J. G. Sklar, R. T. Cummings, Development of Novel Assays for Proteolytic Enzymes Using Rhodamine-Based Fluorogenic Substrates, J. Biamol Screen 2002, 7, 531-540.
    [81] E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi, Y. Hirata, T.Nagano, Highly Sensitive Near-Infrared Fluorescent Probes for Nitric Oxide and Their Application to Isolated Organs, J. Am. Chem. Soc, 2005,127, 3684-3685.
    [82] D. C. Niaks, J. W. Foley, P. M. Blsck, Fluorescent Imaging in a Glioma Model In Vivo, Lasers Sung. Med., 2001, 29,11-17.
    [83] A. S. Bhown, T. W. Cornelius, J. E. Volanakis, J. C. Bennett, A comparison of fluorescamine and o-phthaldialdehyde as effective blocking reagents in protein sequence analyses by the Beckman sequencer, Anal. Biochem., 1983, 131, 337-340.
    [84] L. J. Jones, R. P. Haugland, V. L. Singer, Development and Characterization of the NanoOrange? Protein Quantitation Assay: A Fluorescence-Based Assay of Proteins in Solution, BioTechniques 2003, 34, 850-861.
    [85] B. K. Hartman, S. Udenfriend, A method for immediate visualization of proteins in acrylamide gels and its use for preparation of antibodies to enzymes, Anal. Biochem., 1969, 30, 391-394.
    [86] P. Horowith, S. Bowman, Ion-enhanced fluorescence staining of sodium dodecyl sulfate-polyacrylamide gels using bis (8-p-toluidino-1-naphthalenesulfonate), Anal.Biochem., 1987,165, 430-434.
    [87] G. M. Edelman, W. O. McClure, Fluorescent probes and the conformation of proteins,Acc. Chem. Res., 1968,1, 65-70.
    [88] K. Berggren, E. Chernokalskya, T. H. Steinberg, C. Kemper, M. F. Lopez, Z. Diwu, R. P. Haugland, W. F. Patton, Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex, Electrophoresis 2000, 21, 2509-2521.
    [89] T. H. Steinberg, L. J. Jones, R. P. Haugland, V. L. Singer, SYPRO Orange and SYPRO Red Protein Gel Stains: One-Step Fluorescent Staining of Denaturing Gels for Detection of Nanogram Levels of Protein, Anal. Biochem., 1996,239,223-237.
    [90] K. Berggren, T. H. Steinberg, W. M. Lauber, J. A. Carroll, M. F. Lopez, E. Chernokalskaya, L. Zieske, Z. Diwu, R. P. Haugland, W.F. Patton, A Luminescent Ruthenium Complex for Ultrasensitive Detection of Proteins Immobilized on Membrane Supports,Anal. Biochem., 1999,276,129-143.
    [91] J. Daban, S. Bartolomé, M. Samsó, Use of the hydrophobic probe Nile red for the fluorescent staining of protein bands in sodium dodecyl sulfate-polyacrylamide gels, Anal. Biochem., 1991,199,169-174.
    [92] A. Granzhan, H. Ihmel, N-Aryl-9-amino-Substituted Acridizinium Derivatives as Fluorescent "Light-Up" Probes for DNA and Protein Detection, Org. Lett., 2005, 7,5119-5122.
    [93] A. Granzhan, H. Ihmel, G. Viola, 9-Donor-Substituted Acridizinium Salts: Versatile Environment-Sensitive Fluorophores for the Detection of Biomacromolecules, J. Am. Chem. Soc, 2007, 729,1254-1267.
    [94] M. Funovies, R. Weissleder, C. H. Tung, Protease sensors for bioimaging, Anal. Bioanal. Chem., 2003, 377, 956-963.
    [95] C. H. Tung, R. E. Gerszten, F. A. Jaffer, R. Weissleder, A Novel Near-Infrared Fluorescence Sensor forDetection of Thrombin Activation in Blood, Chem. Biochem., 2002,3,207-211.
    [96] Y. Suzuki, K. Yokoyama, Design and Synthesis of Intramolecular Charge Transfer-Based Fluorescent Reagents for the Highly-Sensitive Detection of Proteins, J. Am. Chem. Soc, 2005,127,17799-17802.
