基于非线性效应的集成型全光信号处理器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成化是未来光通信系统发展的趋势之一,作为光通信网络的重要组成部分,全光信号处理器件必将走向集成化。本论文主要研究了半导体光放大器(SOA)和基于绝缘体上硅(SOI)纳米线波导两种集成器件在非线性全光信号处理领域的应用。
     SOA作为全光信号处理的介质之一,凭借其体积小、易集成、功耗低的优势,在全光信号处理领域有着广泛的应用。我们基于SOA中的自发非线性效应成功实现了10Gb/s OOK信号无差错的放大、反转以及到BPSK码型的转换功能,并且提升了输入信号光的消光比适用范围。
     基于SOI材料的硅线波导不但与集成电路制作工艺兼容,而且对光的约束能力强,为集成型非线性光学器件提供了理想的解决方案。基于硅波导中的四波混频效应,我们实现了多种码型信号的全光信号处理及其应用,包括全光波长转换、组播、时分解复用、偏振解复用和若干不同功能的全光逻辑门。
     OOK信号结构简单、成本低,被大规模应用于密集城域网中。针对OOK调制格式,我们进行了硅基波长转换、组播、时分解复用的研究。分别采用连续光泵浦、脉冲光泵浦进行全光波长转换的实验研究,实现了基于硅波导中四波混频效应的10Gb/s NRZ-OOK的无误差全光波长转换。其次我们分析了光源和放大器对于结果的噪声影响,提出改善方法。我们还实现了多信道并行波长转换,和OOK信号的时分解复用。
     DPSK调制格式凭借其高于OOK格式3dB的接收灵敏度以及更好的抗非线性噪声性能被应用于远距离传输中。我们实现了NRZ-DPSK格式信号基于硅波导的全光波长转换,在10Gb/s的信号速率下得到比OOK格式信号小2dB的功率代价。
     偏振复用技术凭借将信号加载到同一信道上的两路垂直偏振态通道,达到双倍的传输效率。我们首次实现了20Gb/s的偏振复用信号在硅波导中的全光波长转换、组播和解复用功能。
     全光逻辑门是实现高速信息传输和处理的基本器件。我们首次进行并实现了基于硅波导的10Gb/s的NRZ-OOK与、或逻辑功能同时实现的研究;并且首次提出和实现了基于硅波导的NRZ-DPSK异或逻辑门;最后实现了基于硅波导的可重构全光多功能逻辑门,采用偏振编码的调制方式获得了包括半减器,同或、与、或非逻辑门,能够分别得到三个逻辑门的同时实现,该装置还能同时获得两个不同频率输出的三个逻辑结果。
All-optical signal processing has been extensively investigated recently as one of the most promising methods for breaking the electrical bottleneck and reducing the power consumption per bit. The desire to meet the high-capacity and cost-effective demands of various communication applications has led to fiber-optic networks with high speed, larger spectral efficiency, and more compatible size. Among those integrated devices for optical signal processing, semiconductor optical amplifiers (SOAs) have several advantages of integration and power saving, while silicon waveguides based on the silicon-on-insulator (SOI) structure have tight mode confinement ability and high nonlinear coefficients. In this thesis, our contributions on all-optical signal processing based on nonlinear effects in both SOA and SOI waveguide is presented.
     Next generation network systems prefer multi-functional all-optical processing to build effective systems. Simultaneous all-optical amplification, inversion and format conversion based on self-induced nonlinear effects in a single SOA has been performed for10Gb/s nonreturn-to-zero on-off keying (NRZ-OOK) signals. The requirement on the extinction ratio range for the input signals has been improved.
     All-optical effor-free wavelength conversion, multicasting, and time demultiplexing for OOK signals are performed based on four-wave mixing (FWM) in a SOI waveguide. Continuous and pulse pump are individually employed to compare the quality. Some suggestions are proposed to decrease the noises on the output signal. All-optical error-free wavelength conversion for DPSK signals is also achieved at10Gb/s.
     Besides, wavelength-division multiplexing and time-division multiplexing, polarization-division multiplexing (PDM) technology has also attracted much attention as one of the effective multiplexing methods to double the spectral efficiency. All-optical polarization demultiplexing, wavelength conversion and multicasting for a20Gb/s (2×10Gb/s) polarization-multiplexed (Pol-MUX) NRZ-OOK signal using FWM in a SOI waveguide are first time presented and realized. The temporal waveforms and eye diagrams demodulated from both polarization channels of the converted idler are clearly observed.