    [97] Y. Suzuki, K. Yokoyama, Design and synthesis of ICT-based fluorescent probe for high-sensitivity protein detection and application to rapid protein staining for SDS-PAGE, Proteomics 2008, 8, 2785-2790.
    [98] H. Tong, Y. Hong, Y. Dong, M. Haussler, J. W. Y. Lam, Z. Li, Z. Guo, Z. Guo, B. Z. Tang, Fluorescent "light-up" bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics,Chem.Commun.,2006,3705-3707.
    [99]H.Tong,Y.Hong,Y.Dong,M.Halussler,Z.Li,J.W.Y.Lam,Y.Dong,H.H.-Y.Sung,I.D.Williams,B.Z.Tang,Protein Detection and Quantitation by Tetraphenylethene-Based Fluorescent Probes with Aggregation-Induced Emission Characteristics,J.Phys.Chem.B 2007,111,11817-11823.
    [100]S.Santra,K.Wang,R.Tapec,W.Tan,Development of novel dye-doped silica nanoparticles for biomarker application,J.Biomedical Optics 2001,6,160-166.
    [101]K.Haupt,A.G.Mayes,K.Mosbach,Herbicide Assay Using an Imprinted Polymer-Based System Analogous to Competitive Fluoroimmunoassays,Anal.Chem.,1998,70,3936-3939.
    [102]辛倩,博士学位论文,山东大学,2008.
    [1]K.Itami,K.Tonogaki,Y.Ohashi,J.Yoshida,Rapid Construction of Multisubstituted Olefin Structures Using Vinylboronate Ester Platform Leading to Highly Fluorescent Materials,Org.Lett.,2004,6,4093-4096.
    [2]L.C.Picciolo,H.Murata,Z.H.Kafafi,Organic light-emitting devices with saturated red emission using 6,13-diphenylpentacene,Appl.Phys.Lett.,2001,78,2378-2380.
    [3]B.X.Mi,Z.Q.Gao,M.W.Liu,K.Y.Chan,H.L.Kwong,N.B.Wong,C.S.Lee,L.S.Hung,S.T.Lee,New polycyclic aromatic hydrocarbon dopants for red organic electroluminescent devices.J.Mater.Chem.,2002,12,1307-1310.
    [4]R.Sang,L.Xu,A Series of Single,double,and triple Me2biim-bridged dinuclear,trinuclear,and polymeric complexes:Syntheses,crystal structures,and luminescent Properties,Inorg.Chem.,2005,44,3731-3737.
    [5]R.H.Friend,R.W.Gymer,A.B.Holms,J.H.Burroughes,R.N.Marks,C.Taliani,D.D.C.Bradley,D.A.Dos Santos,J.L.Bredas,M.L(o|¨)gdlund,W.R.Salaneck,Electroluminescence in conjugated polymers,Nature,1999,397, 121-128.
    [6]J.Luo,Z.Xie,J.W.Y.Lam,L.Cheng,H.Chen,C.Qiu,H.S.Kwok,X.Zhan,Y.Liu,D.Zhu,B.Z.Tang,Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,Chem.Commun.,2001,1740-1741.
    [7]D.H.Hwang,M.J.Park,J.H.Lee,EL properties of stable blue light-emitting polyfluorene copolymers,Mat.Sci.Eng.C 2004,24,201-204.
    [8]J.H.Park,H.C.Ko,J.H.Kim,H.S.Lee,Light emitting polyfluorene derivatives with three different structural configurations,Syth.Met.,2004,144,193-199.
    [9]Y.G.Wu,J.Li,Y.Q.Fu,Z.N.Bo,Synthesis of extremely stable blue light emitting poly(spirobifluorene)s with Suzuki polycondensation,Org.Lett.,2004,6,3485-3487.
    [10]J.Tr(o|¨)ger,Ueber einige mittelst nascirenden Formaldehydes entstehende Basen,J.Prakt.Chem.,1887,36,225-245.
    [11]S.B.Larson,C.S.Wilcox,Structure of 5,11-methano-2,8-dimethyl-5,6,11,12-tetrahydrodibenzo[b,f][1,5]diazocine(Tr(o|¨)ger's base) at 163 K,Acta.Crystallogr.C,1986,42,224-227.
    [12]B.G.Bag,The chemistry of a non-natural product:Tr(o|¨)ger's base,Curr.Sci.,1995,68,279-288.
    [13]M.Demeunynck,A.Tatibouet,In Progress in Heterocyclic Chemistry,G.W.Gribble,T.L.Gilchrist,Eds.,Pergamon:Oxford,UK,1999,1-20.
    [14]P.R.Allen,J.N.H.Reek,A.C.Try,M.J.Crossley,Resolution of a porphyrin analogue of Tr(o|¨)ger's Base by making use of ligand binding affinity differences of the enantiomers,Tetrahedron:Asymmetry,1997,8,1161-1164.
    [15]S.Goswami,K.Ghosh,S.Dasgupta,Tr(o|¨)ger's base molecular scaffolds in dicarboxylic acid recognition,J.Org.Chem.,2000,65,1907-1914.
    [16]M.D.Cowart,I.Sucholeiki,R.R.Bukownik,C.S.Wilcox,Molecular recognition in aqueous media.Conformationally restricted water-soluble cyclophanes derived from 6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine,J.Am.Chem.Soc.,1988, 110,6204-6210.
    
    [17] A. Manjula, M. Nagarajan, New supramolecular hosts: synthesis and cation binding studies of novel Troger's base-crown ether composites, Tetrahedron 1997, 53, 11859-11868.
    
    [18] M. J. Crossley, L. G. Mackay, A. C. Try, Enantioselective recognition of histidine and lysine esters by porphyrin chiral clefts and detection of amino acid conformations in the bound state, Chem. Commun., 1995,1925-1927.
    
    [19] Y. Kubo, T. Ohno, J. Yamanaka, S. Tkita, T. Iida, Y. Ishimaru, Chirality-transfer control using a heterotopic Zinc(II) Porphyrin dimer, J. Am. Chem. Soc, 2001, 123, 12700-12701.
    
    [20] A. Tatibou(e|¨)t, M. Demeunynck, C. Andraud, A. Collet, J. Lhomme, Synthesis and study of an acridine substituted Troger's base: preferential binding of the (-)-isomerto B-DNA, Chem. Comm., 1999, 23, 161-162.
    
    [21] C. Baily, W. Laine, M. Demeunynck, J. Lhomme, Enantiospecific recognition of DNA sequences by a proflavine Troger's base, Biochem. Biophys. Res. Commun., 2000,275,681-685.
    
    [22] M. Valik, J. Malina, L. Palivec, J. Foltynova, M. Tkadlecova, M. Urbanova, V. Brabec, V. Krai, Troger's base scaffold in racemic and chiral fashion as a spacer for bisdistamycin formation Synthesis and DNA binding study, Tetrahedron 2006, 62, 8591-8600.
    
    [23] N. Claessens, F. Pierard, C. Bresson, C. Moucheron, A. K.-D. Mesmaeker, Optically active Ru(II) complexes with a chiral Troger's base ligand and their interactions with DNA, J. Inorg. Biochem., 2007,101, 987.
    
    [24] S. H. Wilen, J. Z. Qi, P. G. Williard, Resolution, asymmetric transformation, and configuration of Troger's base. Application of Troger's base as a chiral solvating agent, J. Org. Chem., 1991, 56, 485-487.
    [25]M.H(a|¨)ring,Die Darstellung von 5,11-Endomethylen-tetrahydrophenhoma- zinen und 5-Alkyl-tetrahydrophenhomazinen,Helv.Chim.Acta,1963,46,2970-2982.
    [26]C.S.Wilcox,L.M.Greer,V.Lynch,Synthesis of chiral molecykar clefts.New armatures for biomimetic systems,J.Am.Chem.Soc.,1987,109,1865-1867.
    [27]A.C.Try,L.Painter,M.M.Harding,Regid chiral carbocyclic clefts as building blocks for the construction of new supramolecular hosts,Tetrahedron Lett.,1998,39,9809-9812.