     All-optical logic gates have been extensively investigated recently as key all-optical signal processing elements to perform various network functions. Several all-optical logic gates based on FWM are first time achieved in SOI waveguide. Simultaneous implementation of logic OR and AND Gates for10Gb/s NRZ-OOK Signals are performed. Besides, all-optical multiple-channel exclusive OR (XOR) gate for10Gb/s NRZ-DPSK signals is realized. Furthermore, we demonstrate a reconfigurable all-optical logic gate for NRZ-PolSK signal at10Gb/s. Either half subtracter (XOR, AB, AB) or XNOR, AND, and NOR logic gates can be implemented simultaneously. The functions of all the three logic gates are experimentally demonstrated using10or40-bit DPSK sequences and the eye diagrams are clearly observed.
引文
1. Stubkjaer, K.E., Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. Selected Topics in Quantum Electronics, IEEE Journal of, 2000.6(6):p.1428-1435.
    2. Nesset, D., T. Kelly, and D. Marcenac, All-optical wavelength conversion using SOA nonlinearities. Ieee Communications Magazine,1998.36(12):p.56-61.
    3. Sun, J., Z. Ying, and Z. Xinliang, Multiwavelength lasers based on semiconductor optical amplifiers. Photonics Technology Letters, IEEE,2002.14(6):p.750-752.
    4. Yan, C.H., et al, All-optical format conversion from NRZ to BPSK using a single saturated SOA. Ieee Photonics Technology Letters,2006.18(21-24):p.2368-2370.
    5. Doran, N.J. and D. Wood, Nonlinear-optical loop mirror. Opt. Lett.,1988.13(1):p. 56-58.
    6. Rauschenbach, K.A., et al., All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror. Photonics Technology Letters, IEEE,1994. 6(9):p.1130-1132.
    7. Fresi, F., et al.,40-Gb/s NRZ-to-RZ and OOK-to-BPSK Format and Wavelength Conversion on a Single SOA-MZI for Gridless Networking Operations. Ieee Photonics Technology Letters.24(4):p.279-281.
    8. Mishina, K., et al., NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter. Journal of Lightwave Technology,2006.24(10):p. 3751-3758.
    9. Mishina, K., et al., All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters. Optics Express,2007.15(12): p.7774-7785.
    10. Contestabile, G., et al., All-Optical Wavelength Multicasting in a QD-SOA. Quantum Electronics, IEEE Journal of,2011.47(4):p.541-547.
    11. Matsuura, M., et al., Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier. Optics Express,2011.19(26):p.551-559.
    12. Hsu, D.Z., et al., High-efficiency wide-band SOA-based wavelength converters by using dual-pumped four-wave mixing and an assist beam. Ieee Photonics Technology Letters,2004.16(8):p.1903-1905.
    13. Huang, X., et al., Single and Multicasting Inverted-Wavelength Conversion at 80 Gb/s Based on a Single Semiconductor Optical Amplifier. Chinese Physics Letters. 28(11).
    14. Chung, H.S., et al., All-optical multi-wavelength conversion of 10 Gbit/s NRZ/RZ signals based on SOA-MZI for WDM multicasting. Electronics Letters,2005.41(7):p. 432-433.
    15. Wu, B.B., et al.,40 Gb/s Multifunction Optical Format Conversion Module With Wavelength Multicast Capability Using Nondegenerate Four-Wave Mixing in a Semiconductor Optical Amplifier. Journal of Lightwave Technology,2009.27(20):p. 4446-4454.
    16. Li, Z.H. and G.F. Li, Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. Ieee Photonics Technology Letters,2006.18(9-12):p.1341-1343.
    17. Liu, Y., et al., Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier. Ieee Photonics Technology Letters,2003.15(1):p. 90-92.
    18. Huan, J., et al., All-Optical NRZ-OOK to BPSK Format Conversion in an SOA-Based Nonlinear Polarization Switch. Photonics Technology Letters, IEEE,2007. 19(24):p.1985-1987.
    19. Dorren, H.J.S., et al., Nonlinear polarization rotation in semiconductor optical amplifiers:theory and application to all-optical flip-flop memories. Quantum Electronics, IEEE Journal of,2003.39(1):p.141-148.