    [28]J.Artacho,P.Nilsson,K.-E.Bergquist,O.F.Wendt,K.W(a|¨)rnmark,The synthesis and characterization of all diastereomers of a linear symmetrically fused Tris-Tr(o|¨)ger's base analogue:New chiral cleft compounds,Chem.Eur.J.,2006,12,2692-2701.
    [29]S.R.Marder,J.W.Perry,W.P.Schaefer,Synthesis of Organic Salts with Large Second-Order Optical Nonlinearities,Science 1989,245,626-628.
    [30]C.F.Zhao,G.S.He,J.D.Bhawalkar,C.K.Park,P.N.Prasad,Newly Synthesized Dyes and Their Polymer/Glass Composites for One- and Two-Photon Pumped Solid-state Cavity Lasing,Chem.Mater.,1995,7,1979-1983.
    [31]Y.Ren,Q.Fang,W.Yu,H.Lei,Y.Tian,M.Jiang,Q.Yang,T.C.W.Mak,Synthesis,structures and two-photon pumped up-conversion lasing properties of two new organic salts,J.Mater.Chem.,2000,10,2025-2030.
    [32]Z.Yang,S.Aravazhi,A.Schneider,P.Seiler,M.Jazbinsek,P.G(u|¨)nter,Synthesis and Crystal Growth of Stilbazolium Derivatives for Second-Order Nonlinear Optics,Adv.Funct.Mater.,2005,15,1072-1076.
    [33]Ruiz,B.;Yang,Z.;Jazbinsek,M.;Gramlich,V.;G(u|¨)nter,P.Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity,J.Mater.Chem.,2006,16,2839-2842.
    [34]J.Jensen,M.Strozyk,K.W(a|¨)rnmark,Influence of Scale,Stoichiometry and Temperature on the Synthesis of 2,8-Dialo Analogues of Tr(o|¨)ger's Base from the Corresponding Anilines and Paraformaldehyde,J.Heterocyclic.Chem.,2003,40,373-375.
    [35]J.Jensen,J.Tejler,K.W(a|¨)rnmark,General Protocols for the Synthesis of C_2-Symmetric and Asymmetric 2,8-Disubstituted Analogues of Tr(o|¨)ger's Base via Efficient Bromine-Lithium Exchanges of 2,8-Dibromo-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine,J.Org.Chem.,2002,67,6008-6014.
    [36]C.Solano,D.Svensson,Z.Olomi,J.Jensen,O.F.Wendt,K.W(a|¨)rnmark,Introduction of Aromatic and Heteroaromatic Groups in the 2- and 8-Positions of the Tr(o|¨)ger's Base Core by Suzuki,Stille and Negishi Cross-Coupling Reactions -A Comparative Study,Eur.J.Org.Chem.,2005,3510-3517.
    [37]刘会军,硕士学位论文,安徽大学,2004.
    [38]杨家祥,博士后研究工作报告,山东大学,2005.
    [39]赵华平,博士学位论文,山东大学,2007.
    [40]刘会军,博士学位论文,山东大学,2007.
    [1]刘会军,博士学位论文,山东大学,2007.
    [2]赵耀鹏,孙震,超分子化学,2006,78,272.
    [3]C.V.K.Sharma,Crystal engineering-where do we go from here? Cryst.Growth Des.,2002,2,465-474.
    [4]G.R.Desiraju,A.Gavezzotti,From molecular to crystal structure;Polynuclear aromatic hydrocarbons,Chem.Commun.,1989,621-623.
    [5]G.R.Desiraju,Crystal engineering:from molecules to materials,J.mol.Struct.,2003,656,5-15.
    [6]辛倩,博士学位论文,山东大学,2008.
    [7]G.M.Shelderik,SHELXL-97;Program for Crystal Structure Refinement,University of G(o|¨)ttingen:G(o|¨)ttingen,Germany,1997.
    [8]S.B.Larson,C.S.Wilcox,Structure of 5,11-methano-2,8-dimethyl-5,6,11,12-tetrahydrodibenzo[b,f][1,5]diazocine(Tr(o|¨)ger's base) at 163 K,Acta Crystallogr.Sect.C 1986,C42,224-227.
    [9]C.Pardo,E.Sesmilo,E.Gutierrez-Puebla,A.Monge,J.Elguero,A.Fruchier,New Chiral Molecular Tweezers with a Bis-Tr(o|¨)ger's Base Skeleton,J.Org.Chem.,2001,66,1607-1611.
    [10]I.Sucholeiki,V.Lynch,L.Phan,C.S.Wilcox,Chemistry of synthetic receptors and functional group arrays.7.Molecular armatures.Synthesis and structure of Troeger's base analogs derived from 4-,2,4-,3,4-,and 2,4,5-substituted aniline derivatives,J.Org.Chem.,1988,53,98-104.
    [1]B.-K.An,S.-K.Kwon,S.-D.Jung,S.Y.Park,Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles,J.Am.Chem.Soc.,2002,124,14410-14415.
    [2]H.Tong,Y.Dong,Y.Hong,M.H(a|¨)ussler,J.W.Y.Lam,H.H.-Y.Sung,X.Yu,J.Sun,I.D.Williams,H.S.Kwok,and B.Z.Tang,Aggregation-Induced Emission:Effects of Molecular Structure,Solid-State Conformation,and Morphological Packing Arrangement on Light-Emitting Behaviors of Diphenyldibenzofulvene Derivatives J.Phys.Chem.C 2007,111,2287-2294
    [3]S.Kim,Q.Zheng,G.S.He,D.J.Bharali,H.E.Pudavar,A.Baev,P.N.Prasad,Aggregation-Enhanced Fluorescence and Two-Photon Absorption in Nanoaggregates of a 9,10-Bis[4'-(4"-aminostyryl)styryl]anthracene Derivative,Adv.Funct.Mater.,2006,16,2317-2323.
    [4]刘阳,博士学位论文,山东大学,2008.
    [5]G M.Shelderik,SHELXL-97;Program for Crystal Structure Refinement,University of G(o|¨)ttingen:G(o|¨)ttingen,Germany,1997.
    [6]C.A.Hunter,Jeremy K.M.Sanders,The Nature of T-T Interactions,J.Am.Chem.Soc.,1990,112,5525-5534.
    [7]Z.Li,Y.Dong,B.Mi,Y.Tang,M.H(a|¨)ussler,H.Tong,Y.Dong,J.W.Y.Lam,Y.Ren,H.H.Y.Sung,K.S.Wong,P.Gao,I.D.Williams,H.S.Kwok,B.Z.Tang,Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials,J.Phys.Chem.B 2005,109,10061-10066.
    [8]B.-K.An,S.-K.Kwon,S.-D.Jung,S.Y.Park,Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles,J.Am.Chem.Soc.,2002,124,14410-14415.
    [9]Y.Liu,X.Tao,F.Wang,J.Shi,J.Sun,W.Yu,Y.Ren,D.Zou,M.Jiang,Intermolecular hydrogen bonds induce highly emissive excimers:Enhancement of solid-state luminescence,J.Phys.Chem.C 2007,111,6544-6549.
    [10]O.Trapp,V.Schurig,Stereointegrity of Tr(o|¨)ger's Base:Gas-Chromatographic Determination of the Enantiomerization Barrier,J.Am.Chem.Soc.,2000,122,1424-1430.
    [1]J.Luo,Z.Xie,J.W.Y.Lam,L.Cheng,H.Chen,C.Qiu,H.S.Kwok,X.Zhan,Y.Liu,D.Zhu,B.Z.Tang,Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole,Chem.Commun.,2001,1740-1741.
    [2]H.Y.Chen,W.Y.Lam,J.D.Luo,Y.L.Ho,Highly efficient organic light-emitting diodes with a silole-based compound,Appl.Phys.Lett.,2002,81,574-576.
    [3]Y.Dong,J.W.Y.Lam,A.Qin,J.Liu,Z.Li,B.Z.Tang,Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes.Appl.Phys.Lett.,2007,91,011111.