    20. Glance, B., et al., High performance optical wavelength shifter. Electronics Letters, 1992.28(18):p.1714-1715.
    21. Danielsen, S.L., et al., Bit error rate assessment of 40 Gbit/s all-optical polarisation independent wavelength converter. Electronics Letters,1996.32(18):p. 1688.
    22. Akiyama, T., M. Sugawara, and Y. Arakawa, Quantum-dot semiconductor optical amplifiers. Proceedings of the Ieee,2007.95(9):p.1757-1766.
    23. Contestabile, G., et al.160 Gb/s cross gain modulation in quantum Dot SOA at 1550 nm. in Optical Communication,2009. ECOC '09.35th European Conference on. 2009.
    24. Jalali, B. and S. Fathpour, Silicon Photonics. Lightwave Technology, Journal of, 2006.24(12):p.4600-4615.
    25. Soref, R., The Past, Present, and Future of Silicon Photonics. Selected Topics in Quantum Electronics, IEEE Journal of,2006.12(6):p.1678-1687.
    26. Daldosso, N. and L. Pavesi, Nanosilicon photonics. Laser & Photonics Reviews, 2009.3(6):p.508-534.
    27. Soref, R.A. and J. Larenzo, All-silicon active and passive guided-wave components for λ= 1.3 and 1.6μm. Quantum Electronics, IEEE Journal of,1986.22(6):p.873-879.
    28. Soref, R.A., J. Schmidtchen, and K. Petermann, Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2. Quantum Electronics, IEEE Journal of,1991.27(8):p. 1971-1974.
    29. Canham, L.T., Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters,1990.57(10):p.1046-1048.
    30. Pavesi, L., et al., Optical gain in silicon nanocrystals. Nature,2000.408(6811):p. 440-444.
    31. Hak-seung, H., S. Se-Young, and J.H. Shin. Optical gain at 1.54μm in erbium-doped silicon nanocluster sensitized waveguide. Applied Physics Letters.2001. 79(27):p.4568-4570.
    32. Lee, K.K., et al., Effect of size and roughness on light transmission in a Si/SiO2 waveguide:Experiments and model. Applied Physics Letters,2000.77(14):p.2258-2258.
    33. Loncar, M., et al., Design and fabrication of silicon photonic crystal optical waveguides. Lightwave Technology, Journal of,2000.18(10):p.1402-1411.
    34. Dehlinger, G., et al., Intersubband Electroluminescence from Silicon-Based Quantum Cascade Structures. Science,2000.290(5500):p.2277-2280.
    35. McNab, S., N. Moll, and Y. Vlasov, Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express,2003.11(22):p.2927-2939.
    36. Claps, R., et al., Observation of stimulated Raman amplification in silicon waveguides. Opt. Express,2003.11(15):p.1731-1739.
    37. Boyraz, O. and B. Jalali, Demonstration of a silicon Raman laser. Opt. Express, 2004.12(21):p.5269-5273.
    38. Vlasov, Y. and S. McNab, Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express,2004.12(8):p.1622-1631.
    39. Colinge, J.P., Silicon-on-insulator technology:Materials to VLSI.2nd ed.1997, Boston:Kluwer Academic Publishers.
    40. Fischer, U., et al.,0.1 dB/cm waveguide losses in single-mode SOI rib waveguides. Photonics Technology Letters, IEEE,1996.8(5):p.647-648.
    41. Harjanne, M., et al., Sub-μs switching time in silicon-on-insulator Mach-Zehnder thermooptic switch. Photonics Technology Letters, IEEE,2004.16(9):p. 2039-2041.
    42. Leuthold, J., C. Koos, and W. Freude, Nonlinear silicon photonics. Nat Photon, 2010.4(8):p.535-544.
    43. Trinh, P.D., S. Yegnanarayanan, and B. Jalali, Integrated optical directional couplers in silicon-on-insulator. Electronics Letters,1995.31(24):p.2097-2098.
    44. Liang, T.K. and H.K. Tsang, Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides. Photonics Technology Letters, IEEE,2005. 17(2):p.393-395.
    45. Rong, H.S., et al., A continuous-wave Raman silicon laser. Nature,2005. 433(7027):p.725-728.
    46. Liang, T.K. and H.K. Tsang, Efficient Raman amplification in silicon-on-insulator waveguides. Applied Physics Letters,2004.85(16):p.3343-3345.