    [4]H.Tong,Y.Dong,Y.Hong,M.H(a|¨)ussler,J.W.Y.Lam,H.H.-Y.Sung,X.Yu,J.Sun,I.D.Williams,H.S.Kwok,and B.Z.Tang,Aggregation-Induced Emission:Effects of Molecular Structure,Solid-State Conformation,and Morphological Packing Arrangement on Light-Emitting Behaviors of Diphenyldibenzofulvene Derivatives J.Phys.Chem.C 2007,111,2287-2294.
    [5]Y.Liu,X.Tao,F.Wang,J.Shi,J.Sun,W.Yu,Y.Ren,D.Zou and M.Jiang,Intermolecular Hydrogen Bonds Induce Highly Emissive Excimers:Enhancement of Solid-State Luminescence,J.Phys.Chem.C 2007,111,6544-6549.
    [6]Y.Liu,X.Tao,F.Wang,X.Dang,D.Zou,Yah Ren and M.Jiang,Aggregation -Induced Emissions of Fluorenonearylamine Derivatives:A New Kind of Materials for Nondoped Red Organic Light-Emitting Diodes J.Phys.Chem.C 2008,112, 3975-3981.
    [7]Z.Ning,Z.Chen,Q.Zhang,Y.Yan,S.Qian,Y.Cao and H.Tian Aggregation -Induced Emission(AIE)-active Starburst TriarylamineFluorophores as Potential Non-doped Red Emitters for Organic Light-Emitting Diodes and Cl_2 Gas Chemodosimeter.Adv.Funct.Mater.,2007,17,3799-3807.
    [8]H.Tong,Y.Hong,Y.Dong,M.H(a|¨)ussler,J.W.Y.Lam,Z.Li,Z.Guo,Z.Guo and B.Z.Tang.Fluorescent "light-up" bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics,Chem.Commun.,2006,3705-3707.
    [9]H.Tong,Y.Hong,Y.Dong,M.H(a|¨)ussler,Z.Li,J.W.Y.Lam,Y.Dong,H.H.-Y.Sung,I.D.Williams and B.Z.Tang,Protein Detection and Quantitation by Tetraphenylethene-Based Fluorescent Probes with Aggregation-Induced Emission Characteristics,J.Phys.Chem.B 2007,111,11817-11823.
    [10]M.Wang,D.Zhang,G.Zhang and D.Zhu,The convenient fluorescence turn-on detection of heparin with a silole derivative featuring an ammonium group,Chem.Commun.,2008,4469-4471.
    [11]M.Wang,D.Zhang,G.Zhang,Y.Tang,S.Wang and D.Zhu,Fluorescence Turn-On Detection of DNA and Label-Free Fluorescence Nuclease Assay Based on the Aggregation-Induced Emission of Silole,Anal Chem.,2008,80,6443-6448.
    [12]C.Yuan,X.Tao,Y.Ren,Y.Li,J.Yang,W.Yu,L.Wang,M.Jiang,Synthesis,Structure,and Aggregation-Induced Emission of a Novel Lambda(A)-Shaped Pyridinium Salt Based on Tr(o|¨)ger's Base,J.Phys.Chem.C 2007,111,12811-12816.
    [13]许志成,硕士学位论文,山西大学,2006.
    [14]L.Jones,R.Haugland,V.Singer,Development and Characterization of the NanoOrange(?) Protein Quantitation Assay:A Fluorescence-Based Assay of Proteins in Solution,BioTechniques 2003,34,850-861.
    [15] A. Granzhan and H. Ihmel, N-Aryl-9-amino-Substituted Acridizinium Derivatives as Fluorescent "Light-Up" Probes for DNA and Protein Detection, Org. Lett., 2005, 7,5119-5122.
    [16] Y. Suzuki and K. Yokoyama, Design and Synthesis of Intramolecular Charge Transfer-Based Fluorescent Reagents for the Highly-Sensitive Detection of Protein, J. Am. Chem. Soc, 2005,127,17799-17802.
    [17] A. Granzhan, H. Ihmel and G. Viola, 9-Donor-Substituted Acridizinium Salts: Versatile Environment-Sensitive Fluorophores for the Detection of Biomacromolecules J. Am. Chem. Soc, 2007,129,1254-1267.