    47. Liao, L., et al., High speed silicon Mach-Zehnder modulator. Opt. Express,2005. 13(8):p.3129-3135.
    48. Csutak, S.M., S. Dakshina-Murthy, and J.C. Campbell, CMOS-compatible planar silicon waveguide-grating-coupler photodetectors fabricated on silicon-on-insulator (SOI) substrates. Quantum Electronics, IEEE Journal of,2002.38(5):p.477-480.
    49. Pinguet, T., et al. Monolithically integrated high-speed CMOS photonic transceivers, in Group Ⅳ Photonics,2008 5th IEEE International Conference on.2008.
    50. Dekker, R., et al., Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. Journal of Physics D-Applied Physics,2007.40(14):p. R249-R271.
    51. Espinola, R., et al., C-band wavelength conversion in silicon photonic wire waveguides. Opt. Express,2005.13(11):p.4341-4349.
    52. KoosC, et al., All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat Photon,2009.3(4):p.216-219.
    53. Foster, M.A., et al., Silicon-chip-based ultrafast optical oscilloscope. Nature,2008. 456(7218):p.81-U2.
    54. Dell'Olio, F. and V.M. Passaro, Optical sensing by optimized silicon slot waveguides. Opt. Express,2007.15(8):p.4977-4993.
    55. Robinson, J.T., L. Chen, and M. Lipson, On-chip gas detection in silicon optical microcavities. Opt. Express,2008.16(6):p.4296-4301.
    56. Tang, C.K. and G.T. Reed, Highly efficient optical phase modulator in SOI waveguides. Electronics Letters,1995.31(6):p.451-452.
    57. Baehr-Jones, T., et al., Optical modulation and detection in slotted Silicon waveguides. Opt. Express,2005.13(14):p.5216-5226.
    58. Brosi, J.-M., et al., High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express,2008.16(6):p. 4177-4191.
    59. Corcoran, B., et al., Optical signal processing on a silicon chip at 640Gb/s using slow-light. Opt. Express,2010.18(8):p.7770-7781.
    60. Lin, Q., O.J. Painter, and G.P. Agrawal, Nonlinear optical phenomena in silicon waveguides:modeling and applications. Opt. Express,2007.15(25):p.16604-16644.
    61. Tsang, H.K., et al., Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength. Applied Physics Letters,2002. 80(3):p.416-418.
    62. Yin, L., Q. Lin, and G.P. Agrawal, Soliton fission and supercontinuum generation in silicon waveguides. Opt. Lett.,2007.32(4):p.391-393.
    63. Hsieh, I.W., et al., Supercontinuum generation in silicon photonic wires. Opt. Express,2007.15(23):p.15242-15249.
    64. CorcoranB, et al., Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photon,2009.3(4):p. 206-210.
    65. Rong, H., et al., Low-threshold continuous-wave Raman silicon laser. Nature Photonics,2007.1(4):p.232-237.
    66. Rong, H., et al., A cascaded silicon Raman laser. Nature Photonics,2008.2(3):p. 170-174.
    67. Liu, A.S., et al., Optical amplification and lasing by stimulated Raman scattering in silicon waveguides. Journal of Lightwave Technology,2006.24(3):p.1440-1455.
    68. Rong, H., et al., Recent development on silicon raman lasers and amplifiers, in 2006 IEEE LEOS Annual Meeting Conference Proceedings, Vols 1 and 2.2006. p. 929-930.
    69. Liu, X., et al., Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat Photon,2010.4(8):p.557-560.
    70. Foster, M.A., et al.. Broad-band optical parametric gain on a silicon photonic chip. Nature,2006.441(7096):p.960-963.
    71. Kuo, Y.-H., et al., Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. Optics Express,2006.14(24):p.11721-11726.
    72. Rong, H.S., et al., High efficiency wavelength conversion of 10Gb/s data in silicon waveguides. Optics Express,2006.14(3):p.1182-1188.
    73. Lee, B.G., et al., Demonstration of Broadband Wavelength Conversion at 40 Gb/s in Silicon Waveguides. IEEE Photonics Technology Letters,2009.21(1-4):p.182-184.