    [18] Y. Suzuki, and K.Yokoyama, Design and synthesis of ICT-based fluorescent probe for high-sensitivity protein detection and application to rapid protein staining for SDS-PAGE, Proteomics 2008, 8, 2785-2790.
    [19] R. Norenberg, J. Klingler, and Dieter Horn, Study of the Interactions between Poly(vinyl pyrrolidone) and Sodium Dodecyl Sulfate by Fluorescence Correlation Spectroscopy,Angew. Chem., Int. Ed., 1999, 38, 1626-1629.
    [20] E. D. Goddard, K. P. Ananthapadmanabhan, Interaction of surfactants with polymers and proteins. New York: CRC Press, 1993, 319-369.
    [21] E. H. Lucassen-Reynders, Physical chemistry of surfactant action (Surfactant science series Vol. 11). New York: Marcel Dekker Inc., 1981, 131.
    [22] J. C. T. Kwak, Polymer-surfactant systems. New York: Marcel Dekker Inc., 1998:267.
    [23] A. D. Nielsen, K. Borch, P. Westh, Thermochemistry of the speci(?)c binding of C12 surfactants to bovine serum albumin, Biochim. Biophys. Acta - Protein Structure and Molecular Enzymology 2000,1479, 321-331.
    [24] D. E. Otzen, Protein Unfolding in Detergents: Effect of Micelle Structure, Ionic Strength, pH, and Temperature, Biophys. J., 2002, 83, 2219-2230.
    [25] V. B. Fainerman, S. A. Zholob, M. Leser, M. Michel, R. Miller, Competitive adsorption from mixed nonionic surfactant/protein solutions, Colloid Interface Sci., 2004,274,496-501.
    [26]O.D.Velev,Y.H.Pan,E.W.Kaler,A.M.Lenhoff,Molecular Effects of Anionic Surfactants on Lysozyme Precipitation and Crystallization,Crystal Growth Des.,2005,5,351-359.
    [27]K.Shirahama,K.Tsujii,T.Takagi,Free-boundary Electrophoresis of Sodium Dodecyl Sulfate-Protein Polypeptide Complexes with Special Reference to SDS-Polyacrylamide Gel Electrophoresis,J.Biochem.,1974,75,309-319.
    [28]S.H.Chen,J.Teixeira,Structure and Fractal Dimension of Protein-Detergent Complexes,Phys.Rev.Lett.,1986,57,2583-2586.
    [29]X.H.Guo,N.M.Zhao,S.H.Chen,J.Texeira,Biopolymers 1990,29,335-346.
    [30]C.Tanford,The hydrophobic Effect:formation of micelles and biological membranes,2~(nd) ed.;Wiley-Interscience:New York,1980;Chapter 14.
    [31]J.A.Reynolds,C.Tanford,The Gross Conformation of Protein-Sodium Dodecyl Sulfate Complexes,J.Biol.Chem.,1970,245,5161-5165.
    [32]P.Lundahl,E.Greijer,M.Sandberg,S.Cardell,K.O.Eriksson,A model for ionic and hydrophobic interactions and hydrogen-bonding in sodium dodecyl sulfate-protein complexes,Biochim.Biophys.Acta - Protein Structure and Molecular Enzymology 1986,873,20-26.
    [33]刘静,徐桂英,表面活性剂与蛋白质相互作用的研究进展,日用化学工业,2003,33,29-32.
    [34]N.J.Turro,X.-G.Lei,Spectroscopic Probe Analysis of Protein-Surfactant Interactions:The BSA/SDS System,Langmuir 1995,11,2525-2533.
    [35]M.Vasilescu,D.Angellescu,M.Almgren,A.Valstar,Interaction of globular proteins with surfactants studied with fluorescence probe methods,Langmuir 1999,15,2635-2643.
    [36]J.Oakes,Protein-surfactant interactions - nuclear magnetic-resonance and binding isotherm studies of interactions between bovine serum-albumin and sodium dodecyl-sulfate,J.Chem.Soc.Faraday Trans.,1974,70,2200 -2209.