    74. Li, F., et al., Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire. Opt. Express,2010.18(4):p.3905-3910.
    75. Astar, W., et al.. Conversion of 10 Gb/s NRZ-OOK to KZ-OOK utilizing XPM in a Si nanowire. Opt. Express.2009.17(15):p.12987-12999.
    76. Vallaitis, T., et al. All-optical wavelength conversion using cross-phase modulation at 42.7 Gbit/s in silicon-organic hybrid (SOH) waveguides, in Photonics in Switching, 2009. PS'09. International Conference on.2009.
    77. Zinoviev, K., et al., Silicon Photonic Biosensors for Lab-on-a-Chip Applications. Advances in Optical Technologies,2008.
    78. Vlasov, Y.A., et al., Active control of slow light on a chip with photonic crystal waveguides. Nature,2005.438(7064):p.65-69.
    79. Xia, F., L. Sekaric, and Y. Vlasov, Ultracompact optical buffers on a silicon chip. Nat Photon,2007.1(1):p.65-71.
    80. Xia, T.J., et al., Novel self-synchronization scheme for high-speed packet TDM networks. Ieee Photonics Technology Letters,1999.11(2):p.269-271.
    81. Vlasov, Y., W.M.J. Green, and F. Xia, High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photon,2008.2(4):p. 242-246.
    82. Assefa, S., et al. A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications, in Electron Devices Meeting (IEDM),2012 IEEE International.2012.
    83. Gnauck, A.H. and P.J. Winzer, Optical phase-shift-keyed transmission. Journal of Lightwave Technology,2005.23(1):p.115-130.
    84. Agrawal, G.P.,非线性光纤光学原理及应用(第三版),电子工业出版社.
    85. Contestabile, G., et al., Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA. Ieee Photonics Technology Letters,2005.17(12):p.2652-2654.
    86. Deng, N., et al., An all-optical, XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier. Ieee Journal of Selected Topics in Quantum Electronics,2006.12(4):p.702-707.
    87. Fu, S., et al., SOA nonlinear polarization rotation with linear polarization maintenance:Characterization and applications. Ieee Journal of Selected Topics in Quantum Electronics,2008.14(3):p.816-825.
    88. Calabretta, N., et al., Bragg grating assisted all-optical header pre-processor. Electronics Letters,2002.38(24):p.1560-1561.
    89. Calabretta, N., et al., Multiple-output all-optical header processing technique based on two-pulse correlation principle. Electronics Letters,2001.37(20):p.1238-1240.
    90. Cardakli, M.C. and A.E. Willner, Synchronization of a network element for optical packet switching using optical correlators and wavelength shifting. Ieee Photonics Technology Letters,2002.14(9):p.1375-1377.
    91. Lee, H.J., et al., All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier. Electronics Letters,1999.35(12):p.989-990.
    92. Calabretta, N., et al., Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier. Journal of Lightwave Technology.2004. 22(2):p.372-381.
    93. Olmos, J.J.V., et al., Self-controlled all-optical label and payload separator for variable length bursts in a time-serial IM/DPSK scheme, leee Photonics Technology Letters,2005.17(8):p.1692-1694.
    94. Fu, S., et al., Frequency Multiplication of Microwave Signals by Self-Induced Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers (SOAs). leee Photonics Technology Letters,2009.21(15):p.1081-1083.
    95. Yan, C, T. Ye, and Y. Su, All-optical regenerative NRZ-OOK-to-RZ-BPSK formal conversion using silicon waveguides. Opt. Lett.,2009.34(1):p.58-60.
    96. Fu, S., et al., Nonlinear polarization rotation in semiconductor optical amplifiers with linear polarization maintenance. leee Photonics Technology Letters,2007. 19(21-24):p.1931-1933.
    97. Franken, P.A., et al., Generation of Optical Harmonics. Physical Review Letters, 1961.7(4):p.118-119.
    98. Armstrong, J.A., et al., Interactions between Light Waves in a Nonlinear Dielectric. Physical Review,1962.127(6):p.1918-1939.
    99. Hutchings, D.C. and E.W.V. Stryland, Nondegenerate two-photon absorption in zinc blende semiconductors. J. Opt. Soc. Am. B,1992.9(11):p.2065-2074.
    100. Liang, T.K.a.T., H.K., Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Applied Physics Letters,2004.84(15):p. 2745-2747.
    101. Ansheng, L., et al., Optical amplification and lasing by stimulated Raman scattering in silicon waveguides. Lightwave Technology, Journal of,2006.24(3):p. 1440-1455.
    102. Barnsley, P.E. and P.J. Fiddyment, Wavelength conversion from 1.3 to 1.55 mu m using split contact optical amplifiers. Photonics Technology Letters, IEEE,1991.3(3):p. 256-258.
    103. Shimizu, K., T. Horiguchi, and Y. Koyamada, Technique for translating light-wave frequency by using an optical ring circuit containing a frequency shifter. Opt. Lett.,1992. 17(18):p.1307-1309.
    104. Ciaramella, E., Wavelength Conversion and All-Optical Regeneration: Achievements and Open Issues. Journal of Lightwave Technology,2012.30(4):p. 572-582.
    105. Blow, K.J., et al., Two-wavelength operation of the nonlinear fiber loop mirror. Opt. Lett.,1990.15(4):p.248-250.
    106. Phillips, I.D., et al., Simultaneous demultiplexing, data regeneration, and clock recovery with a single semiconductor optical amplifier based nonlinear-optical loop mirror. Opt. Lett.,1997.22(17):p.1326-1328.
    107. Hu, H., et al.,640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion. Opt. Express,2010.18(10):p.9961-9966.
    108. Shiming, G., C. Yang, and J. Guofan, Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate. Photonics Technology Letters, IEEE,2004.16(2):p.557-559.
    109. Marhic, M.E., et al. Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers, in Quantum Electronics and Laser Science Conference,1996. QELS'96., Summaries of Papers Presented at the.1996.
    110. Geraghty, D.F., et al., Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers. Selected Topics in Quantum Electronics, IEEE Journal of,1997.3(5):p.1146-1155.
    111. Fukuda, H., et al., Four-wave mixing in silicon wire waveguides. Opt. Express, 2005.13(12):p.4629-4637.
    112. Boyraz, O., et al., All optical switching and continuum generation in silicon waveguides. Opt. Express,2004.12(17):p.4094-4102.
    113. Yamada, K., et al., All-optical efficient wavelength conversion using silicon photonic wire waveguide. Photonics Technology Letters, IEEE,2006.18(9):p. 1046-1048.
    114. Liu, X., et al., Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires. Opt. Lett.,2008.33(24):p. 2889-2891.
    115. Shiming, G., et al., Performance Evaluation of Nondegenerate Wavelength Conversion in a Silicon Nanowire Waveguide. Lightwave Technology, Journal of,2010. 28(21):p.3079-3085.
    116. Gao, S., et al., Experimental demonstration of bandwidth enhancement based on two-pump wavelength conversion in a silicon waveguide. Opt. Express,2010.18(26):p. 27885-27890.
    117. Vallaitis, T., et al. All-optical wavelength conversion at 42.7 Gbit/s in a 4 mm long silicon-organic hybrid waveguide, in Optical Fiber Communication-incudes post deadline papers,2009. OFC 2009. Conference on.2009.
    118. Driscoll, J.B., et al., All-Optical Wavelength Conversion of 10 Gb/s RZ-OOK Data in a Silicon Nanowire via Cross-Phase Modulation:Experiment and Theoretical Investigation. Selected Topics in Quantum Electronics, IEEE Journal of,2010.16(5):p. 1448-1459.
    119. Claps, R., et al., Anti-Stokes Raman conversion in silicon waveguides. Opt. Express, 2003.11(22):p.2862-2872.
    120. Turner, A.C., et al., Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express,2008.16(7):p.4881-4887.
    121. Winzer, P.J. and R. Essiambre, Advanced Optical Modulation Formats. Proceedings of the IEEE,2006.94(5):p.952-985.
    122. Linke, R.A. and A.H. Gnauck, High-capacity coherent lightwave systems. Lightwave Technology, Journal of,1988.6(11):p.1750-1769.
    123. Bogoni, A., et al.,640 Gbits/s photonic logic gates. Optics Letters.35(23):p. 3955-3957.
    124. Sunho, K., et al. All-optical binary half adder using SLALOMs. in Lasers and Electro-Optics,2001. CLEO/Pacific Rim 2001. The 4th Pacific Rim Conference on.2001.
    125. Olsson, B. and P.A. Andrekson. Polarization-independent all-optical AND-gate using randomly birefringent fiber in a nonlinear optical loop mirror.in Optical Fiber Communication Conference and Exhibit,1998. OFC'98., Technical Digest.1998.
    126. Bintjas, C., et al.,20 Gb/s all-optical XOR with UNI gate. Ieee Photonics Technology Letters,2000.12(7):p.834-836.
    127. Webb, R.P., et al.,40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer. Electronics Letters,2003.39(1):p.79-81.
    128. Soto, H., D. Erasme, and G. Guekos,5-gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers. Ieee Photonics Technology Letters,2001.13(4):p.335-337.
    129. Jae Hun, K., et al., All-optical XOR gate using semiconductor optical amplifiers without additional input beam. Photonics Technology Letters, IEEE,2002.14(10):p. 1436-1438.
    130. Jun, L., et al. All-optical logic NOT gate based on cross phase modulation in highly nonlinear fiber using pre-chirped pulse probe, in Communications and Photonics Conference and Exhibition (ACP),2010 Asia.2010.
    131. Wang, J., et al., Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate. Optics Letters,2008.33(13):p.1419-1421.
    132. Kim, J.H., et al., All-optical half adder using semiconductor optical amplifier based devices. Optics Communications,2003.218(4-6):p.345-349.
    133. Xu, J., et al., Simultaneous all-optical AND and NOR gates for NRZ differential phase-shift-keying signals, leee Photonics Technology Letters,2008.20(5-8):p.596-598.
    134. Kim, J.Y., et al., All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures:Theory and experiment. Journal of Lightwave Technology,2006.24(9):p.3392-3399.
    135. Jifang, Q., et al., Reconfigurable All-Optical Multilogic Gate (xor, and, and or) Based on Cross-Phase Modulation in a Highly Nonlinear Fiber. Photonics Technology Letters, IEEE,2010.22(16):p.1199-1201.
    136. Li, L.L., et al., Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal. Optics Communications,2010.283(19):p.3608-3612.
    137. Wu, J.W. and A.K. Sarma, Ultrafast all-optical XOR logic gate based on a symmetrical Mach-Zehnder interferometer employing SO1 waveguides. Optics Communications,2010.283(14):p.2914-2917.
    138. Xu, Q. and M. Lipson, All-optical logic based on silicon micro-ring resonators. Opt. Express,2007.15(3):p.924-929.
    139. Fu, S.N., et al., Simultaneous Implementation of Photonic Logic OR and AND Gates for CSRZ-OOK Signals. leee Photonics Technology Letters,2010.22(13):p. 960-962.
    140. Fjelde, T., et al., Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter. Photonics Technology Letters, IEEE, 2001.13(7):p.750-752.
    141. Hall, K.L. and K.A. Rauschenbach, All-optical bit pattern generation and matching. Electronics Letters,1996.32(13):p.1214-1215.
    142. Poustie, A., et al., All-optical pseudorandom number generator. Optics Communications,1999.159(4-6):p.208-214.
    143. Wang, J., Q.Z. Sun, and J.Q. Sun, All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing. Optics Express,2009.17(15):p. 12555-12563.
    144. Wang, J., et al., Experimental demonstration on 40 Gbit/s all-optical multicasting logic XOR gate for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber. Optics Communications,2009.282(13):p.2615-2619.
    145. Chan, K., et al., Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs. Ieee Photonics Technology Letters,2004.16(3):p.897-899.
    146. Kang, I., C. Dorrer, and J. Leuthold, All-optical XOR operation of 40 Gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier. Electronics Letters,2004.40(8):p.496-498.
    147. Wang, J. and J. Sun, All-optical logic XOR gate for high-speed CSRZ-DPSK signals based on cSFG/DFG in PPLN waveguide. Electronics Letters,2010.46(4):p. 288-289.
    148. Wu, B.B., et al., Simultaneous implementation of all-optical OR and AND logic gates for NRZ/RZ/CSRZ ON-OFF-keying signals. Optics Communications,2010.283(3): p.349-354.
    149. Bogoni, A., et al.,640 Gbits/s photonic logic gates. Optics Letters,2010.35(23):p. 3955-3957.
    150. Jian Wang, J.S., Qizhen Sun, Xinliang Zhang, Dexiu Huang, All-optical dual-direction half-subtracter based on sum-frequency generation. Optics Communications,2008.281(4):p.788-792.